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HATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 30, n° 6, 1996, p. 671 à 710)

CONTROL AND ESTIMATION OF THE BOUNDARY HEAT TRANSFER
FUNCTION IN STEFAN PROBLEMS

by V. B A R B U (*) ( ' ) , K. K U N I S C H ( Î ) (2) a n d W . R I N G (:[:) ( 3 )

Résumé. — On donne ici un procédé d'approximation pour l'identification de la fonction de
transfert du problème de Stefan. Le problème à résoudre équivaut à trouver une commande de
type feedback pour le contrôle de surface de solidification. Les méthodes utilisées ici sont celles
issues de l'Analyse Convexe dans les espaces de Hubert. Des résultats numériques sont donnés
dans un cas particulier.

Abstract. —An approximation procedure for the identification of a nonlinear boundary heat
transfer f une t ion in a o ne phase Stefan p rob le m is pre sent éd. Alternatively the p rob le m can be
viewed as constructing a feedback c ont rol law for the contrat of the solidification surface in the
Stefan problem. The analysis is based on Hubert space methods and convex analysis techniques.
N urne ri cal results combining two regularization methods are pres ent éd.
AMS classification : 49A22, 32R30.

Key words : One phase Stefan problem, free moving boundary, inverse problem, feedback
control, convex functions, regularization techniques.

1. INTRODUCTION

Let Q be a bounded domain in W\ n 5= 1 with a C u boundary F and let
{Q{ : t e [0, 7]} be a family of monotonically increasing (strict) subdomains
of Q with the property that F is contained in the boundary of Qt for ail
t G [0, 7] . To express {Qt : t e [0, 7]} analytically, the existence of a func-
tion a : QT —> [0, 7] is assumed with the properties that a e C2(QT\QQ),
\Va(x)\ ^ 0 for ail xe ~QT\QQy a(x) = 0 on ö 0 and such that

QT\ a(x) for 0
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672 V. BARBU, K. KUNISCH, W. RING

see figure 1 below. We set

G = { ( J C , 0 G QTx ( 0 , 7 ) :a(x) < t < 7} ,

Z= Fx ( 0 , 7 ) ,

Figure 1. — Space-time cylinder with moving boundary a(x).

In this paper we consider the one phase Stefan problem

yt - Ay = 0 in Q

y - 0 in Qx (OtT)\Q

y = 0, Vy • Va = /; in EQ

fï + #30 =0 in 27
y( . , 0) = yQ in Qo

y < 0 in g ,

(1.1)

where y0 < 0 in
3

/? : is a nonlinear mapping,

/> > 0 is the latent heat and — = V • v stands for the outer normal to F.
This problem describes the solidification of a volume of water occupying

the domain Q in the time interval [0,7] , having Ft = {x : t - cr(x)} as the
interface between solid and liquid régions. The state variable y stands for the
température distribution, yQ is the initial distribution and fi(y) describes the
heat flux along the exterior boundary 27. At time t, Qt is the solid (frozen)

région, Q\Qf is the liquid (water) région and ZQ = \^J Ft describes the

évolution of the free moving boundary Fr The boundary condition

in (1.2)
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CONTROL OF STEFAN PROBLEMS 673

describes a possibly nonlinear boundary heat transfer law. In the linear case
with /?(>') =Ay> fi > 0, one refers to (1.2) as radiation condition. If /?,
together with /; and >'o are given, then the direct Stefan problem consists in
determining the température distribution y together with the free boundary
EQ which is characterized by a from (1.1).

Here we shall consider the following inverse problem : Given the function
a détermine ft from a class of admissible functions, such that
EQ = {(x, r) : t = (j(x) = a ( / i ; x)} is the free boundary of the resulting
one phase Stefan problem. This problem can be thought of in two different
ways. First it constitutes the inverse problem of identifying the unknown
boundary heat transfer coefficient from overspecifled boundary data on EQ.
Secondly it describes a feedback control problem for the one phase Stefan
problem with boundary control :

3y
óv

and with the control u in the feedback form :

3y
T" = »̂ i n % (1-3)

(1.4)

The objective is to steer the free boundary a = rr(/i) to some a priori desircd
solidification surface. We refer to [HN, HS] tbr results and références related
to the control of Stefan problems.

The class of admissible heat transfer functions (or feedback control laws) is
chosen to be

sé = {/?= dj: with y : U -> R convex, continuous,7'(0 ) = 0, 0 e //(O)

and a0 + a>0 r
2 ^ j(r) ^ a, + œl r2 for all r e IR},

where 0 < coQ< col9 and a0 < a{ are constants and dj, inapping M. into the
set of all subsets of R, is the subdifferential of ƒ Thus, fi is a monotone graph
and the boundary condition on E has to be replaced by

P() (1 .5)

The above inverse problem will be formulated as least squares problem :

minimize ( Vy • Vrr — /; y dx dt
•U» \ (1.6)

subject to/? e sé and y e ƒƒ'( Q) satisfying

vol. 30, n° 6, 1996



674 V. BARBU, K. KUNISCH, W. RING

yt~Ay = 0 in Q )
y = 0 in EQ

^ + Piy) 3 0 in ^ ( L 7 )

y{ . , 0 ) =3>0 in

We note that the solution 3? of (1.7) is not effected by replacing j by
j + constant. This motivâtes the constraint j(0) = 0 in the définition of
se'. One of the main goals of this paper is the analysis of (1.6) by convex
analysis techniques. In particular, the nonlinear boundary condition will be
simplified by a substitution similar to operator splitting or the mixed ünite
element method. Numerically the solution of the inverse problem of identi-
fying the heat transfer coefficient on one part of the boundary from measure-
ments on other parts is related to the sideways heat équation [C] which is a
notoriously illposed problem. The second goal of this paper is therefore the
description of a numerical algorithm for the identification of the boundary heat
transfer coefficient (or the feedback control law) /? in (1.1), which proved to
be successful on a series of test examples.

The plan of the paper is the following one. In Section 2 we shall study
well-posedness of the closcd loop System (1.7) in a Hubert space Framework.
Section 3 is devoted to proving existence and convergence of suboptimal
solutions to (1.6). An approximation process of similar kind was already used
in [BK1, BK2] for the identification of nonlinear elliptic and parabolic
boundary value problems. Roughly speaking the nonlinear boundary condition
in (1.7) is decoupled via (1.3), (1.4), resulting in a parabolic optimal control
problem on the non-cylindrical domain Q in the control variables v and j . In
Section 4 a maximum principle type resuit for this problem is given. Numeri-
cal algorithms and tests are presented in Section 5.

We shall use standard notation for the spaces of square integrable functions
and Sobolev spaces on Qt, Q and E, Given a îower semicontinuous function
cp from a Hubert space X to [R = (-<», 00] we shall dénote by 'àtp its
subdiffercntial, i.e. :

c)(p(x) - {w e X : (p(x) ^ <p( 11) + (coy x - u) for all u e X) ,

and by

(p* : X —> f8 its conjugate function defined by ,

<P*(p) = SUP {(p, u) — <p(u) : u e X} , forp e X,

where ( • , . ) dénotes the scalar product on X. We refer to [BI] for further
results from convex analysis which will be used in this paper.

M2 AN Modélisation mathématique et Analyse numérique
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2. THE NONLINEAR CLOSED LOOP SYSTEM

675

We shall study here the nonlinear system (1.7) which we repeat for
convenience :

yt - Ay = 0 in Q ^

y = 0 in r 0

in

y ( x , 0 ) = yo(x) in QQ .

Here fi is a maximal monotone graph in IR x IR such that

and 0

This implies that /? = öy, where y :
function such that

is a convex and continuous

= i n f { / ( r ) : r

see [BI], p. 71. We shall call y a (variational) solution of the boundary value
problem (2.1), if it is an element of

such that

f (-
JQ

daxdt

f y(x, TXy(x,T)-zUT))dx

(2.2)

for all z e V.lt is simple to check that every classical solution to (2.1) satisfies
(2.2). Moreover we have the following result :

vol. 30, nQ 6, 1996



676 V. BARBU, K. KUNISCH, W. RING

PROPOSITION 2.1 : Assume that Aa S= 0 in QT\Qnt ^ S* 0 on öQT\F,
' v fin r

v0 e ƒƒ ( y0 = 0 on dQQ \F, yQ < 0 a.e. in QQ and thaï

j(y0) e L (F). Then problem (2J) lias a unique solution y e V such that
Ay e L"(Q) and Vy e L (^ 0 ) . Moreover, y ̂  0 a.e. m 2 and the following
estimate holds :

|V>-|2+ |zJ>|2)dxdt+ \ \Vy(x,<7(x))\2dx +
JnT\a„

y ' U 7-) + \Vy(x, T)\2)dx + 2 j KyU T))dax

( 2 V° ( -V } + I V y o ( ^ ) 12 ) ̂  + 2 J y ( Vo(

dax dt

dax . (2-3)

Proof: First let us note that x —*j(y(x, T)), x e F, and
(x, r) —> j'(y(x, t) ), (x, r) e E are Lebesgue measurable and hence the cor-
responding intégrais in (2.3) make sense as extended real values in R, [Bl],
p. 72.

We shall approximate (2.1) by the family of elliptic boundary value prob-
lems

% + Ay -yt = 0

V = 0

U + /?(>') 3 0

in Q

in Eo

in E

in Q7

in Dn

(2.4)

where /; > 0. By the gênerai theory for elliptic variational inequalities [Brl,
Li] it is known that (2.4) has a unique variational solution ƒ e V satisfying

/ • V( ƒ - ƒ -

+ f
~j(z))daxdt ^ 0 (2.5)
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CONTROL OF STEFAN PROBLEMS 677

for all z e V. In f act, we may express (2.5) as

Ayc+dy/(/) ^ 0, (2.6)

where A : V —» Vis the continuous affine, monotone operator defined by

dt( Ay, z ) = ( sy zt + VyVz + ytz
JQ

+ f (y(xt0)-yQ(x))zU0)dx

for all yy z e K, and y/ : V —> [R is the convex, lower semicontinuous function

W(y) ~ j(y)dox for all j e V.
J r

Since A is positive definite and y/ is a lower semicontinuous, proper convex
function, we infer that (2,6) has a unique solution / G V, see e.g. [Bl],
Section 3.

If one takes z = ƒ' — (yc)+ in (2.5) one obtains

f
Since yQ < 0 a.e. on i20 and 0 e c[/(0) it follows that yc ^ 0 a.e. on Q for
every e > 0. Next, for z = 0 in (2.5) we obtain

«rx A = i bol^ 0 u ) • (2.7)

To obtain the following a priori estimâtes we assume that fi is continuously
differentiable. This requirement will be eliminated at the end of the proof. In

vol. 30, n° 6, 1996



678 V. BARBU, K. KUNISCH, W. RING

the sequel, without loss of generality, we may view yc as a smooth solution of
(2.4). Indeed by interior and boundary regularity for nonlinear elliptic bound-
ary value problems (see e.g. [Brl]) we know that y is C2(Q\QÔ), where Qô

represents a neighborhood of the corners of Q of order ö. To make the
following calculations rigorous one has to replace Q by Q\QÓ and let S tend
to zero. Taking the inner product in L2(Q) of the first équation in (2.4) with
yi:

t we find

(/t)\xi0)dx

U)fdx.

This yields

0o)^ W\l\Q)- (2-8)

Finally, wc shall multiply (2.4) by AyL and integrate on Q. For that purpose
we prépare some useful identities. Note that we defined rr(x) = 0 on QQ. We
find

f div f /tVyEdtcU = - f y;(x,a(x)) Vy(x,a(x))-Va(x) dx
J Q, J a(.v) J Qr\Q{i

r
+ I y'Aydtdx

I QTJo(x)

2 f r à
^ JarJ<j(x) öl

Moreover we have

- 0 a.e. on;Q7,YQ0. (2.10)

M2 AN Modélisation mathématique et Analyse numérique
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Combining (2.9), (2.10) and using the divergence theorem we obtain

f yt Ay dxdt=\ div f y] V / dt dx

+ f y-{x, a{x)) V/(x, <T(x) ) Va(x) dx

-4 f

= f r^V/.v^^v- f |V/(x,a

QT\Q0

|V/(x,0)|2</x

= f Ü(yeU0)-KyeUT)))]d<Jx-±f |V/(x,a(x))|2^x

-\ \ |v/(x,r)|2r/x + j f |vy;(x,o)|2^xs (

where in the last step we used the boundary condition on E.
Similarily we find for a.e. x e QT

f y£
ttA/dt = -/tUfT(x))A/(x,a(x))-d[v f y; V^

JITU) Jff(jf)

vol. 30, n° 6, 1996



680 V. BARBU, K. KUNISCH, W. RING

and upon integrating this equality on QT

f /t(A/dt = - f /t(xya(x))dxvx(V/(x,<j(x)))dx
JQ Jaf\Qti

- f yc
t(x, 0)Ay\x,0)dx

Due to the boundary condition on 27 and the initial condition for yc
t we obtain

/„ A/ dxdt = - \ /,( x,a(x)) divx( V/( x,(j(x)))dx
Q

<>
«o

.v*|2rfrrf/ + l^jLfiifïd^dt. (2.12)

where we use the temporary assumption that fi is continuously differentiable.
Combining (2.4), (2.11) and (2.12) implies that

| Ây \2dxdt= y* Ay dx di - s ytt Ay dx dt
JQ J Q J Q

\Vy\x,0)\2dx

- i f \Vy\x,G{x))\2dx
z JiiT\a„

- j Ky'U T) ) dax +1 K/U 0) ) dox
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CONTROL OF STEFAN PROBLEMS 681

+ f fi(yEU0)Xyo(x)-y\xt0))dax
ir

(2.13)

Here we use the assumption that >0U« ( ,\r
=^- L e t u s n o t e t h a t

and by (2.10)

= f ( ^ i f

vol. 30, n° 6, 1996



682 V. BARBU, K. KUNÎSCH, W. RING

whcre n dénotes the outer normal to QT\QQ. In the last estimate we used

>/:(x, 0) = 7 ( / ( x> 0) - yQ{ x )) = 0 a.e. on dQQ\F and the assumption that

Âa ^ 0 a.e. on QT\QQ and -y- ̂  0 on düT\F. Using these estimâtes in
(2.13) one obtains

f \Vyc\2dxdt + \

\ \V/f\
2dxdt + ±l |V(/(x, 0) - yo(x))\2dx

x))dax. (2.14)
r

Combining (2.7), (2.8) and (2.14) we find

2 ƒ y( / (^ n ) ̂ v + J ^(/) dcjxdt

2 ̂ o (2-15)

By estimate (2.15) it follows that there exists J G V with yt and
Ay e L {Q) such that on a subsequence of yc we have

ƒ —> y weakly in Hl(Q), strongiy in L2(Q) ,

^ ™> J f weakly in L2(Q) ,

Jy^ —> / l ^ weakly in L 2 (Q) ,

e^ -> 0 stronglyin L 2 (Ö) , (2.I6)

/ (x , 0) -> ><x, 0) stronglyin L2(I30),

y —-» j stronglyin L2{£) ,

V / -> Vj; weakly in L2(2-Q) , as e -> 0 + .

M2 AN Modélisation mathématique et Analyse numérique
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In particular we infer that the trave of Vy on Eo is well-defined in the sense
of Vy e L2{E0). Letting i: tend to zero in (2.5) we find that y is a solution to
(2.1) which satisfies the estimate (2.3). Since yr ^ 0 a.e. in Q for all
t: > 0 we deduce that y ^ 0 a.e. in Q.

To eliminate the regularity requirement on ƒ? that we made before (2.8) one
approximates ƒ? by a family of continuously differentiable, monotonically
increasing functions px : R —> IR with P*(0) = 0, which satisfy in addition

jX(i) lim inf jX(r;) 5= j(r) whenever rx-ï r in

(ii) lim j\r)=j(r) for all r e IR,

(iii) | / / ( r ) - px(r)\ ^C for a constant C independent of X > 0,
r e R,

where

j\r)=\ fT\s)ds and p} = X~ \ 1 - ( Î + Ajff)" ' )
Jo

A spécifie choice for such a family of functions is given by

=
J -

For details we refer to [BI], pp. 157, 171, 322. Repeating the above
arguments with P replaced by pA one obtains a double indexed family of
variational solutions yCl/ to (2.4) with ƒ? replaced by px satisfying

• 1+ f ( / ' U 0) -y 0 ) (/%A(x, 0) - z(x, 0) )

iI ^ ^ 0 . (2.17)

vol. 30, n° 6, 1996
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Moreover the following a priori estimate holds :

f ( (yïX f+\ Vƒ• î 2 + | V/- } f )dxdt+\ | V ƒ •'(x,<r(x))\2dx

2 ƒ ƒ (ƒ ' \x, 7) ) ̂  + ƒ ƒ ( ƒ 'A ) daxdt

(2.18)

Now let us fix e > 0. Due to (2.18) there exists ƒ e HX{Q) with y* and
Ay' e L2(Q) and a subsequence of {/tA};,>o t n a t converges as X —> 0 + to
y in the sensé of (2.16) with e —̂  0 + replaced by X —> 0 + . Moreover there
exist functions d̂  G L2(F) and <J2 e L2(E) such that

l i m / ( / ' ; X . , 7 ) ) ->£ , weaklyin L2( T) (2.19)

•À/ /:, /
lim / ( / l X ) -> £2 weakly in L ' ( ^ ) (2.20)

Due to (iii) we have

|/O)| ^ U;(r)| + clrl fora11

and hence using Fatou's lemma for the term j (y€< ) da dt and Lebesgue's\ j (y ,

bounded convergence theorem for f\z) daxdt we can pass to the limit as

X -» 0+ in (2.17) and (2.18). In this way we obtain (2.5) and (2.15) for every
s > 0. Passing to the limit with respect to c —> 0 we obtain existence of a
solution to (2.1) which satisfies the estimate (2.3) for every ƒ? satisfying the
condition specified at the beginning of this section.

M2 AN Modélisation mathématique et Analyse numérique
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The uniqueness of y is immédiate by the variational formulation (2.2). This
complètes the proof.

3. A LEAST SQUARES APPROACH TO IDENTIFY THE BOUNDARY HEAT TRANSFER
FUNCTION

We shall consider the optimization problem

minimize ( Vj • Va - /; )2 dax dt

subject to/? e sS and toy e H{(Q) a solution to (2.1 ) .
(P)

Throughout this section we assume that yQ and a satisfy the assumptions of
Proposition 2.1. Then ( P ) is well-defined as a conséquence of (2.3).

THEOREM 3.1 : Problem (P) lias at least ane solution
(y*,/?*) e Hl(Q)x sf.

Proof, Let d dénote the infimum in problem (P) and
let {(yn>Pn)} c Hl{Q) x J / be a minimizing séquence satisfying

(3.1)

with yn the variational solution to

f
yn =0 ini70

0
(3.2)

Due to (2.3) and the properties of éléments in sé there exists a constant C such
that

for all n.
It follows that there exists y e Hl(Q) with zfv e L2( 2 ) such that for a

subsequence

yn ~^ y w e a^ly in Hl ( Q ) and

vol, 30, n° 6, 1996
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Taking lim inf in (3.1) we infer that d = | Vy • Va - p\2jj{Li)y It remains to
pass to the limit in

f (->'„(>•„ - z), + V.y„ • V(>-, -z))clxdt+ f (/,(ƒ„) -JM))d<rxdt

+ f ynUTXyH(x9T)-z(x,T))dx

~ f yö(x)(yn(xJÖ)-z(x,0))dx^0

for all z e V- This is simple for ail terms except for the second. To take the
lim inf on that term one uses the Arzela-Ascoli theorem to conclude conver-
gence of {jn} in C(I) for every compact lezR, By Fatou's lemma and
Lebesgue's bounded convergence theorem (using jn e Jf ) we obtain

j{ y ) dax dt + j(z) daK dt ^ lim inf jn(yn ) dax dt

+ lim inf jn(z) daxdt,

and the desired resuit follows.
Next we approximate problem (P) by the following family of optimal

control problcms in the control variable v :

minimize < ( Vy • Vrr — /; )" daK dt +

i f «>:
subject toy e H\Q)J e Jf\ v e L2(Z)
and >' a variational solution to

yf - Ay = 0 in Q |̂

y = 0 in i7n

in
(3.4)

vUO) =yo(x) inr20,

M2 AN Modélisation mathématique et Analyse numérique
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where A > 0, and

X = {j : R -» R is convex, continuous,y(0 ) = 0, 0 G dy'(O), (3.5)

a0 + a;0 r
2 ̂  y ( O ^ a i + w, r2, for all r e IR} .

Note that sé = {/J = d/ : j e J f } .
The introduction of the second term in the payofï oï ( P} ) is suggested by

the équivalence between

0 and K

at all points (x, t) E i7 where these équations are well-defined. Moreover

whenever this expression is defined. Upon setting t; = — and integrating (3.6)
on E we obtain

with equality holding if and only if

y*( -^ ) + ̂  = öa.e. inZ\ (3.7)

Thus the second term in the payoff of ( P ; ) is a penalty term realizing (3.7)
and (Pk) constitutes a splitting or mixed finite element method with respect

to the variable -^ for problem ( P ) .
Before going further, some comments concerning (3.4) are in order. For

y0 e Hl(Q0) with yo = O a.e. in dQ0\r, and if vte L 2 ( T ) , then (3.4) has
a unique variational solution y satisfying

y(x,T)z(xyT)dx =f
J

vzdaxdt+ yo(x)z(x,Ö)dxy (3.8)
r J Q()

for all {z e H\Q) : z = 0 in Zo] and

jŷ  = 0a.e. in EO. (3.9)

vol. 30, n° 6, 1996
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Moreover y satisfies y e Hl(Q) with Ay e L2(Q) and V>-• Va e L2(270).
The proof follows from the proof of Proposition 2.1, see also [B2]. It is simple
to argue that

f \Vy\2dxdt+\ y2(x,t)dx^ Cl \ y2
ödx+\ v2 daxdt\ , (3.10)

Ja Ja, \ JÖ„ Jr /'e

with C independent of y0, v and t e [0, X].
For gênerai f e L~(£) it follows by density arguments based on (3.10) that

(3.4) admits an unique variational solution satisfying (3.8) and (3.10) as well.

Since y{t) e Hl(Qt) for a.e. te [0, X] and \y( . , t)\2
H>,Q ) dt < °°, the

Jo -, '
trace of y( t ) on #£?, is well-defined and belongs to L"( c>̂ 2r ) for a.e.
f e (0, X), so that (3.9) makes sense. In the neighborhood of 27O the solution
y of (3.4) is in fact more regular. For that purpose we introducé the domain
Q'ŒQ0 (and hence Q'c:Q{ for all f e [0, X] ) with the property that
d.Q'consists of two connected components, one of which coïncides with /"and
the other lies in the interior of Qo. Then it is straightforward to argue, e.g. by
a Galerkin procedure, that the solution of (3.4) satisfies in addition to (3.10)

with C independent of\y0 s HX(Q) and v e L2(£). In particular the payoff
in ( P ; ) is well-defined for v e L2(Z).

We shall say that (yx,jx>
v^ converges in (L2(Q))w x X x

(L2(Z))w to (yJyV), if yk-*y weakîy in L2(Q)y vÀ~^v weakly in
L"(i7) and j - —>y uniformly on compact subsets of R.

THEO REM 3.2 : For every A > 0 there exists at least one solution
(>'„yA,ü,)e L2(Q)x J f x L 2 ( I ) of (Px). Moreover {yÀJx,vx}.>0

contains a clusterpoint in ( L2( Q ) )w x JT x (L"( iT) )w, r/7e ƒ m ?wo
components of every such clusterpoint are a solution of (P) and
lim inf Px = \nfP.

Proof: Let (ynjn, vn) be a minimizing séquence for (/^) satisfying

(3.12)
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for every n G M, where yn, vn satisfy (3.4), jn e Jf and dx = inf (PA) . Due
* f

to the properties of Ctif using (3.8) to eliminate the term vnyndaxdt it

follows that

for a constant C independent of n. From (3.11) it follows that { | | ( }

î & [0, T] }~= j is bounded as weîî. Consequently there exist y-; e L ( 2 ) with
VyA E L 2 ( g ) and VyA • V<r e L 2 ( i7 0 ) , and i^ € L 2 ( T ) , such that on a sub-
sequence, again denoted by {n}, we have

weakly in L ( Q )

weakly in L2(Q)

stronglyin L 2 ( T 0 )

weakly in L 2 ( i 7 ) .

Sinee j H e JT for ail n there exists a constant Cl independent of n such that

\ajl(r)\ + \djn(r)\^C{(\r\2+\) for ail r e U .

Consequently by the Àrzela Ascoli theorem there exists jÀ € Jf* such that

.ƒ„('") ~-*J*A(r) a n d y*,(r) - * i l ( r ) uniformly in ron

compact subsets of ER . (3.13)

It is simple to argue that (>';, v;) is a variationaî solution of (3.4), Le, that (3.8)
is satisüed.

We next argue that {yoyn}~lssi is compact in L2(£). Hère yQ dénotes the
trace of y on 27. Let Hl

m(Q') = {<p e H\Q') : <p\BQ'\r= 0}. Using the fact
that {PH} is bounded in L2{£) it is simple to argue that {yn} is bounded in
L 2 ( (0 5 T) ;Hl(Q')) and {(>>„),} is bounded in L 2 ( (0 , 7 ) ; ' / / ' / G ' ) * ) . For
every £ e (0, 1/2) one has the continuous injections

Hl(O') cz Hm + a(Qf) c / /^( f i ' )* .
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with the first one being also compact. By Aubin's compactness theorem it
follows that {yn} is precompact in L2((0, T) ; Hm + \Qf) ) and hence
{yoyn} is precompact in L2(£). Hence for a subsequence, again denoted by
the same symbol, we have

rQ yn -* ô y>, strongly in L2{ E) . (3.14)

Since j n e J f it follows that jn(yn) ^ otQ
 a e - an<^ n e n c e by Fatou's lemma

and (3.13), (3.14) we fînd

îiminf f jn{yn)daxdî^ \ J;(y}) daxdt. (3.15)

Since vn —> i;; only weakly in L2(iT), taking the Iiminf in
f fH(- vn) daxdt is more delicate. Based on (3.13) one can argue as in the

proof of Theorem 2.1 of [BK1] to obtain

lim inf f fn(-vn)daxdt^ \ j\(-vx) d(Txdt. (3.16)

We also have

lim I yavndrrxdt = j ykvxd(jxdt. (3.17)

Combining (3.12) and (3.15)-(3.17) we find

- f ( V V - ; 2 <x + i f ' O •* - t ?

and hence (yÀJÀ, vx) is a solution to (PA).
We turn to the asymptotic behavior of ( P ; ) as Â - ^ 0 + . For every

Â > 0 we have

xdt

( V / V T̂ - / ; ) 2 J(7x dt = inf P , (3.18)

where (y , j ; , v ) is any solution to (P) .
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Arguing as above, with (y^j^v^) replacing (ynjn, vn) we find that
{\yx\tHQ)}> {|v^L2(ö)}«^I^Ufl |\ö') :fe tO,r]}, and { K | ^ m } are
bounded uniformly for A > 0. Consequently there exist y e. L (Q) with
V>' e L2(Q) and Vy • Va e L2(270X and v e L 2 ( i 7 ) such that on a subse-
quence {Xn} of {Aj A > 0 , with lim Àn — 0 we have

y A -> y weakly in L 2( Q )
V^ ( 1 -> V ^ weakly in L2( Ö )

V 3 V V c r - ^ V ^ - V a stronglyin L2(i70)

v} —> i; weakly in L2(Z) ,

as « —> oo. Moreover there exists j e ^ such that

jÀii(r) —>y(r) a n d 7 * ( ( r ) —>j*(r) uniformly in r on compact subsets of f8 .

As above one argues that

lim inf (j;(l i m i n f (j;(yx)+jl(-v )+y v )daxdt

J r
y y ) + / ( - y ) + yy)<for<fr2* o ,

and by (3.18)

y(.y) + ƒ ( - ü ) + )W = 0 a.e. in E .

It follows that

v e /?(;;) a.e. in E .

Clearly (y,v) is a variational solution of (3.4) and hence (y,j,v) is a
variational solution of (2.1). Moreover from (3.18)

f (VyVa-p)2d(JKdt ^ \ (Vy° . Vrr - pf daxdt ,

and thus (3 ,̂7, u ) is a solution to ( P ). By (3.18) it follows that
lim inf P} = inf P. This ends the proof.

x->0 +
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In thc final rcsult of this section we return to thc control thcory interpré-
tation of (P)* We shall assert that the feedback control law

u e - àjk(y) m E

with j ; the second component of the solution (y},jÀ, vx ) of ( P}) applied to the
original problem (P) gives a suboptimal approximating solution for that
problem.

THEOREM 3.3 ; Let (yÀJ}) e L2(Q) x Jf be given by Theorem 3.2 and
let yx be the solution to (2.1) with fi~ djÀ. Then

y A ~ y x "^ ° cmd V ( y\ ~ yx ) -* ° strongly in L2( Q ) as k -> 0 + . (3.19)

Moreover, every subsequence {(}'; , j ; )} of {(y^j; )};t>o contains a cluster
point (y\f) in (L2( Q) ) w X $C, which is a solution to (P) .

Proof : For every o O we have

f
Q

and
f f

( ( yk ), w + Vv; • Vw )dx dt - v; w dax dt = 0
JQ ' J r

for ail z, vv G K Setting z = yA, w = _yA - j ^ and subtracting the above
equality from the inequality we find

* - yÀ)\2dxdt +

+ f [/,(>I ) - hi yk ) + vk(.y* - yA )] daK dt < 0 . (3.20)

We recall from (3.18) that

)+yxvx)<toxdt**C/. f o r a l l A > 0
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and hence

Uiiy\) -7;.(>';.) + üx(.vl - >';.) ) dcJ,-dt ^

^ CA - f (v, y \ + j?{y) )+_,-•(_ Ü. ) ) rfCTjr rfï <= Ck .
v £

Inserting this estimate into (3.20) the validity of (3.19) follows. For any

séquence {(y^^Jx,)} t n e séquence {(yxJx>vx,)} contains, due to Theo-
rem 3.2, a convergent subsequence, the limit of which has the property that its
first two components are a solution to ( P ) .

4 . S O L V I N G P R O B L E M S (P})

Besides the obvious fact that the problems ( P ; ) are infinité dimensional and
that numericaï realization requires discretization, these problems represent
some serious structural difficulties. In this section we shall address the
problems related to the numericaï treatment of the set JCthe éléments of which
are defined over an unbounded domain and are required to be strictly convex.
Moreover we characterize the gradient of the cost with respect to (y,j\ v).
These considérations are independent of the spatial dimension. In the follow-
ing section we describe a spécifie numericaï realization in spatial dimension
one. There we shall also take into considération the inherent illposedness of
the optimization problems : In fact, the cost functional in ( P ; ) is not coercive
with respect to v or j .

Throughout this section we shall assume that yQ e H\QO) n C(QQ), that
y0 < 0 in Qo and that y0 = 0 on öQQ\F. Then for any fJ e sé the solution
y to (2.1) satisfies

-a :=inf>0 ^ y(x, t) ^ 0 in Q (4.1)

and

- a ^ y(x,t) ^ 0 on E . (4.2)

This follows from the strong maximum principle for paraboHc équations (see
e.g. [PW]), since the extrema of y in Q are not attained on E. Since in view
of (2.1) only the values of y on the range of y contribute to the value of the
cost functional in ( P ) , it therefore suffices to restrict the domain of j to
[—a, 0 ] . Concerning the actual problem formulation on a bounded domain
two conflicting issues arise. On the one hand one would like to enlarge the
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domain for y beyond [— a, 0] so that perturbed problemsw (e.g. (P;)) still
have the property that their solutions are not effected by restricting the domain
and on the other hand, enlarging the domain introduces some indeterminancy
into the problem (with adverse numerical conséquences), since the limit
problem is not effected by the values of j on the complement of [— a, 0 ] . For
the purpose of the present section we shall restrict the domain of j to
/ = [—a — C, «] for some i: ^ 0.

Another practical issue consists in the numerical realization of the convexity
assumption involved in the définition of sé. This will be accomplished by an
additional regularity assumption for ƒ For computational purposes we shall
therefore consider

minimize (Vjy*Va —/;) daKdt

on (yj) e H\Q) X X \ subject to (2.1 ) with /i = dj

( ƒ > ' )

where

J T 1 ={j e H2{I) :y(0) = / ( 0 ) = O, 2 co0 *k j"(r) ^ 2w,,fora.e .re /} .

Accordingly {P}) is replaced by

minimize | ( Vy • Va - /; )

1

on(yj,v) e Hl{Q) X JT X L2{E) subject to ( 3.4).

In (P\) it is understood thditj(y) = ~ for y <£ I and j * : M i s d e f i n e d
by

j\p) = sup {py-j(y) :ye 1} , for p G R .

^ ^|^(2:) m (^;) n a s D e e n added for numericalThe regularization term ^ |^ |^ ( 2 :) m ( ^
purposes.

Since J^ 1 is a closed convex subset of

j = {j : / —» [R,y convex and continuous,j(0) = 0, 0 e 3 / ( 0 ) ,

a0 + a;0 r2
' ( ^ ) ^ a i + cox r

2 , f o r a l l rel},
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and, as seen above, problem (P) can be restricted to JfTv Theorems 3.1, 3.2,
and 3.3 remain valid for ( P 1 ) and (P\).

We next characterize the gradients of (P\) with respect to j and (y, v ). At
the same time we note that (P\) can be decomposed into two convex
optimization problems. These are :

1) For flxed j e JT1 solve the optimal control problem

minimize (Vy • Va - p)2 daxdt + ̂  \V\L\E) +

/ ( - v) + yv) daxdt (4.3)

2(on (y,v) e ƒƒ'( Q) x L2( 27) subject to (3.4) .

2) For fixed (y,v)e HX(Q) x L2(Z) solve the minimization problem

minimize (j(y) + J: ( - ^ ) ) daxdt

subject to ; e J5T1 . (4.4)

We turn to the characterization of the gradients of the cost functionals in (4.3)
and (4.4). Problem (4.3) is a convex optimal control problem, in fact, using

\

(3.4), the term yv daxdt can be replaced by

\ yUT?dx-\\ y2
Qdx+\ \Vy\2drjvdt.

This problem has a unique solution that is characterized by

v = -(/j + ±dj*yi(\y + p ) , (4.5)

or equivalently

V =

a.e. int/}

- - j (> ' + Àp - e) a.e. in {( 1 + A/J öj)~ ' (y + Ap) ^ e}

- - ^ (y + Xp + a + e) a.e. in {( 1 + XJLI dj) l (y + Xp) ^ - a - e}
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where p is the variational solution to

p, + Ap =0

dp _ J[

P =~
p( . ,T) = 0

in Q

in QT .

Let $ dénote the cost functional in (4.3). Then its gradient in direction
Sv G L2(Z) at v e L2(£) is given by

We next turn to (4.4) which we rewrite as

minimize .ƒ*(" v ) dax dt)

(4.6)
over 'ö- e L2(l) subject to

y//(r) = û(r)a.e.in ƒ
7 ( 0 ) = T ' ( 0 ) = 0

2 œ0 ^ -ô ^ 2 œl .

Solving the differential équation in (4.6) for j as a function of 'ô- we find

j(r) = (r-s) -ù(s) ds for r e /
Jo

and

ƒ"(/>) = for

where

if

-a-e if p
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and

Since Û ^ 2 OJ0 > 0 invertibility of /?ö follows. The cost functional in (4.4)
can be expressed as a function of û in the following way :

À J

sû(s)ds )da dt,
/

where (y, v) e Hl(Q)xL2{Z), with y(x,t)e I a.e,, is fixed.

Thus (4.4) can be expressed as

minimize 0(û) over û e U

ol a.e. in/} . (4.7)

Arguing as in [BK1] we see that 0 is convex. Moreover it is Gâteaux
differentiable in a neighborhood of U and we find for the derivative at $ in
direction w

"L 1 (y(x,t)-r)w(r)dr

Ç l(- v(x,r))
(r-*ff;i

l(-v(x,t)))w(r)dr

and the Riesz représentâtes, denoted by p, is given by

da. dt,

(£/(- v(x, t)) - r) X[/i:. >(- vUl)).0](r)
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where % dénotes the characteiïstic fune t ion of the indicated interval. We
thereforc deduce that the solutions -ù to (4.7) satisfy

Oe /u + N^Û), (4.8)

where Na( -& ) is the normal cône to U at -ô, defîned by

Na(û) = { / / e Ll(I) : / / ( r ) = 0 if 2 œQ < û(r) < 2 œ} ; ^ ( r ) ^ 0 if

-ù(r) = 2CÜ, \ff{r) s= 0 if ^ ( r ) = 2 w j .

From (4.8) we conclude that the optimal solution -ô satisfies

=2œ0 i f ju(r)>0

2w, if /J(r) <0 (4(9)

( 2 ^ 2 ^ ) if fj{r) = 0.

5. NUMERICAL EXPERIMENTS

We carried out numerical tests in spatial dimension n = 1 with the
following spécifications :

• Q = ( 0, 1 )

r = ̂  ; r37 = ( /, 1 ) where 0 < / < ̂

<r: [/, 1 ) -> [0, 7] such that a = 0 on [5 ,1 ) , <? > 0 and strictly

decreasing on [ ' . 5 ) , ^ ( 0 = ^ and a e C2( [/, i ] ) with

(j"(x) & 0 for ail X<E [ ^ ]

# Öf = (rr~ ] ( O , O fór all r e ( 0 , 7 ) .

In dimension one it is more convenient to work with a" ' : [0, T] —» /, Ô*
rather than a. We slightîy modify the cost functional (P^) by multiplying the
first integrand by ( rr~ ! ( r ) ) 2 = l/( rr^ rx"~ ' ( r ) ) ) 2 and consider the following
problem :

u , 7 ) = | yY( cr~
Jo

), r) -
Jo

over O,y) G L2(0, 7) x
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where y is the solution of

v - v - 0 in g

699

dv ( 1 , 0 =
( x , 0 ) =. onQ

Q.

(5.11)

Here we suppose that y0 e C'f «•, 1 ) ; >'0(x) < 0 for all x > -= and

i) = o.
Next we characterize the 'Neumann to Neumann' mapping

v *-> yx((7~ \t), t) and the 'Dirichlet to Neumann' mapping f 1 — > y ( l , 0
explicitly als Volterra intégral operators acting on v, and we thus eliminalc the
constraint (5.11) from the optimization problem (5.10). We prcferrcd this
procedure over simply calculating yx(o~ \t),t) and y( 1, t) in (5.11) by a
finite element discretization, because in the latter case it turned out that the
number of éléments in spatial direction and the number of timesteps must be
extremely large in order to obtain results of reasonable accuracy. Recall that
the fundamental solution for the heat équation is given by

We set

and

V 2 V ^ V ; F \ 4 ( r - T )

G(x, t ; Ç, z ) = IXx, t ; ç, r ) - f\ 2 - x, t ; £, x )

and define the operators

= Ï
Jo

Jo

M2f(t)= \ N(\,t\<j
Jo

r)f(r)dr

- i/ ),T) f(z)dz

(5.12)

(5.13)

(5.14)

(5.15)
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and

GJ{t)= \\G{cr\t)%t\^0)f{Z)dZ (5.16)

(5.17)

for t > 0. Note that the operators (5.12) and (5.14) are of the form

Jfc(f, T ) ( r - r ) ~ I / 2 / ( T ) rfr and the operators (5.13) and (5.15) are of the
Jo
form | k(r, T) f(z ) dr with some iunction k continuous on

O = {( t, T ) : 0 s= r ̂  7 ; 0 ̂  r ^ f}. Following [GLS], proof of
Theorem 2.2 (i), p. 64, and proof of Theorem 2.5, p. 66, it can be proved that
(5.12)-(5.15) define compact operators on L2(0> T). Moreover it is easy to see
that G, and G2 in (5.16) and (5.17) respectively are bounded from

"̂u Ö"» ̂  ) ^nto ̂ 2^* ̂ ) - Therefore we can define compact operators JS? and
^ from L2(0, T) into itself by

(5.18)

, 2 (5.19)

Moreover we define

i dyn «
dx=2(I+2Lx)-

xGx-jg<E L\ 0, 7) , (5.20)

d2 = G2y0-M2dx e L2(0, 7) (5.21)

where / dénotes the identity on L2(0, 7 ) . The existence of (I + 2Lyy
{

follows from the fact that we can décompose the interval [0, 7] into finitely
many subintervals such that the norm of the restriction of 2 Li to these
subintervals is less than 1. The solut ion/e L2(0,T) of

( 7 + 2 L , ) / = 0 e L 2 ( 0 , 7 )

is unique and can be expressed in the form

/ ( O = 0 ( 0 - f r(tJz)g(T)dzi
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where r(t,z) is the résolvent of 2 L r (cf. [GLS], Theorem 3.6, p. 234, and
Corollary 3.14, p. 238). It follows that

*2(r,T)-J r(us)k2{s

(5.22)

is a Volterra operator of the first kind. Here k2 dénotes the kernel of the
operator L2.

We now address the problem of determining yx(ó~ \t), t) and y(\,t) in
(5.11) from known boundary- and initial values.

PROPOSITION 5.1 : Suppose y e H\Q) IS a variational solution of (5,11)
with v e L2(0> 7) . Then

yx{à-\t),t) = Sev{t) + dx{t) (5.23)

and

y( U ) = •*! ;(O+ <*2(O (5.24)

a.e. on [0, T].

Proof: It is known ([KMP], Theorem 2.4) that (5.23) and (5.24) hold for
v e C( [0, T] ). A density argument together with (3.11) implies the claim for
all v e L2(0, T).

Proposition 5.1 allows to write the cost functional in (5.10) as

J ( v j ) = \ T \ & v ( t ) - d ( t ) \ 2 d t + * \ 2

Jo L Jo

(5.25)

where d(t) = di — pa" ' (r). For the minimization of (5.25) we used an
itérative (SQP) method from the MATLAB optimization toolbox with ana-
lytically provided gradients. We chose / in JT1 as 7 = ( - M , 0) , where
- M ^ min \yö(x) : x s I ö» H [• We provided for the fact that
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y( 1, t) e / may not be satisfied during the itération by extendingy outside of
/ as a linear function with very steep slope and such that y is convex on ail of
1RL Moreover, just as in Section 4, we replaced the independent variable j by
-ô—f\ where j and û are related by

K y ) = \ ( y ~ r ) û ( r ) d r f o r y e l , (5.26)
Jo

and -& e JT2 = {-& e L2(I) : 2 co0 ̂  û ^ 2œ{}. We next give the explicit
form of the gradients. Due to the fact that we use the boundary element
formulation for the solution y on EQ and E the gradient of J with respect to
v is simple, and the adjoint équation (compare (4.6)) is realized through the
adjoints of the operators JS? and dt. We find for the derivative of J with
respect to v in direction w e L2(0, T) :

d2) -y '* ' ( -ü) + ( ^ + ^r*)i;H-rf21 w)L2 ( o r ) . (5.27)

To calculate the derivate of $ —> JivJ('û)) one proceeds as in the compu-
tation of the necessary optimality condition of subproblem 2 of Section 4. We
find for the derivative in direction £ E LT{— M, 0) :

(r-y^-v(t)))^r)dr cit.,
0

where

if p > 0

if pe I

and

f
Jo

= I $(s)ds for r e 7 ,
Jo

and we assumed that y( 1, t) e / for all f G [0, T]. (If >( 1, f) é /, then j is
extended outside of / as explained above, and ĉ  is set 0 on the complement
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of /.) For the numerical realization all f-depending functions were discretized
as sums of linear spline functions with respect to the grid \i— \ . The
Volterra operators that need to be discretized have either continuous kernels
((5.13) and (5.15)) or weakly singular kernels with singularity of the type

(t — r) 2 ((5.12) and (5.14)). In the first case the trapezoidal rule was used
to evaluate the intégrais and for the singular case we used first order Gauss

i
intégration with weight function (t-r) 2 on each of the subintervals. The
function ü is discretized as sum of elementary step functions

f 1 for -LM<y ^- ^ - i M
B (y)= i . n n

10 otherwise ,

for i = l,...,rt. If ün(y)= 2 ^iBfl(y) with fl. e IR and ƒ is calculated

from ûn via (5.26) then ( / ) ' ( 0 ) = 0. The condition 2 CÜ0 =£ƒ'*£ 2w, is
clearly equivalent to

2 vv0 s= ü>. *£ 2 w, for all / = 1, .... n ,

and can easily be realized as a box constraint in the computations. In
numerical experiments the constraint ûi ^ 2 œx plays no significant role. For
the constraint 2 a>0 ^ -$,. we generally took coö = 0 or œ0 very small.
Especially for the nonattainable case this constraint is essential. Here we call
the problem (P) attainable, if there exists (/?,)>) e si xH](Q) such that
the value of the cost functional is zero if rj = O. Minimizing J(v,j('&))
involves solving the first-kind Volterra équation i£v = d in a least squares
sense. Since JSP is compact on L (0 ,7) this is an illposed problem and
requires regularization.

For that purpose we already included the Tikhonov regularization term
U \v\2

L2 in the cost functional. Alternatively we used ^ 11?'|̂ 2 as a regularization
term, but this did not change the numerical results significantly. In the case of
noisy data, Tikhonov regularization, however, did not produce completely
satisfactory results. We therefore combined the Tikhonov regularization terms
with a method that is suitable specifically for Volterra problems. A frequently
used method in this context, sometimes refered to as sequential regularization
method, is due to Beek (cf. [BBC], [La]). In every time-step

}^y, . j , . . . , - m + ! _ u _ , JJT r > 1, the coefficient u. is chosen such that
a constant continuation of v with value i;. fits best the data for the next
r- 1 time-steps in the least square sense. The normal équation of this least
squares problem has the form
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where S£ m'r is a well conditioned lower triangular matrix and dm'r can be
derived from the discretization of the given data function d ; for details we
refer to [BBC], [La]. When using this method in the context of our problem
we replace the first term in the discretized cost functional by

Note that Beck's method uses information from r- 1 future time-steps and
hence, if the original data vector has dimension m + 1, then the vector
vnur has dimension m + 2 - r, and consequently v is only deflned on the
subinterval [0, r n ' f ] , with Tmr=T^ 1 ~L^~), of [0, 7] . In the first two
experiments we considered cases where the prescribed boundary a is attain-
able by a boundary heat transfer law of the form ^p = — P(y) a t

x— 1» i.e. there exist 'truc' functions v and j \ such that J(vfj) = O, if
rj ~ 0 in the cost functional (5.25). In order to obtain data for such a problem
we solved the forward Stefan problem

yt = yxx on Q

y(a-\t),t) =0 on (0 ,7)

yx(\tt) =v(t) on (0, 7)

yx(<7~lU),t) =p<j'x\t) on (0 ,7)
y(x,Q) =yo(x)

(5.28)

with some fixed, monotonically decreasing function v and unknown boundary
e We specifically chose

o ( ) ( | ) T = \ and p = |

and

Let ( a ,y ) dénote the corresponding solution of (5.28). It can be seen that
y( 1, t) is monotonically increasing on (0, 7) and hence v and y( 1,. ) are
related via some monotonically increasing function ƒ? = ƒ :

[ü(7),0.2] via

, f ) ) = O, for r e [ 0 , 7 ] .
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Since yx(a(t)y t) -po (t) = O for all t it follows that J(vJ) = 0, if one
uses as free boundary the function a which was calculated as solution of
(5.28), and if rj = 0. For this a as input data we solved the regularized
problem :

minimize J(vJ(-&) )

subject to -ö- ̂  0 ,

with the following set of parameters :

(5.29)

= 10" 7 , i = 104, n = 64 {t-discretization), m = 48 (discretization fory) .

Let v >fi ) iridicate the calculated solution of (5.29). Figure 2 compares

i; and t>, figure 3 shows /?opL and fi = I -Q{s)ds. In figure 4 we plotted
v 0

Po [(-VopL̂  1» • ) ) anc* " yopi a s Onctions of t. This plot shows how well the
boundary condition v(t) + fi(y( 1, r) ) = 0 is fulfilled for the calculated
solution. Note that y( 1, t) = d$v(t) + d2(t) occurs as a by-product in the
calculation of the cost functional.

The plots in figures 5-7 are analogous to those of figures 2-4, but hère we
added some uniformly distributed noise to the input data a~ \t). The noise-
level was chosen 0.25 % with respect to the | . 1̂  -norm. This may seem to be
a small noise level, but the derivative of a~ l(t) occurs at a prominent place
in the cost functional in the data vector d. To obtain d, we had to carry out a

0.22 f

Figure 2. — Comparaison of true and calculated boundary heat transfer function

u(O = ! * ( 7 , O (no data-noise).
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Figure 3. — Comparison of true and calculated feedback law fi (no data-noise).

Figure 4. •— How well is the feedback law fulfilled for the calculated solution ? (no data-noise).

numerical differentiation resulting in an error on d of about 1 8 % in the
| . l^-norm. In this noisy data case, we used Beck's future regularization
method as describe before with the following parameters :

rj = 5 . 1(T4, Â= l , n = 128, m = 32,
r — 16 ( number of future time — steps ) .

By the use of future information, the solution vopt is only defined on the

interval [ o ^ - ^ 1 ^ 1 ] = [0,0.4414].
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Figure 5. — Comparison of true and calculated boundary heat transfer function

i>(O = § * ( ' . ' ) (noisy data).

Figure 6. — Comparison of true and calculated feedback law /? (noisy data).

For the last two plots in figures 8 and 9 we chose an 'arbitrary' function
a for the free boundary, which cannot be attained exactly by a boundary
controï of the given type. This fact is reflected in the fact for the calculated
optimal solution, the constraints on the monotonicity of ƒ? are active. The
intervals of constant function values in figure 8 are due to this fact. Figure 9
shows how well the prescribed (rr~ )'can be approximated by the optimal

vol. 30, n° 6, 1996



708 V. BARBU, K. KUNISCH, W. RING

O 0.0 5 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Figure 7. — How wcll is the feedback law fulfilled for the calculatcd solution ? (noisy data).

v(t) and
- /
resp.

' • ' [
4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.4 5 0.5

t

Figure 8. — How well is the feedback law fulfilled for the calculated solution ? (non-attainable
data).

For comparison, we also plotted the free boundary eorresponding to the pair
of starting values ( vo(t), fJQ( y) ) = (0.2, 0.2 y) at the beginning of the
optimization. Here we used again ordinary Tikhonov regularization (no future
regularization) with the following parameters :

0" 5= 10" 5, A = 10" 2, n = 64, m = 48 .
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0 ° 0 5 o t 0.15 0.2 0.25 0.3 0.35 0.4 0.45 '" 0.5

t

Figure 9. — Comparison of dcsircd, optimal, and initial values for a ' (non-uttainablc data).
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