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m MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
L MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol. 30, n® 6, 1996, p. 671 a 710)

CONTROL AND ESTIMATION OF THE BOUNDARY HEAT TRANSFER
FUNCTION IN STEFAN PROBLEMS

by V. BARBU (*) (*) , K. KUNISCH (1) (®) and W. RING (}) (®)

Résumé. — On donne ici un procédé d’approximation pour U'identification de la fonction de
transfert du probléme de Stefun. Le probléme a résoudre équivaut a trouver une comimande de
type feedback pour le contréle de surfuce de solidification. Les méthodes utilisées ici sont celles
issues de I’Analyse Convexe dans les espaces de Hilbert. Des résultats numériques sont donnés
dans un cas particulier.

Abstract. — An approximation procedure for the identification of a nonlinear boundary heat
transfer function in a one phase Stefun problem is presented. Alternatively the problem can be
viewed as constructing a feedback control law for the control of the solidification surface in the
Stefan problem. The analysis is based on Hilbert space methods and convex analysis techniques.
Numerical results combining two regularization methods are presented.

AMS classification : 49A22, 32R30.

Key words : One phase Stefan problem, free moving boundary, inverse problem, feedback
control, convex functions, regularization techniques.

1. INTRODUCTION

Let 2 be a bounded domain in R", n = 1 with a C"' boundary I" and let
{Q, :te [0,T]} be a family of monotonically increasing (strict) subdomains
of € with the property that /" is contained in the boundary of £, for all
te [0,T]. To express {Q,:te [0, T]} analytically, the existence of a func-
tion o : 57-—> [0, T] is assumed with the properties that o € C*( —QT\QO),
|Va(x)| = 0 for all x e 57\90, o(x)=0 on 50 and such that

Q={xe Q:0o(x)<t},Q,cQ; for 0st<:1<T,
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672 V. BARBU, K. KUNISCH, W. RING

see figure 1 below. We set
Q={(x,t)e QTX(O,T):a(x)<t<T},
2=Ix(0,T),

Zo={(x, 1)1 (Q,\2,) x (0, T) : t=0(x)}.

Figure 1. — Space-time cylinder with moving boundary o(x).
In this paper we consider the one phase Stefan problem

y,—4dy =0 in Q )
y =0 in x(0,T)\Q

y =0,Vy-Vo=pinZX,

ay 3 ) (1.1)
()v+ﬂ(y)—0 in X

y(.,0) =y, in £
y <0 in @, )

where y, e H’(QO), Yo<0 in 2, Bf:R —>R is a nonlinear mapping,
>0 is the latent heat and 9 = V.y stands for the outer normal to 7.
This problem describes the solidification of a volume of water occupying
the domain € in the time interval [0, T], having I',={x:r=0(x)} as the
interface between solid and liquid regions. The state variable y stands for the
temperature distribution, y, is the initial distribution and f(y) describes the
heat flux along the exterior boundary X. At time ¢ £, is the solid (frozen)

region, Q\ﬁ, is the liquid (water) region and X = U I', describes the
0<sr<sT
evolution of the free moving boundary I',. The boundary condition

dy )
E+[)’(y)=0 in X - (1.2)
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CONTROL OF STEFAN PROBLEMS 673

describes a possibly nonlinear boundary heat transfer law. In the linear case
with f(y)=py, >0, one refers to (1.2) as radiation condition. If f,
together with p and y, are given, then the direct Stefan problem consists in
determining the temperature distribution y together with the free boundary
X, which is characterized by ¢ from (1.1).

Here we shall consider the following inverse problem : Given the function
o determine £ from a class of admissible functions, such that

= {(x, it=a(x)=a(f; x)} is the free boundary of the resulting
one phase Stefan problem. This problem can be thought of in two different
ways. First it constitutes the inverse problem of identifying the unknown
boundary heat transfer coefficient from overspecified boundary data on X,
Secondly it describes a feedback control problem for the one phase Stefan
problem with boundary control :

dy

5:0’ in X (1.3)

and with the control u in the feedback form :

v=—p(y). (1.4)

The objective is to steer the free boundary o = a( /) to some a priori desired
solidification surface. We refer to [HN, HS] for results and references related
to the control of Stefan problems.

The class of admissible heat transfer functions (or feedback control laws) is
chosen to be

& ={f=43j: withj: R — R convex, continuous, j(0) = 0,0 € S(0)
and cx0+w0r2 < j(r) € o+ o, P forall r e R},
where 0 < w, < w,, and o, < ¢, are constants and dj, mapping R into the

set of all subsets of R, is the subdifferential of j. Thus, f is a monotone graph
and the boundary condition on 2" has to be replaced by

dy
—e -B(y). (1.5)

The above inverse problem will be formulated as least squares problem :

minimize f (Vy-Va—p) dxdr
Z (1.6)
subjectto f € &/ andy € H'(Q) satisfying

vol. 30, n° 6, 1996



674 V. BARBU, K. KUNISCH, W. RING

y,—dy =0 in

ady . (1.7)
5+[f(y) >0 in

Q
y =0 in Z,
X
y(.,0) =y, in Q.
We note that the solution y of (1.7) is not effected by replacing j by
j + constant. This motivates the constraint j(0) =0 in the definition of
7. One of the main goals of this paper is the analysis of (1.6) by convex
analysis techniques. In particular, the nonlinear boundary condition will be
simplified by a substitution similar to operator splitting or the mixed finite
element method. Numerically the solution of the inverse problem of identi-
fying the heat transfer coefficient on one part of the boundary from measure-
ments on other parts is related to the sideways heat equation [C] which is a
notoriously illposed problem. The second goal of this paper is therefore the
description of a numerical algorithm for the identification of the boundary heat
transfer coefficient (or the feedback control law) £ in (1.1), which proved to
be successful on a series of test examples.

The plan of the paper is the following one. In Section 2 we shall study
well-poscdness of the closed loop system (1.7) in a Hilbert space framework.
Section 3 is devoted to proving existence and convergence of suboptimal
solutions to (1.6). An approximation process of similar kind was already used
in [BK1, BK2] for the identification of nonlinear elliptic and parabolic
boundary value problems. Roughly speaking the nonlinear boundary condition
in (1.7) is decoupled via (1.3), (1.4), resulting in a parabolic optimal control
problem on the non-cylindrical domain Q in the control variables v and j. In
Section 4 a maximum principle type result for this problem is given. Numeri-
cal algorithms and tests are presented in Section 5.

We shall use standard notation for the spaces of square integrable functions
and Sobolev spaces on £,, O and 2. Given a lower semicontinuous function
¢ from a Hilbert space X to R = (- oo, o] we shall denote by dg¢ its
subdifferential, i.e. :

ap(x)={we X:p(x) < p(u)+(w,x—u)lorallue X},

and by

o* X o Riits conjugate function defined by ,
p*(p)=sup{(p,u)—p(u):ue X}, forpe X,

where ( .,. ) denotes the scalar product on X. We refer to [B1] for further
results from convex analysis which will be used in this paper.
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CONTROL OF STEFAN PROBLEMS 675

2. THE NONLINEAR CLOSED LOOP SYSTEM

We shall study here the nonlinear system (1.7) which we repeat for
convenience :

y,—4dy =0 in

ay . (2.1)
s HAy) 20  in

Qo
y =0 in X,
z
y(x,0) =y,(x) in £.

Here f is a maximal monotone graph in R x R such that

dom (f)=R and Oe B(0).

This implies that f=dj, where j: R — R is a convex and continuous
function such that

JO)Y=inf{j(r):re R},

see [B1], p. 71. We shall call y a (variational) solution of the boundary value
problem (2.1), if it is an element of

V={ye H'(Q):y=0in X},

such that
fQ(“Y(Y_Z),+Vy'v(y—z))dXdH”L(j(Y)—j(Z))doxdtJr
+f v, TY(y(x, T) —2(x, T)) dx —
Q2

—f YolX)(y(x,0) —2(x,0))dx = 0 (2.2)

0

for all z € V. Itis simple to check that every classical solution to (2.1) satisfies
(2.2). Moreover we have the following result :

vol. 30, n® 6, 1996



676 V. BARBU, K. KUNISCH, W. RING
PROPOSITION 2.1 : Assume that dog = 0 in Q,7\Q,, S—Z z 0 on aQ\T,
Yo € H'(QO), Yo=0 on 9Q\I', y,<0 ae in K, and that
J(y) € L'( I"). Then problem (2.1) has a unique solution y € V such that
Ay € Lz(Q) and Vy € Lz(EO). Moreover, y < 0 a.e. in Q and the following
estimate holds :

f P+ |Vy)? + |A>'|2)dxdf+f |Vy(x, o(x))| dx +
0

TR0

+f (%yf(x, T)+[Vy(x,T)!2)dx+2f JOy(x, T))dax+j J(y) do dt
2, r z

< jz (%)‘3(—’() + |V)'o(x)|2)dx+ 2 jrj(yo(x)) do, . (2.3)
<

o

Proof: First let us note that x—j(y(x,T)), xe I, and
(x,1t) = j(y(x,t)), (x,t) € 2 are Lebesgue measurable and hence the cor-
responding integrals in (2.3) make sense as extended real values in R, [B1],
p. 72.

We shall approximate (2.1) by the family of elliptic boundary value prob-
lems

ey, + A)v -y, = 0 in Q0
y =0 in 2,
ay , :
gy HA) 20 in X 2.4
y(x,T) =0 in Q
2(5,0) =1 (y(x,0) = yy(x)) in 2,

where ¢ > 0. By the general theory for elliptic variational inequalities [Brl,
Li] it is known that (2.4) has a unique variational solution y° € V satisfying

J‘ [45)‘1,:( yc — z),+ V_y” . V(y“ -2z)+ .y::(_yl: —z)] dxdt+
0
+J.Q (O(x,0) —y)(Y(x,0) —2(x,0)) dx

+J'Z(j(y€)—j(z))daxdt$0 (2.5)
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CONTROL OF STEFAN PROBLEMS 677

for all z € V. In fact, we may express (2.5) as
Ay +aw(y) 20, (2.6)

where A : V — V’is the continuous affine, monotone operator defined by

(Ay,z)=f (&y,z,+ Vy-Vz+y z)dxdt
Q

+ L (y(x,0) = yo(x)) 2(x,0) dx

forall y,ze V,and y: V — R is the convex, lower semicontinuous function

V/(y)=jj(y)a’o'x forall ye V.
r

Since A is positive definite and y is a lower semicontinuous, proper convex

function, we infer that (2.6) has a unique solution y* € V, see e.g. [B1],
Section 3.

If one takes z=y — ()*)" in (2.5) one obtains

, . 1
5](()’L)+ ),liz(Q) + IV(YL)+ IiZ(Q) +§ l(yc)+( o T)]iﬁg.,.)

+ % I(yl:)Jr( . ’O)ﬁ:(rz(,) _J.Q )’o(yl:)+(x,0) dx

+ L GO =i =) ))do, dt < 0.

Since y, <0 a.e. on £, and 0 € 4j(0) it follows that y* < 0 ae. on Q for
every ¢>0. Next, for z=0 in (2.5) we obtain

2

1 £ 2 €
+ |V)* ot 3 [¥( "T)iL:(QY‘)+J.ZJ(y )do dt <

2
L(Q)

elys

1 2 . | 2
S3 Doliay * J‘)_J(O) do dt =5 Yol - @D

To obtain the following a priori estimates we assume that f is continuously
differentiable. This requirement will be eliminated at the end of the proof. In

vol. 30, n® 6, 1996



678 V. BARBU, K. KUNISCH, W. RING

the sequel, without loss of generality, we may view ) as a smooth solution of
(2.4). Indeed by interior and boundary regularity for nonlinear elliptic bound-
ary value problems (see e.g. [Br1]) we know that y is C2( O\Q;), where Q;
represents a neighborhood of the corners of Q of order 4. To make the
following calculations rigorous one has to replace Q by Q\Q; and let d tend
to zero. Taking the inner product in Lz( Q) of the first equation in (2.4) with
Y, we find

f (yf)zdxdzzf Aycyfdxdl‘—%f (¥)(x,0) dx
0 0

o

—%f ¥(x a(x)) dx.
Q'l'\Izﬂ
This yields

£ 2 ; 2 212
|y‘,[,_:(Q) +e|yi( .,O)]L:(Q”) < |Ay°|L:<Q). (2.8)

Finally, we shall multiply (2.4) by 4)° and integrate on Q. For that purpose
we prepare some useful identities. Note that we defined o(x) =0 on 2, We
find

T
f div f Y, Vy“drdx = - yi(x, 0(x)) Vy(x,0(x)) - Vo(x) dx
Q,

a(y) 2,

@

T

+ j f y; 4y* drdx
2,V a(x)

1 4 3 2
+ EJQT fﬂ(x) T |Vy l dtdx . (2.9)
Moreover we have
Vy (x, a(x)) +y;Va(x) =0 ae.onQ,\Q;. (2.10)

M? AN Modélisation mathématique et Analyse numérique
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CONTROL OF STEFAN PROBLEMS 679
Combining (2.9), (2.10) and using the divergence theorem we obtain

T
j ¥, 4y° dx dt=f divf ¥ Vy* dt dx
Q 2, a(x)

+ j yi(x, 0(x)) Vy'(x,0(x)) Vo(x) dx
2,2,

_%Lzery“(x,T)lzdx+%j |Vy“(x, a(x))|* dx

r &)

+%f |Vy“(x,0)|* dx
Q()

T
=f f yny"-vdtdq\,—J& |Vy"'(x,ff(x))|2dx
rdo

QI' \Q,

1 & 2 1
_EJ\Q'_IV})(X’T” dx+§j

T QT\QO

|Vy'(x, a(x))|* dx

+—%L |Vy¥(x, 0)]? dx

= J U (% 0) = j(y(x, T)))] do, - %J |Vy*(x, a(x))|* dx
r 2,\Q,

_%J. |Vy”(x,T)[2(1x+%f [Vy':(x,O)\:dx,
o, @

v\

(2.11)

where in the last step we used the boundary condition on 2.
Similarily we find for a.e. x € Q.

T T
j Yo Ay°dt =~ yi(x, a(x)) 4y*(x, o(x))—diV_[
a(x)

y; Vy; dt
a(x)

T
+ f |V dt = ¥i(x, 6(x)) Vyi(x, a(x)) - Va(x),
a{x)

vol. 30, n® 6, 1996



680 V. BARBU, K. KUNISCH, W. RING

and upon integrating this equality on £,

f Yo Ay dt =~ f Yi(x, a(x)) div (Vy'(x, o(x))) dx
Qg Ql‘\Qn
- J ¥i(x,0) 4y*(x,0) dx
Q()

+J V)2 dx m~f i ")VV do dt .
o

Due to the boundary condition on X and the initial condition for y, we obtain
f Y, Ay dx dt = — f ¥i(x, 0(x)) div (Vy*(x,0(x))) dx
Q Q

+\82

+%L (¥o(x) = ¥(x,0)) 4y°(x,0) dx

+f |V,v‘,’|2dxdr+f Yo By do,dr, 2.12)
19}

where we use the temporary assumption that f is continuously differentiable.
Combining (2.4), (2.11) and (2.12) implies that

f [Ay"‘lzdxdzzfyf Ay dx dr—gf ¥, Ay dx dt
0 Qo 0
<s- M vy T Pax+ L | vyi(x 0))2d
<-7| IWGDPdet 5| [V (x0)[ dx
'Q'I' Qu
—%f lVy"'(x\U(x'))lzdx
Q,\2,

- fl_j( Y(x,T))do + Jrj(yc(x, 0))da,

_(;f Wyf\zdxdr—ej ¥ dt/)’(y ) do, dt
Q

M? AN Modélisation mathématique et Analyse numérique
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CONTROL OF STEFAN PROBLEMS 681

- L Vy“(x,0) V(y(x,0) — yo(x)) dx
+jr/f(yc(xyo))(yo(x)—yt(x,o))dﬂx

+(;f y,(x,0(x)) div (Vy'(x,0(s))) dx. (2.13)
Q‘l'\-Qu
Here we use the assumption that yg|,, .= 0. Let us note that

¢ d
BRAFT;

B(y*) < 0ae.onX,
JOF (%, 0)) + By (x,0))(y = ¥(x,0)) < j(y(x))ae.on I,
LIV, 0)[2 = Vy'(x,0) V(5(x, 0) = yo(x))
< = 5[V (0 0) = yo(x))|” + 5 | Vyg(x)|* ae. on 2,

and by (2.10)

—f yi(x, 0(x)) div (Vy*(x,0(x))) dx
QT\QU

=j Yi(x, 0(x))div (y; Vo) dx
QT\Q()

_f (yf)z(x, a(x))Ao*dx-k%—J. V(yf)ZVadx
Q,\2, 2,82,

:%f (yf)z()c,o*()c))Ao—d)c+%-,A ()’Vo-nds =0,
Q2,\2,

a( QT \QU)

vol. 30, n® 6, 1996



682 V. BARBU, K. KUNISCH, W. RING

where n denotes the outer normal to 2,\Q2,. In the last estimate we used
yi(x,0)= %(y”(x, 0) = yo(x)) =0 ae. on d2,\I" and the assumption that

do =2 0 ae. on 2.\2, and %% 2 0 on aQ \I'. Using these estimates in
(2.13) one obtains

f |Vy”|2dxdt+%J. [ Vy“(x, T)|2dx+%f IVyE(x,a(x))izdx
Q QI QT\QU

+f j(yC(x,T))daxﬂf |Vyf|2dxdr+%f V(¥ (x,0) = yo(x))|* dx
r Q Q,

< %f iV(yo)Ide+J J(y(x)) do,. (2.14)
2, r

Combining (2.7), (2.8) and (2.14) we find

f ((yf)2+ |Vy°|2+ [Ay”lz)dxdt—*-f [ Vy“(x, a(x))[zdx+
Q

[}

+f V(¥ .,0)-);0);2dx+f9 (35 T2+ |95 (x T )

1

+2f JO (s T))do;.+f JjOY*) do dt
r s

sf (%y§+[VyO[2)dx+2J () do, . (2.15)
Q r

By estimate (2.15) it follows that there exists ye V with y and
Ay € L2( Q) such that on a subsequence of y* we have

Y =y weakly in H'(Q), strongly in LY Q),
¥y, weakly in L*(Q),
a4y — Ay weakly in L*(Q),
eyt = 0 strongly in L*(Q), (2.16)
¥(x,0) = y(x,0) strongly in L*(2,),
yo—=y strongly in L*(Z2),
Vy* — Vy weakly in L*(Z,),ase — 0" .
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CONTROL OF STEFAN PROBLEMS 683

In particular we infer that the trave of Vy on X, is well-defined in the sense
of Vy e L( 24). Letting ¢ tend to zero in (2.5) we find that y is a solution to
(2.1) which satisfies the estimate (2.3). Since y, < 0 ae. in Q for all
&>0 we deduce that y <0 ae. in Q.

To eliminate the regularity requirement on £ that we made before (2.8) one
approximates f by a family of continuously differentiable, monotonically
increasing functions /f'l: R — R with [5’}‘(0) =0, which satisfy in addition

(i) lim inf j)‘(r/-‘) z j(r) whenever r; = r in R,

i—07"
Giy lim jA(r)=j(r) for all re R,
A=0"
(iii) |/)’)‘(r)—[f/:(r)| < C for a constant C independent of A>0,
re

where

j}‘(r):f B(s)ds and B, =i '(1-(1+28) "),

0

A specific choice for such a family of functions is given by
ﬁ(;-):j (B(r=e5)—B(=&5)) ds.

For details we refer to [B1], pp. 157, 171, 322. Repeating the above
arguments with replaced by B one obtains a double indexed family of
variational solutions y“* to (2.4) with § replaced by S satisfying

J. Loyy O = 2), + VP V(O = 2) + )0 (5P = 2) Y dx dr +
Qo
+ J.Q O 4x0) = y0) OFH(x,0) = 2(x, 0) ) dx

+f GO =M2))do,dt < 0. (2.17)
z

vol. 30, n® 6, 1996



684 V. BARBU, K. KUNISCH, W. RING

Moreover the following a priori estimate holds :

j ((y;:,}.)z_’_ ivyl:,/‘.l’l_*_ IV_V’;.;'lz)dX([f‘i'J’ ivyt:,()‘(x’ U(X))[zdx-i—
e Ql‘\Qu

; 2 [ A . 2
+f IV(y**(.,0) —yo)l'dx+J (%(yj"‘)z(x,’l")+ [Vy**(x, T)| )dx
Q 2,

o

+ 2f FOP A TY) do, +f FGPY) do, d
r z

sf (2500 + ]Vyo(x)]2)(1x+2j (_yo(x))da_ﬁf j4(0) do_dt .
Q0 r z
(2.18)

Now let us fix ¢>0. Due to (2.18) there exists y° € H'(Q) with y° and
Ay* e L*(Q) and a subsequence of {y“*}, , that converges as A — 0" to
y* in the sense of (2.16) with ¢ — 0" replaced by 4 — 0". Moreover there
exist functions &, € LZ(F) and &, € LZ(Z) such that

lim j*(y**(.,T)) — &  weaklyin LX) (2.19)
i—0
lim j*(y**) = & weaklyin L*(X) (2.20)
A= 0

Due to (iii) we have

(DL < U]+ Clr| - forall re R.2>0,

and hence using Fatou’s lemma for the term f j'i(y”) da, dt and Lebesgue’s
z

bounded convergence theorem for f j’:(z) do, dt we can pass to the limit as
=

A — 07 in (2.17) and (2.18). In this way we obtain (2.5) and (2.15) for every
¢ > 0. Passing to the limit with respect to ¢ — 0 we obtain existence of a
solution to (2.1) which satisfies the estimate (2.3) for every £ satisfying the
condition specified at the beginning of this section.
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CONTROL OF STEFAN PROBLEMS 685

The uniqueness of y is immediate by the variational formulation (2.2). This
completes the proof.

3. A LEAST SQUARES APPROACH TO IDENTIFY THE BOUNDARY HEAT TRANSFER
FUNCTION

We shall consider the optimization problem

minimize f (Vy-Vog - »)? do,_ dt
Zo (P)
subjectto fe & andtoye H’(Q) a solution to (2.1) .

Throughout this section we assume that y, and « satisfy the assumptions of
Proposition 2.1. Then (P) is well-defined as a consequence of (2.3).

THEOREM 3.1: Problemw  (P) has ar  least one  solution
(Y% B*)e H'(Q)x .

Proof. Let d denote the infimum in problem (P) and
let {(y,, B,)} € H'(Q) x & be a minimizing sequence satisfying
d< |Vy, Vo —plig, <d+t 3.1)
with y the variational solution to
(yn)l— Ayn =0 ) in Q
y, = in X
9, : 3.2
%4—/}’”()'”) 30 in Xz 3:2)
Y,(x0) =y(x) inQ;.

Due to (2.3) and the properties of elements in & there exists a constant C such
that

alicoy + 14Vl ey IVl iz + 10 sy S € (3.3)

for all n.

It follows that there exists y € H’(Q) with 4y € Lz(Q) such that for a
subsequence

y, = yweaklyin H'(Q) and Vy, — Vyweakly in L*(Z,) .
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Taking lim inf in (3.1) we infer that d = |Vy- VO'—/)Ii:(Z“). It remains to
pass to the limit in

f (— _)'”(_\'“ -z )I + Vyu . V(}‘“ - Z) ) ([X d’ * f (j”(y”) —jll(z ) ) d”.\' (lf
Q xz

+ j ».(6TY(y,(x, T) —2(x,T)) dx

1

n

- JQ Yo(X)(y,(x,0) —2(x,0))dx <0

for all z € V. This is simple for all terms except for the second. To take the
lim inf on that term one uses the Arzela-Ascoli theorem to conclude conver-
gence of {j“} in C(I) for every compact /  R. By Fatou’s lemma and
Lebesgue’s bounded convergence theorem (using j, € ) we obtain

f J(y)do dr + j J(z) do dt < lim inff J.(y,) do, dt
z z z

+ lim infj J.(z)do dt,
z

and the desired result follows.

Next we approximate problem (P) by the following family of optimal
control problems in the control variable v :

minimize {f (Vy-Vo—p)do, dr+

%f <j<y>+j*(—v)+vy)dxdt}
z

. P
subjecttoye H'(Q),je A ,ve L*(X) ()
and y a variational solution to

y,—dy =0 in Q
y =0 in 2,

LA in 2
Jdv

y(x,0) =y,(x) inQ,

(3.4)
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where 4 >0, and
A ={j: R — Ris convex, continuous, j(0) =0,0 € 3;(0), (3.5)
a0+w0r2 Sj(r) € o +w r, forall re R} .
Note that & ={f=dj:je A}

The introduction of the second term in the payoff of ( P,) is suggested by
the equivalence between

N (v ay
B py) D0 and )+ )=y

at all points (x, ) € 2 where these equations are well-defined. Moreover
, e _avY a4y
S (-8 +y L= o0 (3.6)

whenever this expression is defined. Upon setting v = % and integrating (3.6)
on 2 we obtain

L(j(y) +j*(~v) +vy)do dt =0,

with equality holding if and only if

J(y)+j*(-v)+vy=0ae.in 2. (3.7

Thus the second term in the payoff of (P,) is a penalty term realizing (3.7)
and (P,) constitutes a splitting or mixed finite element method with respect

to the variable % for problem (P).
Before going further, some comments concerning (3.4) are in order. For

Yo € H'(2,) with y,=0 ae. in 92,\I, and if v,e L*(Z), then (3.4) has
a unique variational solution y satisfying

f (Vy-Vz—yz,)dxdt+j y(x, T)z(x, T)dx =
0 Q

= f vza'axdt+J. Yolx)z(x,0)dx, (3.8)
z Q4

for all {ze H'(Q):z=0inX,} and
y=0ae. inly. 3.9)
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Moreover y satisfies y € H'(Q) with dy e L*(Q) and Vy-Vo e L*(Z,).
The proof follows from the proof of Proposition 2.1, see also [B2]. It is simple
to argue that

f lVy[zdxdt+f yz(x,t)dx$é<f y(z)dx-ff Ude'th , (3.10)
Q 2, 2, z

with C independent of y,, v and r e [0, T].

For general v € L*(2) it follows by density arguments based on (3.10) that
(3.4) admits an unique variational solution satisfying (3.8) and (3.10) as well.
T

Since y(t) € HI(Q,) for a.e. te [0,T] and f |¥( .,t)l?,:,x(gl)dl<°°, the
trace of y(t) on dQ2, is well-defined and be(iongs to L*( ae2,) for ae.
te (0,7T), so that (3.9) makes sense. In the neighborhood of %, the solution
y of (3.4) is in fact more regular. For that purpose we introduce the domain
Q< @, (and hence Q' c Q, for all te [0,T]) with the property that
982’ consists of two connected components, one of which coincides with I and
the other lies in the interior of €2,. Then it is straightforward to argue, e.g. by
a Galerkin procedure, that the solution of (3.4) satisfies in addition to (3.10)

,
2 - 2 2
fo (., T)IIF(Q,\Q‘) dt < C(|yoluicoy * 10113 5y) (3.11)

with C independent of Vo € H'(Q)andve L*(X). In particular the payoff
in (P,) is well-defined for v e L*(X).

We shall say that (y,,j;,,v;) converges in (LZ(Q))W X A X
(L*(Z)), to (y,j,v), if y, =y weakly in L*(Q), v, = v weakly in
L*(2) and J; — j uniformly on compact subsets of R.

THEOREM 3.2 : For every A>0 there exists at least one solution
(ypipv,)e LUAQ)x A xL(Z) of (P;). Moreover {y,j.v},50
contains a clusterpoint in (Lz(Q))wX.}ifX(LZ(Z))W, the first two
components of every such clusterpoint are a solution of (P) and
lim inf P, =infP.

A—>0"

Proof : Let (y,,j,, v,) be a minimizing sequence for (P,) satisfying

d, J (Vy, Vo’—/))2 da, (1T+%JA . +j:(— v,)+v,y,)do dt
s “Jx

<d+. (3.12)
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for every n € N, where y satisfy (3.4), j, € X and d, =inf (P,). Due

n’ vll

to the properties of 4 using (3.8) to eliminate the term v, y, do dt it
z

follows that

2
IVyloy + 10l sy + sy S €

for a constant C independent of n. From (3.11) it follows that {iy|H:(le,) :
te [0,T] }:’:, is bounded as well. Consequently there exist y; € Lz(Q) with
Vy, € L*(Q) and Vy,Vaoe LZ(EO), and v, € L*( %), such that on a sub-
sequence, again denoted by {n}, we have

Y, = weakly in L*(Q)

Vy, — Vy weakly in LY (Q)
Vy, Vo — Vy:.Vo strongly in Lz(Z‘o)
v U weakly in LY(Z2).

n

Since j, € X for all n there exists a constant C, independent of n such that
|5, ()| + |aj (] < (7| +1) forall re R.
Consequently by the Arzela Ascoli theorem there exists j, € A~ such that

J,.(r)y—=j,(r) and j:(r) —aj:(r) uniformly in r on

compact subsets of R . (3.13)

It is simple to argue that (y,, v, ) is a variational solution of (3.4), i.e. that (3.8)
is satisfied.

We next argue that {y,y,}7_, is compact in L*( X'). Here y, denotes the
trace of y on Z. Let H. () = {p e H' (L") : 9|dX\I"=0}. Using the fact
that {v,} is bounded in L*( ) it is simple to argue that {y,} is bounded in
L*((0,T); H'(£")) and {(y,),} is bounded in L*((0, T); H} (2")*). For
every ¢ € (0, 1/2) one has the continuous injections

HI(QI) c Hl/2+C(QI) c H'ln(Qi)* ,
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with the first one being also compact. By Aubin’s compactness theorem it
follows that {y,} is precompact in L*((0,T);H""°(2’)) and hence

{yo y,} is precompact in L*(Z). Hence for a subsequence, again denoted by
the same symbol, we have

Yo Y = Yoy, strongly in Lz( 2). (3.14)

Since j, € A it follows that j,(y,) = «, a.e. and hence by Fatou’s lemma
and (3.13), (3.14) we find

lim inf j J.() do dt = f 5,y ) do dr. (3.15)

Since v, —> v, only weakly in LZ(Z), taking the liminf in
f j:(-— v,) do, dt is more delicate. Based on (3.13) one can argue as in the
z

proof of Theorem 2.1 of [BK1] to obtain
lim inf f j(=v,)do dt >f J(—v,)do dr. (3.16)
n—e VI z

We also have
lim j y, v, do dt= j y;v,do dt. 3.7
n—oo ¥V ’ = )

Combining (3.12) and (3.15)-(3.17) we find

d, = L (Vy, Vo -p)? d”xd’+1}j)_(jx()’/1) +j:(— v)+y,v;)do, dt,

and hence (y;,j;, v;) is a solution to (P;).
We turn to the asymptotic behavior of (P,) as 4 —0". For every
A>0 we have

J;: (Vyz-Va—-/))zdoxdt-i—-/l:ij:(ji(y,l)+j:(—v;ﬁ)+yka)drfxdt$

sf (Vy’ Vo - p)do, dt=inf P, (3.18)
Zy

where (yo,_/o, v°) is any solution to (P).
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Arguing as above, with (y,,j,, v,) replacing (y,,/,.Vv,) we find that
{l)'/xllf(Q)}’ {IV)’;.ILE(Q)}’ “)’ziu’(g,\sz'):te [o, T]}» and {Iv}.lL:(Z)} are
bounded uniformly for 4> 0. Consequently there exist y e L°(Q) with

Vye L*(Q) and Vy-Vo e L% 2,), and v e L*(Z) such that on a subse-
quence {1} of {4} with lim 4, =0 we have

A>0

Vi =y weakly in LZ(Q)
Vy, — Vy weakly in L*(Q)

Vy, +Va — Vy-Vo strongly in L¥( 2y)
v. >V weakly in Lz(E),

as n — oo. Moreover there exists j € 24 such that
B (r) = j(r) andj:" (r) —>j*( r) uniformly in r on compact subsets of R .

As above one argues that

lim inf f Ui ) +i3 (=0, ) +y, v, )do, dt
n—oee VL

?f GO+ (=v)+y)do dt =0,
z
and by (3.18)

J(y)+j(=v)+yyw=0ae inZ.

It follows that

ve f(y)ae. inX.

Clearly (y,v) is a variational solution of (3.4) and hence (y,j,v) is a
variational solution of (2.1). Moreover from (3.18)

J. (Vy-V(f—p)zdoxdtsj. (Vyo-Vo'—/))zdaxdr,
Zl)

Zy

and thus (y,j,v) is a solution to (P). By (3.18) it follows that
lim inf P, =inf P. This ends the proof.

=07
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In the final result of this section we return to the control theory interpre-
tation of (P). We shall assert that the feedback control law

ue —dj,(y)inx

with j; the second component of the solution (y,, j;, U,) of (P, ) applied to the
original problem (P) gives a suboptimal approximating solution for that
problem.

THEOREM 3.3 : Let (y,.j,) € L*(Q) X A be given by Theorem 3.2 and
let y, be the solution to (2.1) with f=dj,. Then

\: -y, = 0and V(y; = y,) = Ostrongly in L*(Q)asi—0". 3.19)

Moreover, every subsequence {()’Z,,j/l’,)} of {(y;,4;)};50 contains a cluster
point (y',j) in (L*(Q)), x X, which is a solution to (P).

Proof : For every 4> 0 we have

fQ(u}),(y; ~2) + Vy,« V(y, = 2))dxdi + L (i(y) =J(2)) do,dr < 0

and

j ((y),w+Vy, . Vw)dxdt - j v, wdo dt=0
Q X

for all z, we V. Setting z=y,, w=y;~ya and subtracting the above
equality from the inequality we find

f l)’:(x, T)—y,‘('xi T)ide‘f‘J‘ ‘V(y:"'y,‘)|2dxdt+
Q, Q

+f U,(v3) = Jp () + 0,(y; = v;) 1 do dt < 0. (3.20)
z
We recall from (3.18) that

f(j,;(.Y,:)+j:(—vA-)+y)‘vg)daxdtSC)t forall A>0
z
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and hence

- J Gy =400 + vy, = y,)) do dt <

< Cxl—j (v, ¥, +7,(y) +J(=v,))do, dt < Ci.
A

Inserting this estimate into (3.20) the validity of (3.19) follows. For any
sequence {(y;,j; )} the sequence {(y,,j,,v; )} contains, due to Theo-
rem 3.2, a convergent subsequence, the limit of which has the property that its
first two components are a solution to (P).

4. SOLVING PROBLEMS (P;)

Besides the obvious fact that the problems ( P, ) are infinite dimensional and
that numerical realization requires discretization, these problems represent
some serious structural difficulties. In this section we shall address the
problems related to the numerical treatment of the set 2% the elements of which
are defined over an unbounded domain and are required to be strictly convex.
Moreover we characterize the gradient of the cost with respect to (y,J, v).
These considerations are independent of the spatial dimension. In the follow-
ing section we describe a specific numerical realization in spatial dimension
one. There we shall also take into consideration the inherent illposedness of
the optimization problems : In fact, the cost functional in (P;) is not coercive
with respect to U or j.

Throughout this section we shall assume that y, € H'(Qo) N C(£,), that
Yo <0 in £, and that y,=0 on dQ2,\/". Then for any € & the solution
y to (2.1) satisfies

—a=infy, < y(x,1) <0 in Q 4.1
Q‘,
and
—a<y(xt)<0 on X. (4.2)

This follows from the strong maximum principle for parabolic cquations (see
e.g. [PW]), since the cxtrema of y in Q are not attained on 2. Since in view
of (2.1) only the values of j on the range of y contribute to the value of the
cost functional in (P), it therefore suffices to restrict the domain of j to
[— a,0]. Concerning the actual problem formulation on a bounded domain
two conflicting issues arise. On the one hand one would like to enlarge the
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domain for j beyond [— a, 0] so that perturbed problemsw (e.g. (P;)) still
have the property that their solutions are not effected by restricting the domain
and on the other hand, enlarging the domain introduces some indeterminancy
into the problem (with adverse numerical consequences), since the limit
problem is not effected by the values of j on the complement of [— a, 0]. For
the purpose of the present section we shall restrict the domain of j to
I=[-a—¢¢] for some ¢=0.

Another practical issue consists in the numerical realization of the convexity
assumption involved in the definition of . This will be accomplished by an
additional regularity assumption for j. For computational purposes we shall
therefore consider

minimize f (Vy-Va-p)do di
=, (P
on(y,j)e H'(Q)x A" subjectto (2.1) with f = 9j

where

A ={je H}(I1):j(0)=j(0)=0,2w, < j(r) < 2w, forae.re I}.

Accordingly (P;) is replaced by

S 2 2
mlmmlzef (Vy-Vo-p) daxdt+!21]v]L:(2)+

o
if (Jly) +j*(=v) +vy)do dt (P;)
P
on(y,j,v)e H'(Q)x A x L*(Z) subject to (3.4).

In (P}) it is understood that j(y) = for y I and j*: R — R is defined
by

S (p)=sup{py-j(y):yel}, for peR.
The regularization term g|v]i:(£) in (Pi) has been added for numerical
purposes.
Since A" is a closed convex subset of
A, ={j: 1 — R,jconvex and continuous, j(0) = 0,0 € 3j(0),
ozo+cu0r2 <j(r) < o +w,r?, forallrel},
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and, as seen above, problem (P) can be restricted to |, Theorems 3.1, 3.2,
and 3.3 remain valid for (P') and (P)).

We next characterize the gradients of (P,ll) with respect to j and (y, v). At

the same time we note that (P}) can be decomposed into two convex
optimization problems. These are :

1) For fixed j € A solve the optimal control problem

L 2 2
mlmmlzefz (Vy-Va-p) daxdt+‘%|v|Lz(Z)+
+{f ((y) +5 (=) +yv) do,di 43)

p>

on (y,v)e H' (Q)x L*(X) subject to (3.4).

2) For fixed (y,v) € H'(Q) x LZ(Z) solve the minimization problem

minimizef G(y)+/(=v)) da, dt
x
subjecttoje A" . (4.4)

We turn to the characterization of the gradients of the cost functionals in (4.3)
and (4.4). Problem (4.3) is a convex optimal control problem, in fact, using

(3.4), the term j YU do_dt can be replaced by
z

%f y(x, T) d —%f yédx+f |Vy|* da dr .
Q. Q Q

0

This problem has a unique solution that is characterized by

o= (ko) (ber).

or equivalently

1711[(1 + ) V=1 (y+ Ap) ae in{(1+ Auaj) ' (y + ip) e intl}
V=<~ /.%()Hk/ip—e) a.e. in{(l + Audj ) ! (y+4p) = e}
- ;—117()7_‘—;‘1) +a+e) a.e. in{(l + Auaj)” ! (y+ip) < —a—c¢},
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where p is the variational solution to

p,+4p =0 in Q
d 1 . .
L= (+jy) in 2
p =—2(Vy-Va—p)|Vag| inX
p(..T) =0 in Q.

Let $ denote the cost functional in (4.3). Then its gradient in direction
Sve L3(X)atve L’(X) is given by

- gy 1
VS‘*(U)((SU)—J;(‘uva /«Laj*( v) /.Ly)évdo-xdt.

We next turn to (4.4) which we rewrite as

)

minimize j (J(y) +j¥(=v)do, dt)
z

over Se LX) subject to
J(r)y=9(r)ae.inl
Jj(0)=j10)=0
2wy, sV s2w,.

(4.6)

/

Solving the differential equation in (4.6) for j as a function of ¥ we find

j(f)=fr(r—s)ﬁ(s)(ls for rel
0

and

volp)

J'*(P)=J. s9(s)ds for pe R,
0]

where

By'(p) if  pe By(D)
ya(P): ¢ if 14 Zﬂa(f;)
—a-¢ if psf(-a-c¢),

M? AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



CONTROL OF STEFAN PROBLEMS 697

and

r

ﬁg(r)=j'(r):'[ B(r)ds.

0

Since © = 2 w, > 0 invertibility of B, follows. The cost functional in (4.4)
can be expressed as a function of ¥ in the following way :

{

D(B) =j
7ol = v(x. 1)) :
+f sO(s)ds | do_dt,

0

V(X 1)
f (y(x,t)=s)0(s)ds

0

where (y,v) € H'(0) xLz(Z), with y(x,t) e I ae,, is fixed.
Thus (4.4) can be expressed as

minimize (%) over b € U

where U={0e L™(Z): 2w, < 0 € 2w ae. inl}. 4.7

Arguing as in [BK1] we see that & is convex. Moreover it is Gateaux
differentiable in a neighborhood of U and we find for the derivative at 3 in
direction w

y(x,t)
V@(ﬁ)(w):j [J (y(x,t)=r)yw(r)dr
z

0

0

J’/@ e vl ) 1 }
+ (r~ﬁ; (=v(x, t)))w(r)drida dr,

and the Riesz representator, denoted by g, is given by

u=- L()’(x, 1) =7 Apeen.0)(7) do, dt

+ J.Z (ﬁ; '('— U(X, T)) - r)X[/f e U(x.l)).O}(r) de dr ’
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where 7 denotes the characteristic function of the indicated interval. We
therefore deduce that the solutions ¥ to (4.7) satisfy

Oe u+Ny,(8), A (4.8)
where N () is the normal cone to U at ¥, defined by

Nu(t‘))z{iye Ll(l)lij(i‘)=0 if 2w, <V(r)<2w,;p(r)y=0 if
Wr)y=2w,;n(r) <0 if B(r)=2w,}.

From (4.8) we conclude that the optimal solution O satisfies

=2 w, if u(r)y>0
Hr)yi=2w, if u(r)<0 (4.9)
€ (2wy2w,) if u(r)=0

5. NUMERICAL EXPERIMENTS

We carried out numerical tests in spatial dimension n =1 with the
following specifications :
e 2=(0,1)

1
. 90:1<§’1) |
oT:E;QTz(l,l) where 0<[<§

e g:(1l,1)— [0,T] such that =0 on [12-,1), g >0 and strictly

decreasing  on [1,%), g(l)=T and o€ C2( [L]—]) with

2
d(x) = 0 for all xe [{%]
e O={(x.t)|xe (L,1),t>a(x)},
e 2 = (o '(1),1) for all re (0, 7).
In dimension one it is more convenient to work with ¢~ " : [0, T] = [ ,%]
rather than 0. We sllghlly modlfy the cost functional ( P;) by multiplying the

first intcgrand by (o~ (r))‘ =1/(d(c ‘(t))) and consider the following
problem :

,
minimize J(v,j) = f ly (o (1), 1) = pa™ "(2)|* ar

-
f e, ) + 75 (=v(t)) +v(e) y(1, t)]dt+ﬂj [o(e)|? de (5.10)
over (v,j)e L (O.T)xf‘
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where y is the solution of

Vi ™ Yux =0 an

y(a (1), 1) =0 on
) 5.11
%5(1,;):1)(:) on > S

y(x,0) =y,(x) on Q.

Here we suppose that y;e C'( [% 1] ); Yo(x) <0 for all x>—12— and
w(1)=0

Next we characterize the ‘Neumann (o Neumann’ mapping
vy (o '(2),1) and the ‘Dirichlet 1o Neumann’ mapping v — y(1,1)
explicitly als Volterra integral operators acting on v, and we thus climinate the
constraint (5.11) {rom the optimization problem (5.10). We preferred this
procedure over simply calculating y (o~ "(2),1) and y(1,1) in (5.11) by a
finite element discretization, because in the latter case it turned out that the
number of elements in spatial direction and the number of timesteps must be
extremely large in order to obtain results of reasonable accuracy. Recall that
the fundamental solution for the heat equation is given by

F(x,t;é,r)=#;(t—t)_%exp %); .
We set .

Glx,t;&1)=1(x,t:&1)-T(2—x,1;,&, 1)
and

N(x,t;&1)=T(xt;&t)Y+T(2—x,1;¢&, 1)

and define the operators

L,f(t):j;Nx(a—l(t),t;o_'(‘c),r)f(r)dt (5.12)
L2f<r)=f;N,\.(o“<r),r; o) f()de (5.13)
le(t)=j;N(l,t;l,‘c)f(‘c)dr (5.14)
sz(t)=J;N(],t;o"(r),r)f(r)dt (5.15)
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and

1
G,f(r)=j. G(o™ (1), 1;&,0) f(&) dé (5.16)

1] =

1
Ggf(f)=f N(1,1;&,0) f(&)dE (5.17)

[S1ked

for #> 0. Note that the operators (5.12) and (5.14) are of the form

1
J k(t,7)(t—1) ”zf(r) dt and the operators (5.13) and (5.15) are of the
0

t
form r k(r,7)f{t)dr with some function &k continuous on
J
D={(t TO) :0s¢t<T: 0<ct<t} Following [GLS], proof of
Theorem 2.2 (i), p. 64, and proof of Theorem 2.5, p. 66, it can be proved that
(5.12)-(5.15) define compact operators on Lz( 0, 7). Moreover it is easy to see
that G, and G, in (5.16) and (5.17) respectively are bounded from
Lz(%, 1 ) into L,(0, T'). Therefore we can define compact operators & and
A from L,(0, T) into itself by

FLf=2(1+2L) "L, f (5.18)
Mf=(M, =M, L)f. (5.19)
Moreover we define
d, =2(1+21L, )“G!%&e L*0,T), (5.20)
X
dy,=G,y,—M,d, € L*(0,T) (5.21)

where [ denotes the identity on L*(0,T). The existence of (I+2L, y !
follows from the fact that we can decompose the interval [0, 7] into finitely
many subintervals such that the norm of the restriction of 2 L, to these
subintervals is less than 1. The solution f e L*(0,T) of

(I+2L)f=ge L*(0,T)
is unique and can be expressed in the form

!

ft)=g(1) —j r(t,7) g(z) dr,

0
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where r(t,7) is the resolvent of 2 L,. (c.f. [GLS], Theorem 3.6, p. 234, and
Corollary 3.14, p. 238). It follows that

.fff(t)=2J‘1 Iikz(t,r)—-,‘r r(t,s)kz(s,r)(ls‘]f(r)(lr

0

T

=f' k(t,t)f(r)dr (5.22)

0
is a Volterra operator of the first kind. Here k, denotes the kernel of the
operator L,.

We now address the problem of determining y (o Y(1),1) and y(1,2) in
(5.11) from known boundary- and initial values.

PROPOSITION 5.1 : Suppose y € H'(Q) is a variational solution of (5.11)
with v € L*(0,T). Then

y (o (), 1) =Lo(t)+d,(1) (5.23)

and

y(1, )= AHv(t) +dy(t) (5.24)
a.e. on [0, T].

Proof : It is known ([KMP], Theorem 2.4) that (5.23) and (5.24) hold for
ve C([0,T]). Adensity argument together with (3.11) implies the claim for
all v e L*(0,T).

Proposition 5.1 allows to write the cost functional in (5.10) as

T

J(U,j)=J

T
| Lu(r) —d(t)[zdt+%J lv(2)|? dt
0 0

T
+%J‘O UCAv(t) +dy(t)) + j*(—v(2)) + v(e)(MV(t) + dy(t))] dt

(5.25)

where d(t)=d, - po~ I'(t). For the minimization of (5.25) we used an
iterative (SQP) method from the MATLAB optimization toolbox with ana-
lytically provided gradients. We chose / in A as 1= (-=M,0), where

—M < minyy,(x):xe [15 1]} We provided for the fact that
vol. 30, n® 6, 1996
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y(1, 1) € I may not be satisfied during the iteration by extending j outside of
I as a linear function with very steep slope and such that j is convex on all of
R. Moreover, just as in Section 4, we replaced the independent variable j by
¥ =j”, where j and ¥ are related by

j()’)zﬁ()’—r)ﬁ(r)dr for yel, (5.26)
0

and 9e A ,={0e L*(I): 2w, < < 2w,}. We next give the explicit
form of the gradients. Due to the fact that we use the boundary element
formulation for the solution y on 2 and X the gradient of J with respect to
v is simple, and the adjoint equation (compare (4.6)) is realized through the
adjoints of the operators % and #. We find for the derivative of J with
respect to v in direction w € L*0,T):

9 . B
<(')_UJ( v,j),w >L3(0‘T) =2 L*(Lv—d)+n, “’>L3(0.T)

L (MM + dy) = (= 0) + (M o+ MY 0+ dy WYy gy (52T)

To calculate the derivate of & — J(v, (1)) one proceeds as in the compu-
tation of the necessary optimality condition of subproblem 2 of Section 4. We
find for the derivative in direction & € L™(—~M,0):

T

. ’ 1
<%J(U’J(ﬂ))’ £>L3(— M, 0) =Zf

(]

y(1.1)
J; (y(1,2)=r)&(r)dr

0

Yol — U (1))
+f (r—yﬁ(—v(t)))é(r)dr]dt,

where
0 it p>0
ve(p)=1F '(p) if pel
Yo(=M) if p<p(-M),
and

L(r) =f Y s)ds for re T,
0
and we assumed that y(1,¢) e [ for all te [0, T]. (If y(1,¢) ¢ I, then j is
extended outside of [/ as explained above, and £ is set O on the complement
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of 1.) For the numerical realization all -depending functions were discretized

as sums of linear spline functions with respect to the grid iZ '," . The

Volterra operators that need to be discretized have either continuous =lé)erne]s
((5.13) and (5.15)) or weakly singular kernels with singularity of the type

1
(t—1) 2 ((5.12) and (5.14)). In the first case the trapezoidal rule was used
to evaluate the integrals and for the singular case we used first order Gauss
i

integration with weight function (¢ — 1)~ 2 on each of the subintervals. The
function ¥ is discretized as sum of elementary step functions

u 1 for —iM<ys—i_1M
Bi(y)= n n

0 otherwise ,

n
for i=1,...,n If 8'(y)= 3 9,B/(y) with 9, R and j* is calculated
i=1

from 9" via (5.26) then (j")(0)=0. The condition 2w, < ' < 2 w, is
clearly equivalent to

2wy %, 2w, forall i=1,.,n,

and can easily be realized as a box constraint in the computations. In
numerical experiments the constraint ¥, < 2 w, plays no significant role. For
the constraint 2 w, < U; we generally took w,=0 or w, very small.
Especially for the nonattainable case this constraint is essential. Here we call
the problem ( P) attainable, if there exists (f,y) € & xH'(Q} such that
the value of the cost functional is zero if # = 0. Minimizing J(v, (1))
involves solving the first-kind Volterra equation £v =d in a least squares
sense. Since % is compact on Lz(O, T) this is an illposed problem and
requires regularization.

For that purpose we already included the Tikhonov regularization term

% |v |i in the cost functional. Alternatively we used Z |v'|i: as a regularization
term, but this did not change the numerical results significantly. In the case of
noisy data, Tikhonov regularization, however, did not produce completely
satisfactory results. We therefore combined the Tikhonov regularization terms
with a method that is suitable specifically for Volterra problems. A frequently
used method in this context, sometimes refered to as sequential regularization
method, is due to Beck (cf. [BBC], [La]). In every time-step
1€ {tgs s voos iy (,—1)}> With r> 1, the coefficient v, is chosen such that
a constant continuation of v with value v; fits best the data for the next
r— 1 time-steps in the least square sense. The normal equation of this least
squares problem has the form

0.(2 m.r vm. r_ dm.r ,
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where .2 ™" is a well conditioned lower triangular matrix and d"™" can be
derived from the discretization of the given data function d ; for details we
refer to [BBC], [La). When using this method in the context of our problem
we replace the first term in the discretized cost functional by

T
J. lo(f m,r U/n. r_ dm. r12 dr .

0

Note that Beck’s method uses information from r — 1 future time-steps and
hence, if the original data vector has dimension m + 1, then the vector
v""" has dimension m + 2 — r, and consequently v is only defined on the
subinterval [0, 7], with 7" =T(1~2=L) of [0, T]. In the first two
experiments we considered cases where the prescribed boundary o is attain-
able by a boundary heat transfer law of the form —%— —[f(y) at

x =1, i.e. there exist ‘true’ functions v and j, such that J(v, ]) = if
1 = 0 in the cost functional (5.25). In order to obtain data for such a prob]em
we solved the forward Stefan problem

-yl :y,\'.\' On Q )
y(o '(£),t) =0 on (0,T)
yx(lvt) =;(I) on (O,T) (528)

y(a (), 1) =pa” (1) on (0,T)
¥(x,0) =y,(x)

/

with some fixed, monotonically decreasing function v and unknown boundary
. We specifically chose

=
joo}
3
o
<
il
W

s =4{x-3)(x-3). 7=

and

v(t)=0.2 exp(—41t).

Let (a,y ) denote the corresponding solution of (5.28). It can be seen that
y(l t) is monotonically increasing on (0, 7) and hence v and y(l ) are
related via some  monotonically increasing  function ,b’ =]’ :
[-1,y(1,T)] = [v(T),02] via

v(t)+pP(y(1,1))=0, for re [0,T].
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Since y (a(t),1) — ps~ "(+) =0 for all 7 it follows that J(v,j) =0, if one
uses as frce boundary the function ¢ which was calculated as solution of
(5.28), and if # =0. For this ¢ as input data we solved the regularized
problem :

minimize J(v, j(3))
(5.29)
subjectto ¥ = 0,

with the following set of parameters :

n=10" 7, A= 104, n = 64 (t-discretization ), m = 48 (discretization forj) .

Let (v, B, ) indicate the calculated solution of (5.29). Figure 2 compares

U, and v, figure 3 shows [)‘opl and Z)':f E(S)([S. In figurc 4 we plotted

/)’Opt(yopl( 1,.)) and —v_ as functions o["or. This plot shows how well the
boundary condition v(#) + S(y(1,t)) =0 1is fulfilled for the calculated
solution. Note that y(1,1) = A v(t) + d,(t) occurs as a by-product in the
calculation of the cost functional.

The plots in figures 5-7 are analogous to those of figures 2-4, but here we
added some uniformly distributed noise to the input data o~ l(t). The noise-
level was chosen 0.25 % with respect to the | . | -norm. This may seem to be
a small noise level, but the derivative of ¢ '(¢) occurs at a prominent place
in the cost functional in the data vector d. To obtain d, we had to carry out a

Figure 2. — Comparaison of true and calculated boundary heat transfer function
v(t) = g—%(l,t) (no data-noise).
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Figure 4.— How well is the feedback law fulfilled for the calculated solution ? (no data-noisc).

numerical differentiation resulting in an error on d of about 18 % in the

| . | -norm. In this noisy data case, we used Beck’s future regularization
method as describe before with the following parameters :

5.1044=1,n=128,m=32,
r = 16 ( number of future time — steps) .

By the use of future information, the solution v, is only defined on the
interval [ 0.3 - =] = [0,04414].
1

2
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Figure 5. — Comparison of true and calculated boundary heat transfer function

U(’)=g§(1,t) (noisy data).

0.08

Figure 6. — Comparison of true and calculated feedback law f (noisy data).

For the last two plots in figures 8 and 9 we chose an ‘arbitrary’ function
o for the free boundary, which cannot be attained exactly by a boundary
control of the given type. This fact is reflected in the fact for the calculated
optimal solution, the constraints on the monotonicity of f are active. The
intervals of constant function values in figure 8 are due to this fact. Figure 9
shows how well the prescribed (o~ ') can be approximated by the optimal
pair (vopt, /fop[).
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Figure 8. — How well is the feedback law fulfilled for the calculated solution ? (non-attainable

data).

For comparison, we also plotted the free boundary corresponding to the pair

of starting values (vy(t), f,(y))=(0.2,0.2y) at the beginning of the
optimization. Here we used again ordinary Tikhonov regularization (no future
regularization) with the following parameters :

n=10" 5,

A=10"% n=64, m=48.
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Figure 9. — Comparison of desired, optimal, and initial values for o~ 'knon-uttainul)lc data).
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