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A WAVELET MULTIGRID PRECONDITIONER
FOR DIRICHLET BOUNDARY VALUE PROBLEMS
IN GENERAL DOMAINS

by Roland GLOWINSKI (}) (*) (®), Andreas RIEDER (1) (}) (3),
Raymond O. WELLS, Jr. (1) (*) and XIAODONG ZHOU ()

Abstract. — We present a wavelet multigrid preconditioner for the conjugate gradient method
which gives an efficient solver for the linear system arising from a wavelet-Galerkin discreti-
zation of a Dirichlet boundary-value problem via a penalty/fictitious domain formulation. The
preconditioner is chosen to be a wavelet-based multigrid method for solving the same elliptic
equation, however over the fictitious domain and with periodic boundary conditions. Numerical
experiments described in the paper confirm the efficiency of this new iterative solver.

Key words : wavelets, penalty/fictitious domain formulation, Galerkin methods, multilevel
methods, preconditioned ¢g-method

Subject classification : AMS(MOS) 65F10, 65N30

Résumé. — On présente dans cet article un algorithme de gradient conjugué préconditionné
par une méthode wiilisant les propriétés multi-niveaux des ondelettes. Cette approche conduit a
une méthode de résolution efficace des systemes linéuives qui proviennent de la discrétisation du
probléme de Dirichlet par une méthode combinant pénalisation, domaines fictifs et approximation
de Gulerkin sur des buses d’ondelettes. Le préconditionneur est en fuait un algorithme de
résolution, de type multi-niveaux, de problemes elliptiques sur le domaine prolongé, avec
conditions périodiques, pour des approximations de Gualerkin sur des bases d’ondelettes. Les
expériences numériques présentées dans cet article montrent lefficacité de ce nouveau solveur.

1. INTRODUCTION

We shall provide a wavelet multigrid preconditioner for the conjugate
gradient method applied to a class of linear systems arising by a wavelet-based
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712 R. GLOWINSKI, A. RIEDER, R. O. WELLS, XIAODONG ZHOU

discretization of the following elliptic model problem over a bounded domain
w in R? (there is however no principal restriction to two dimensions),

—aAu+u=f, Inw,
u=¢g, ondw,

where « 1s a positive constant.

First, we consider the above differential equation on a square with periodic
boundary conditions (Scction 3). We discretize this problem by a wavelet-
Galerkin method similar to those discussed in [13], [14] and [15]. To solve the
discrete problem, we have developed multilevel methods ; the discretization
step-size independent convergence rate of these methods can be proved by
techniques closely related to those used for finite difference and finite element
approximations (see, e.g. [8] and [17] for related references). A crucial tool for
studying the multilevel solution of the wavclet-based approximate problems is
the Mallat transformation described in c.g. [12]. Here, the Mallat transfor-
mation plays the fundamental role of prolongation and restriction between the
consecutive levels.

Things become more complicated for boundary-value problems over gen-
crally shaped domains. In Section4 we use the fictitious domain/penalty
methods described in [6], [14] and [15] to reduce these problems to elliptic
problems for closely related operators — in the embedding domain (box-
shaped in gencral). The presence of the penalty term requires a special
attention in order to achieve an cfficient solver. Indeed, the condition number
of the corresponding discrete system is dominated by the penalty term. A
carcful analysis shows how to overcome this difficulty. We end up with a
modified linear system which is akin to that one we obtained by the discreti-
zation of the periodic problem over the square already studied in Section 3.
Now, it is near at hand to use our periodic multigrid solver as a preconditioner
for a conjugate gradient method applied to the modified system approximating
the penalized boundary-value problem over the fictitous domain. The resulting
itcrative solver is highly efficient which is demonstrated by various numerical
experiments.

We start our considerations by shortly recalling the necessary wavelet
vocabulary.

2. WAVELET ANALYSIS

2.1. Wavelet System

In this scction, we will briefly recall from [3] various definitions and
properties of the Daubechies wavelets. For a positive integer N, the
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A WAVELET MULTIGRID PRECONDITIONER 713

Daubechies scaling function ¢ and wavelet function w of order N are defincd
as follows : There exist 2 N real numbers a, i=0,1,...,2 N — 1, satisfying

>a=2 and > a,,,a,=26,, forallle Z,
k k
so that
p(x)=> a p(2x—k), forallxe R, 2.1
k
and
w(x)=> b p(2x—k), forallxe R, (2.2)
7

where b, = (-1 )k Ayn_g—p» fOr k=2-2N, ... 1. The functions ¢ and
w are compactly supported, with supp(¢) =supp(w)=[0,2N—-1]. For
convenience, we define q,=0 for k¢ [0,2N—-1].

Furthermore, ¢ and i are in c*™ the space of Holder continuous functions
with exponent «a(N), where a(2)=0.55, a(3)=1.09, a(4) = 1.62 and
a(N) = 0.2075 N for large N, see [5]. For j, k € Z, let us define

gai(x) =27 q)(2’x—k), forallxe R.

Set, for j € Z, V, = closure (span{(pﬂ( ke Z}). Then, {¢} :j, ke Z} is an
orthonormal basis for V. Also, L? (R) =closure ( Y, V) in the sense that
for any funcllonfe L (R) the orthogonal plojecllonf otj onto V; converges

to f in L*(R) as j — + oo,
2.2. Mallat Transformations

The (periodic) Mallar Transformations h, g :R" — R™, n even, of a
vector v € R" are defined by

2N-1

(hv)k—— E v, k=0,..,02-1, (2.3)
2N-1

(gv), = \/— 2 bV, s k=0,..,02-1, (2.4)

where we extend v periodically, i.e. v,=v,_ . The coefficients g, in (2.3) and
b, in (2.4) are those in (2.1) and (2.2), respectively.

vol. 30, n® 6, 1996



714 R. GLOWINSKI, A. RIEDER, R. O. WELLS, XIAODONG ZHOU

The Mallat Transformations satisfy (see [3], [12]),

hWh+g'g=1I,
hh'=gg'=1,
gh'=hg'=0.

We use [ to denote the identity matrix of appropriate size throughout this
paper.
3. PERIODIC BOUNDARY-VALUE PROBLEM

In this section, we are going to discuss a wavelet based multigrid method
for the following simple but typical elliptic boundary-value problem,

—aAu+u=f, inQ, (3.1)
u is periodic on the boundary of 2, 3.2)

where « is a positive constant and €2 is a square of side length s in R? (for
convenience, we assume that s is a positive integer and s = 4 N - 3).

3.1. Wavelet Based Discretization

We introduce the Sobolev space Hll)(.Q), .Q:(O,s)z, with periodic
boundary conditions,

H,=H(Q):={ve L*(Q):v,v,e LY(RQ),

v(0,y)=v(s,y),v(x,0)= v(x,s)}.

The weak or variational formulation of the boundary-value problem (3.1),
(3.2) becomes :

find u € HI', A (u,v) =ffudxdy, forallv e H/'), (3.3)
Q@
where & is the H},—elliptic bilinear form

&/(u,v)=f(aVu-Vv+uv)dxdy. 3.4)
o
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A WAVELET MULTIGRID PRECONDITIONER 715

Due to the Lax-Milgram theorem [2] (3.3) has a unique solution u. For a
Galerkin discretization of (3.3), we introduce the periodic wavelet-Galerkin
spaces at level L, by

Vi =VP(0,s) = {v e L*0,s5):v(x) =kZZ ck(p,\L,(x),x e [0,s],

with ¢, = ck+2,.x} .

Obviously, V/ has the dimension n, = 2% 5. The wavelet-Galerkin approxi-
mation u" e V) @ V! to u is the unique solution of

o (u, uL)=J.va dxdy, forallvie Vi@ V", (3.5)
Q

L .
We expand u~ in

W(xy)= > ugei(x) ei(y),

i.je Z

where the expansion coefficients are periodic in each index with period n,.
Further, we define

fij= j fxy) ¢i(x) ¢ (y) dxdy.
fe)
By introducing the following connection coefficients (see [1] and [11])
r,(:f P (x)p(x~k)dx, k=2-2N,.,2N-2,
R

one can derive from (3.5) the following linear system for the unknowns
uf‘,' s in compact form [15],

a(ce, ut + - c, )+ u* sz , (3.6)

vol. 30, n° 6, 1996
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where (n=mn,)

LL L
Wy Uy o Uy,
LL L

L Uyy Uy - Uy,
W=\ . 7,

) 3.7
}

n2 nn

L
\unl U

ande is arranged in the same way.
In (3.6) ¢, is a nXn symmetric circulant matrix (see e.g. [4] for a
discussion and algorithm concerning circulant matrices) with the first row

S ATy MyTyy 0.0 Ty yTy)), (3.8)

where §, =2~ L'is the discretization step-size.

LEMMA 3.1 : Let u be the solution of the variational problem (3.3) and let
u* be the approximate solution of (3.5), then

lu—ully < C6 llull, < Cfll,,

the constant C being independent of J,.

The norms || - ||, in the above lemma correspond to the Sobolev spaces
H'(RQ)=W"%), see e.g. [2]. See [16] for the proof.

If we use U, and F, to denote the n° x 1 vector resulting from u” and
f* lexicographically, A .. to denote the corresponding n* x n* coefficient matrix
resulting from (3.6), then we have the desired linear system

AU =F,. (3.9)

3.2. A Multigrid Approach

Let A,, k=1, .., L, 0 < [<L, denote the discretization matrix of (3.1)
and (3.2) at level k. Thus, A, has the dimension n:xnz where n, =2"s.
Correspondingly, we have F, ' s and the unknown U, ' s, as in (3.9). In order
to establish the multigrid process, we define the basic iterative method (BIM)
on each level & by

Ul =ur - Ly (AU - F), (3.10)

where S, =7—-L;'A, is called the iteration matrix of (3.10) and where
L, is an «approximate » inverse of A,. For instance, if L, =~ "1, then we

M? AN Modélisation mathématique et Analyse numérique
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have the Richardson iteration, and if L, = i~ ' D, =f ! diag(A,), then we
have the damped Jacobi iteration. Here [ is a suitable damping factor. In our
applications we will choose f sufficiently small such that the resulting Jacobi
method is a symmetric iteration [9].

Now, we describe the recursive periodic multigrid procedure (MGP) for this
periodic case. For this procedure we consider a range of levels with O being
the coarsest and L > 0 being the finest level. We lct /1, be the periodic Mallat
transformation acting on data at level k as given in (2.4), where n = n,, and
we let H, be the tensor product /1, ® h,, where 0 < k < L. We now have
the varying quantities in our multigrid procedure :

k the actual level, 0 < k< L,
w the approximate solution at level &, w € R
b the righthand side and defect at level k, b € R™

2
ny
’

Then we define MGP(k, w, b) as follows :
MGP(k, w, b)
begin ‘
if k=0 then w:=A, "b (exact solution on the coarsest level)
else

v—1

wi=S, w+ 2 S, L, "b  (vsteps of BIM on level k) 3.11)
=0

d:= H(A,w—>b) (restriction ofthe defect to level k — 1 )

v:=0
MGP(k—-1,v,d) (MGP starting on level k — 1 3.12)
with initial guess t =0)
w:=w—H, v (prolongation of the k — 1 level approximation

to the higher level k, coarse grid correction)
end

One step of the multigrid method (MGM) is performed by

w = U'L",
MGP(L,w, F,), (3.13)
U',i'” =

vol. 30, n° 6, 1996
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Remark : a) The MGP describes one V-cycle with presmoothing only. To
achieve a W-cycle, perform (3.12) twice. Applying (3.11) again after the
coarse grid correction yields an MGM (3.13) with postsmoothing.

b) The linear system which has to be solved on the coarsest level has the
relatively large dimension ng = s’ = (4 N - 3)% However, it can be solved

in an efficient manner if one considers its compact form (3.6) and uses the
circulant structure of the matrix c,.

3.3. Convergence Analysis

To prove the J,-independent convergence of MGM (3.13), we follow the
theory of Hackbusch [8], and for this, we need the following notation. For
simplicity we denote

X, =X(Q2) =V V", (3.14)

and we will call X, the (finite-dimensional) periodic scaling space of

level k approximating HI])(Q)A For a finite dimensional space

V= spanje,, ... ¢, } © L’(Q), we define the transformation P: R" — V as

P({x,}i_ )= 3 x,¢,. We denote by R the adjoint operator of P with
K=

respect to the L? scalar product. We use P,, R, to denote such operators for the

space X, and we let ||P.]l, IR || denote the Euclidean norm of these
finite-dimensional operators.

In order to be able to adapt the proofs in Section 6.3 in [8], we supply the
following lemma. Its straightforward proof is omitted.

LEMMA 3.2 : We have
(D RP =1 PN =1IRI=1,
(i) H;\, =R, P._, and H =R, _
(i) A, | =H, A H,.

P

Ik

By taking Lemma 3.1 into account, the approximation property
lA; ' -H, A HI <C, 8, 0<k<L,

where C, is a constant being independent of §,, follows readily from the
standard proof for the finite element case, see Proposition 6.3.14 in [8]. Here
and later || - || denotes the Euclidean norm. Consequently, we have the
following theorem, ¢f. Section 7.2 of [8].

M? AN Modélisation mathématique et Analyse numérique
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THEOREM 3.3 : Let M[*(v,,v,) denote the iteration matrix of an MGM
(3.13) for a V-cycle with v, presmoothing, v, postsmoothing steps and with a
BIM chosen to be a sufficiently strong damped Jacobi iteration. Then, if
v, +v,>0, the spectral radius of M ¥(v,,v,) satisfies

pMPE(v, v,)) < <1,

C
\/C+vl \/C-+—v2

where C is a positive constant independent of 6, and v,, v,.

4. GENERAL BOUNDARY-VALUE PROBLEMS

In this section, we will present a wavelet-based preconditioned conjugate
gradient method (cg-method) [10] for solving the Dirichlet problem over a
general shaped domain in higher dimensions (here we limit ourselves to
two-dimensional problems, but the methodology and the algorithm can be
carried over to any dimension in a straightforward manner).

Let w be a bounded domain in R® with a Lipschitz-continuous boundary
dw. We look for u e H'(w), such that

—aAu+u=f, inw, 4.1

u=g, ondw, 4.2)

where f e L*(w), ge H%((iw) and where « is a positive constant.

In order to avoid generating a complex grid matching the geometry of
w, we instead use the fictitious domain/penalty formulation following the idea
in [15]. For €>0, let 2 be a square containing w. We seek a
ut e H},(Q), such that

€

f(aVu‘-Vv+uev)dx+]j uevds:J.fvdxﬂ-lf gvds (4.3)
o Jw [¢ € dw

2

forall v e HI])(Q), where, in (4.3), f is an arbitrary L’-extension of fin Q.
Using general results on penalty methods proved in, e.g. [7], Chapter 1, we can
easily show that u«® converges to @ in H'(L2), where @ is the
H'(9)-extension of the solution of the following variational problem :
ie H' =g on Jdw,

»
f (aVﬁ-Vu+ﬁv)dx:ffvdx
Q Q

for all v e Hl',, such that v =0 on Jdw.

vol. 30, n° 6, 1996
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4.1. The Wavelet-Galerkin Discretization

From the analysis in [15], we know that there is a wavelet expansion at level

L for the numerical boundary measure ,uL € X,, so that for any gL € X,, one
has

f gl’ds=f ,uLngx—éJ. g ds
s Q dw

as L — oo. Therefore, by applying the Galerkin method to (4.3) with respect
to the space X, (3.14), wec obtain the following lincar system for u® " written
in compact form as [ollows

a(csz‘L+ue‘LcL)+uE‘L+—]€—,uL><uE‘L=f“+%nygL, (4.4)

where u® L,fL, g" and ,uL are square matrices defined as in (3.7). The operation
A X B is the multiplication of two matrices A, B of the same size obtained
by multiplying corresponding entries.

Theoretically, the boundary measure u is supported on dw. At level L, ,uL
will have the same support as the gradient of /Z the characteristic function of
w sampled at level L, see [15]. So geometrically, the support of ,uL is contained
in a tubular neighborhood of dw of width 2 NI2", where N is the order of the
Daubechies wavelets. In our approximation, we set the entry of /JL to be 1
where || Vli, Il is not zero, that is, ,uL acts like the characteristic function of that
tubular neighborhood, since we are going to choose € very small. With this
choice of ,uL, the approximate solution u* " converges to the exact solution for
the H'-norm inside w as € — 0 and L — o. On the boundary dw, we note that
for all L, u®* = g + Ce where the constant C depends only on the norm of
l€ll,;» which is uniformly bounded in €, see e.g. [7].

From (4.4) we can derive an ni X ui linear system
! ¢ 1
ALUz+EMLUL:FL+ZM1,GL’ 4.5)

obtained by rearranging all the expansion coefficients in lexicographical order.

Note that M, representing the numerical boundary measure ,u" is a diagonal
matrix with diagonal elements either O or 1.

M2 AN Modélisation mathématique et Analyse numérique
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Remark : Because the entries of the circulant matrix ¢, (3.8) increase with
the factor &, * as L gets larger, the discrete penalty formulations (4.4) and (4.5)
arc meaningful only if the penalty parameter € is much smaller than (52:

€< (52. From now on we will assume this natural condition for the penalty
formulation.

4.2. A Preconditioned cg-Method

If one uses a standard multigrid method for solving (4.5) then the error
explodes with the choice of small €. To overcome this divergence one could
try to apply a multigrid method with a block version of a BIM where one block
is formed by the unknowns corresponding to the boundary dw, as suggested
in [8]. However, the implementation of this approach depends strongly on the
shape of the domain w, a drawback we would like to avoid.

To derive an efficient solver (in terms of performance and convenient
coding) we study the condition number &k of the matrix
A=A+ e ! M, because IC(AL‘E) determines the convergence speed of
the cg-method applied to (4.5), see e.g. [9]. We have that
k(A ) =005, ¢ ') and remembering that we have chosen e < (52
above, € ! affects the condition number most.

In a first step we therefore try to eliminate the influence of €. Since
€ < 37 we consider the limit of the family {U$},, , of solutions of (4.5) as
€ tends to zero. We will use the maximum norm | - |}

0"

LEMMA 4.1: Let Uj=A, WF,+€ "M, G,) be the solution of (4.5),
then there exists a U, € R" such that

IUL=U.l.=0C(e).
Moreover, U, is uniquely determined by
(I-M)HYA, U =(U~-M)F, and M, U, =M,G,.
Proof: Without loss of generality we may assume that
M, =diag(m;: 1 sisn) with m=1 for 1 <i<k<n and

. 2 . s .
m; =0 otherwise. Here, we set n=n;. Using Cramer’s rule the i-th
component of Uj can be cxpressed by

€ 1 1 i-1 i+l n
(UL)i=M det (eq, ... €a, €F, + M, G, ea, . ...€q; ),

=:4(€)

vol. 30, n® 6, 1996
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where ale is the i-th column of A, _. Denoting the identity matrix on R* by

I, we write
I, 0 €A, (+ 1, €B
€AL = 0 e, _, B AL,

Apc={(AD 1 <ij<kl, AL ={(A); k+1<ij<n}

with

and
B={(AL)U:1 <i<k k+1<j<n}

Hence, deteAd, = € *P(e) and P(0)= detA; ,>0. With the same

argument we can show that A(e) can be written as 4,(e) =e"_kA,.(e).

Therefore the limit (U,),:= lim (U}),= 4,(0)/P(0) exists. Both,
_ €e—0

P(e) and d.(e), are polynomials in e of degree 1 at least. Thus,

P(e)=P(0)+O(e) and A(e)=4(0)+0(e). This implies
(UL = (UL, = OCe).

We multiply (4.5) from the left with /- M, and with eM, to get
(I-M)HAU,=(U-M,)F, and

eM, A, U +M, U;=€eM, F, + M, G,

respectively. Taking the limit as € tends to zero gives the statement. 0

Instead of the ill-conditioned system (4.5) we now choose to solve
(U-M)HA(T-M)YE, =(I~-M)(F, -A M G) 4.6)
on the range R(/ —M,) of I—M,. The limit U, is then given by
u = 52 +M, G,

where éz is the unique solution of (4.6) in R(/-M,).

Remark : The implementation of the cg-method for solving (4.6) is straight-
forward. Indeed, the cg-iteration has only to be restricted to the subspace
R(1— M, ) which can be done easily. Moreover, we do not need to reorder
the unkowns. This is a crucial fact because the system (4.6) can also be written
in compact form, ¢f. (4.4), which is well suited for an efficient coding.

So far we have gotten rid of the influence of the penalty parameter e. Still,

the condition number of A, =(/-M YA (I-M;) on R(I-M,)
increases like 0(522). So, it makes sense to consider using the periodic
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multigrid method presented in Section 3.2 for solving (3.9) as a preconditioner
for the cg-method acting on (4.6). With the same number v of pre- and
postsmoothing  steps the iteration matrix of (3.13) becomes
MPE(v,v)=1-W, ! A,, where W, is symmetric and positive-definite. The
transformed matrix (/-M,) W, "1 - M,) 1is also positive-definite on
R(I-M,) and we may write WL =((UI-M)HW, "1 - M)y ' on
R(I—-M,). Now, we solve the symmetric system (4.7) which is equivalent
to (4.6),

W, "PAW, "¢, =F , & e R(I-M,), @.7

with F, =W, " (I1-M,) (F,—A,M,G,). In using the cg-method to
solve (4.7) only the action of W ' on a vector v has to be computed, see e.g.
[9], which can be realized by one step of the multigrid iteration (3.13) with
starting guess zero and right hand side v.

The usual way to obtain an analytic estimate for the condition number of
VV; UZALWI: 2 is to establish an estimate of the type

yW, <A, <T'W, on R(I-M,) (4.8)

with numbers O <y < I" The notation A < B signifies that B—A is
positive semi definite.

At this time we do not know how to prove (4.8) with meaningful bounds.
Two principal difficulties are: a) it is not clear whether the underlying
continuous expression of (4.8) can be used, b) it is not clear whether the
relation (1 —-p, )W, <A, < W, where p, is the spectral radius of
M#(v, v), may be of any help. Nevertheless, the numerical experiments for
the cg-method acting on (4.7) described in the next section are impressive.

4.3. Numerical Experiments

We consider the boundary-value problem (4.1), (4.2), with respect to two
different geometric domains, the disk (Example I)

w,={(x,y) € R* : x> +y’ < 1/16}

and the disk with re-entrant corner (Example II)

w2={(X»,)‘) e R? :x2+y2< 1/16, y < |x|}

In both examples the right hand side fis chosen to be f= 1 and the boundary
function g is chosen to be g = 0. One of the numerical difficulties with this
setting is the appearance of boundary layers if « is small compared to 1.
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For the domain w, the exact solution « is known to have the following
representation

1iVETEVG)
J(ivara)

u(x‘y):l— :V—-], (49)

where J;; is the Besscl function of the first kind of order 0.

The boundary-value problem (4.1), (4.2), with the domain ¢, has less than
full elliptic regularity. In this example we study the dependence of the
preconditioned cg-method on the regularity of the underlying boundar-value
problem.

We let the fictitious domain Q2 be the square defined by

Q-—*{(x,y) e R? : Ix]. ly] < 1/2}.

Remark : To minimize the number of discretization points in 2 — w,,
k=1,2, one could use 2={(x,y)e R’ :|x|,|y| <1/4} as smallest
possible box-shaped fictitious domain. We chosed the larger domain £2 for our
computations to visualize more clearly the action of the numerical boundary
measure ,uL as well as the periodicity of the solution on Q.

Table 1. — Example I ; necessary numbers of iterations to yield an Euclidean norm of the residue
smaller than 0.01. The discretization step-size is 1/256.

a=1 a=0.01 a = 0.0001

CG* 1538 1219 136
CG 781 608 68
PCG 79 99 17

- In the sequel we will use the following abbreviations : CG® denotes the
cg-method applied to (4.5) with € = 10” 8 CG denotes the cg-method acting
on (4.6) and PCG stands for the cg-method applied to the preconditioned
system (4.7) where W, originates from the multigrid iteration (3.13) with one
pre- and one postsmoothing step. The computational costs of one iteration step
of CG* and CG are almost identical, whereas one step of PCG is more
expensive. However, all three methods coincide in the order of their compu-
tational costs which is O(ni). We realized the three methods in the MATLAB
computer system on a Sun Sparc 2 workstation and we found that the cpu time
for one step of PCG was about four times the cpu time of one step of CG. In
our experiments each iteration is started with starting guess 0 and the under-
lying Daubechies scaling functions always has order N =3.
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For the disk w, (Example I), Table 1 shows the number of iteration steps
needed by the three methods to yield an Euclidean norm (not weighted with
the discretization step-size) of the residue smaller than 0.01. Table 2 contains
the same numbers with respect to w, (Example II). The discretization stepsize
belonging to both tables in &g = 1/256. As expected from our theoretical
considerations, CG outperforms CG® and PCG outperforms CG. Moreover, in
the case a = 1, PCG is less affected by the lack of full elliptic regularity than
the other two methods. If « is sufficiently small then CG and PCG are
comparable because A, is close to the identity matrix.

Table 2. — Example II : necessary numbers of iterations to yield an Euclidean norm of the
residue smaller than 0.01. The discretization step-size is 1/256.

a=1 «a=0.01 a = 0.0001

CG* 2 081 1217 138
CG 1 051 610 69
PCG 99 104 17

Figures 1, 2 and 3 display cross sections through the origin of the approxi-
mate solution (solid line) as well as through the exact solution (4.9) (dashed
line) for Example I with different choices of «. The approximations are
obtained by terminating PCG after the Euclidean norm of the residue was
smaller than 0.01. In addition to the region of interest [— 0.25,0.25] the
approximate solution is also plotted over the whole cross section of the
fictitious domain. The support of the numerical boundary measure ,u" of width

0.05

0.045

0.04

0.035+

0.03f

0.025F

0.02r

0.015}

0.01F

0.0051

85 o1 05
Figure 1. — Example I: cross scction through the origin of the approximate solution after 79
iterations of PCG (solid line) and through the exact solution (dashed line) for a =1 and

8, = 1/256.
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2 N d4 can be seen clearly. Without any sophisticated discretization techniques
wavelet-Galerkin methods provide stable approximations to the exact bound-
ary layers, ¢f. figure 3, an observation already made in e.g. [13]. No Gibbs

phenomenon occurs.

Figure 2. — Example I: cross section through the origin of the approximate solution after 99
iteractions of PCG (solid line) and the exact solution (dashed line) for a = 10" 2 and

5, = 1/256.
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Figure 3. — Example I: cross section through the origin of the approximate solution after

17 iterations of PCG (solid line) and the exact solution (dashed line) for a = 10~ 4 and
J, = 1/256.
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The approximate solution for a = 0.01 of Example II (disk with re-entrant
corner) is plotted in Figure 4 restricted to the domain of interest w,.

= S
SR

i
fie

e
o=
s

=
=

Figure 4. — Example II: the approximate solution for « = 0.01 and J, = 1/256 after 104
iterations of PCG. The Euclidean norm of the residue is smaller than 0.01.

At the end we compare CG and PCG for a = 1 and varying discretization
step-sizes &, =2~ L' L=6,7, 8 9. To get a meaningful result we have to
adapt the stop criterion to the discretization step-size. We stop CG and PCG
if the Euclidean norm of their residue is smaller than r, = 0.01 - 2°7%. The
needed numbers of iteration steps arc presented in the Tables 3 and 4. If the
discretization step-size is divided by 2 then the necessary iterations for CG are

more than doubled, in contrast to this, the neccssary iterations for PCG
increase only with about the factor 1.5.

Table 3. — Example I (a = 1) : necessary numbers of iterations to yield an Euclidean norm of
the residue smaller than r, = 0.01.2""%, L =6, 7, 8, 9.

| 0 =1/64 6,=1/128 J,=1/256 Jy=1/512

CG \ 168 371 781 1599
PCG 36 54 79 118

Table 4. — Example II (a = 1) : necessary numbers of iterations to yield an Euclidean norm
of the residue smaller than r, = 0.01. 2""* L=6,18,09.

| 0= 1/64 6,=1/128 3,=1/256 5,=1/512

CG ‘ 219 501 1051 2256
PCG 46 66 96 145
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CONCLUSION

In this paper we introduced a wavelet-based multigrid method for an elliptic
model problem over a squarc with periodic boundary conditions. Further, we
showed how this multigrid iteration can be used as a preconditioner for a
cg-method applied to a linear system originating from a wavelet-Galerkin
discretization of a Dirichlet boundary-value problem via a penalty/fictitious
domain formulation.

Our presented (and not presented) experiments indicated the efficiency of
our PCG method compared to CG. Nevertheless, for an analytic statement an
estimate like (4.8) is needed.
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