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MATOf MAT1CAL MODEUJNG AND NUMERICAi ANALYStS
MOtéUSATtOH MATHÉMATHMIE ET ANALYSE NUMÉRIQUE

(Vol 28, n° 3, 1994, p. 243 à 266)

SEPARATION OF VARIABLES IN THE STOKES PROBLEM
APPLICATION TO ITS FINITE ELEMENT

MULTISCALE APPROXIMATION (*)

by O. GOUBET O

Communicated by R. TEMAM

Abstract. — The aim of the paper is to describe a methodfor the multiscale approximation of
the Stokes problem. We first use a transformation of variables to substitute for this problem two
unconstrained optimization problems. We then describe a finite element multiscale approxi-
mation of these problems. It turns out that this approximation allows us to also approximate the
solutions of the Stokes problem. We conclude by describing an algorithm based on this method.

Résumé. —Nous proposons ici une méthode d'approximation multi-échelles du problème de
Stokes. Dans un premier temps nous prouvons que celui-ci se découple en deux problèmes
elliptiques sans contraintes ; ce résultat est obtenu à Vaide d'un simple changement de
variables. Dès lors nous décrivons une approximation multi-échelles à l'aide d'espaces
d'éléments finis, adaptée à ces nouveaux problèmes. En retour cette approximation permet
d'approcher la solution du problème initial. Un algorithme de calcul est alors présenté.

1. INTRODUCTION

This paper is the first part of a work concernée with finite element
multiscale approximations for Navier-Stokes équations, in the framework of

the nonlinear Galerkin methods. This article is devoted to the stationary
Stokes problem.

Lei ILS first give an overview of the nonlinear Galerkin methods, that were
introduced by Marion and Temam (see [16]). The aim of these methods is the

(*) Manuscript received november, 27, 1992.
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244 O. GOUBET

large time approximation of the solutions of dissipative évolution équations.
The set that describes the large time behavior of solutions is an attractor that
can have a complex structure and even be a fractal ; moreover the
convergence of the orbits towards the attractor can be arbitrarily slow.

A first attempt to overcome these difficulties was the introduction of
inertial manifolds (see [11], [20]). They are finite dimensional invariant
manifolds that contain the attractor, and then allow us to reduce the dynamics
of the initial system to the dynamics on these manifolds.

Next came the approximate inertial manifolds (AIM) (see [10]), that are
finite dimensional manifolds that contain the attractor into a thin neighbor-
hood. On the one hand séquences of approximate inertial manifolds that
approximate the attractor with higher and higher order, have been derived for
a broad class of évolution équations (see [7], [9], [19], [21]). On the other
hand, since their équations are rather simple, AIMs make easier the
implementation of numerical algorithms ; as the classical Galerkin method is
related to the simplest of these AIMs, that is the finite dimensional linear
space spanned by the first m functions of the Galerkin basis, the nonlinear
Galerkin methods feature inertial nonlinear algorithms that correspond to
AIMs providing better orders of accuracy.

The theory first developed in the spectral case extends now beyond : for
instance see [22], [5] for works about finite différences or [13] about
wavelets. In this paper we are interested in finite éléments. Hence we return
to the framework of [17]. Let Vh be a finite element space corresponding to a
triangulation whose mesh size is h. Instead of Computing an approximation
yh of a solution u of a dissipative évolution équation as the solution of the
approximated problem on V hJ we are looking for a nonlinear approximation
y h 4 $ \jh\ where $ maps V h into a suitable suppiementary Wh of
Vh into V hj2. A question we would like to address in this paper is the choice of
a pair (Vh9 Wh) that is convenient to approximate the solution u of the
stationary Stokes problem. In other words, we would like to choose a pair
(Vh, Wh), that allows us to obtain a robust décomposition of M as a sum

where yh is as above and where the incrémental variables zhk are obtained by
h

successive mesh refinements hk + l — —, such that zhk e Whk.

On the one hand, the utilization of multiscale approximations has been
advocated and studied for standard elliptic linear problem (see [1], [4],
[25]...)- On the other hand, it is difficult to use these methods for saddle point
problems, even using mixed finite element methods. The difficulty is to find
a confomring space Vh that enjoys V2 h <= Vh- However we would like to refer
to the numerical work in [18].
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SEPARATION OF VARIABLES IN THE STOKES PROBLEM 245

In this paper, we overcome this difficulty by introducing a séparation of
variables in the Stokes problem that replaces the saddle point problem by two
unconstrained decoupled elliptic problems ; these problems can be each
solved by standard multiscale process. Moreover this method provides
approximation of the solution u of the Stokes problem that has the same order
than the one using the usual mixed finite element methods (*).

This paper is organized as follows. In the first section we introducé the
séparation of variables. A first subsection is devoted to recalling some
classical results for the Stokes problem on a two-dimensional domain whose
boundary is a polygon. Then in the next subsection we introducé a séparation
of variables according to duality arguments. In the second section, we apply
these results to theorical finite element multiscale approximations for the
Stokes problem. Having addressed such a problem in a first subsection, we
then describe expansions of the new (and old) variables into series whose
ternis are actually incrémental variables. Error estimâtes conclude this
section. In the third and last section, we describe a three-steps algorithm to
approximate the solution of the Stokes problem ; error estimâtes are then
derived.

2. SEPARATION OF THE VARIABLES

2.1. The Stokes problem

Let us first introducé some notations. Let O be a bounded open set of
IR2, whose boundary is a convex polygon. We shall consider the following
two-dimensional Stokes problem.

For ƒ in L2(Û ) = L2(f2 ) x L2(O ) (or HT 1(D )), we seek a vector function
u = (M1? U2) and a scalar function p, which are defined in fl and which
satisfy the following équations and boundary conditions

~àu + Vp=f in / ] , (2.1)
div u = 0 in D , (2.2)

u = 0 on èÛ . (2.3)

For the sake of convenience, we rewrite (2.1), (2.2) and (2.3) in the
following abstract form

Lu + *Bp = ƒ , (2.4)
Bu = 0 , (2.5)

where we dénote by L the Laplacian operator which maps M2{ü)f\
Ho(/2) onto L2(f2) (and Hl(fi) onto its dual space (Hl"1 (/})).

(*) These results were announced in [14].
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246 O. GOUBET

B is defined as follows

B : Hl£(i3)->2

M ^ - div u . (2.6)

Hence *B is the Gradient operator and maps L2(f2) into D-0" l (f2 ). We also set

M = L2(f2) , W = Hi(i2), V = Ker£ .

We also define H as the closure of V in L2(/2 ) ; we recall the following result
(see [23])

H = {ue \L2(f2 ) ; div u = 0 in J?, (w . n) = 0 on 3/2 } , (2.7)

where « is the unit outward normal. Moreover we dénote by A the Stokes
operator defined by D(A ) = H2(f2 ) n V and by

Au = ƒ, for ƒ in ƒƒ and u in D (A ) ,

if and only if there exists /? such that (w, /?) satisfies (2.4)-(2.5).
We also set, for any pair w, w' inW and any p, p' in M

(2.8)

(2.9)

(2.10)

(P>P')M= f PP'dbc. (2.11)

Moreover we dénote by || . ||, | . |, | . \M the norms corresponding
respectively to (2.9), (2.10) and (2.11).

Let us recall now the following theorem that is erucial for the study of the
Stokes problem (we refer to [23] for a proof ; see also [12]).

THEOREM 1 : The three following assertions, that are equivalent, hold

* B : W/V -> M is an isomorphism , (2.12)

* lB : M -> (W/V)* is an isomorphism , (2.13)

* There exist a, || b \\ - => 0 such that for any p in M

a \ p \ M ^ S U P b ( x > P ) * z \ \ b \ \ \ p \ M ' <2*14)
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We conclude this section by recalling the following regularity resuit (see
[23], [15]).

PROPOSITION 1 : There exists C > 0 such that if the data f in (2.4), (2.5)
belongs to fl_2(/2), then the solution (M, p) satisfies the following

\Lu\ + \'Bp\^C\f\. (2.15)

2.2. Séparation of variables

In this section we first prove that, if p is solution of (2.4)-(2.5), then
p is solution of an unconstrained optimization problem. Next we introducé a
simple change of variables that allows us to replace the problem (2.4)-(2.5)
by two unconstrained optimization problems. Throughout the section we
shall use without proofs some duality results. We refer to [8] for the proofs.

Let us introducé the Lagrangian

& ( u , p ) = \ \ \ u \ \ 2 + b ( u 9 p ) - ( f , u ) . (2.16)

Then, («, p) is solution of (2.4)-(2.5) if and only if

(M, p) is solution of

inf sup &(u,p). (2.17)
u e W p e M

Moreover problem (2.17) is equivalent to its dual problem

sup inf JS?(w, p). (2.18)
pe M ueW

On the other hand, let q belong to M. Let uq be solution of the following

inf Se{u9q). (2.19)
ueW

Hence uq satisfies

+ b(w, q) = (ƒ, w), VweW . (2.20)

Conversely, if uq satisfies (2.20), then uq is solution of (2.19). Then (2.16)
and (2.20) yield

<e(u q)=-l\\u q\\
2. (2.21)

Therefore, due to (2.21), we observe that/? is solution of (2.18) if and only if
p is solution of problem (2.22) hereafter :

inf ( i | K | | 2 ) . (2.22)
qeM \ Z /

vol. 28, n° 3, 1994



248 O. GOUBET

We shall prove now that (2.22) defines on M a well-posed optimization
problem. We have the following proposition.

PROPOSITION 2 : There exists a scalar product [., . ] on M suc h that

* the corresponding norm [. ] is equivalent to the usual norm \ . \ M.
* Problem (2.22) is the same as problem (2.23) hereafter

inf (Uqf- [<?, vl) , (2.23)

where v is an element of M that will be defined below.

Proof : We rewrite (2.20) as

uq = L-lf~L~ltBq. (2.24)

Hence we have the following

I K||2 = \ IZT1'2 <Bq\2- (L-m'Bq,L-mf) + i \L^f\2. (2.25)

Setting for /?, q in M

[p, §] = (L- 1/2 f5p, L- m lBq), (2.26)

we have a scalar product such that (2.23) holds ; actually r\ = p in (2.23),
since (2.18) and (2.23) are in fact equivalent.

To complete the proof of Proposition 2, it remains to check that
[. , . ] defines an equivalent norm to | . | M on M. For any w in
W, due to (2.14), we obtain

We take w = L ' 1 '5? in (2.27). This yields

[q]2^\\b\\[q]\q\M, (2.28)

observing that

HIT1'B? || = [ql. (2.29)

It remains to prove the reverse inequality in (2.28), i.e.

k U «<:[*]• (2.30)
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We know that any w in W can be written as

w = v+L-lÊBq, (2.31)

where {v, q) belongs to V x M. Hence, for q in M, we have

b(w9q) = b(v,q)+ [q, q] , (2.32)

observing that

l t B q j q ) = [ q , q ] . (2.33)

Since v belongs to V, Z?(i>, #) vanishes. On the other hand, we easily dérive
from (2.31)

| H | 2 = ||t; ||2 + [q]\ (2.34)

observing that b(v, q) vanishes as well. Therefore, (2.32) and (2.34) yield

^CM^fellUfe]. (2.35)

Hence (2.14) and (2.35) yield (2.30). •

Now we introducé in (2.16) the following change of variables

u* = u+L-lfBp, (2.36)

while p is kept unchanged, i.e.

p * = p . (2.37)

Then (2.16) becomes

JS?(«, p) = i ||«*||2 + \ HL"1 'Bp||2 - ((«*, L~llBp))

+ b(u*,p)-b(L-ltBp,p)- (ƒ ,«*)+ (f.L-i'Bp). (2.38)

Using (2.8), (2.29) and (2.33), we transform (2.38) into

&{u, p) = i ||w*||2 + I [p]2 - &(«*, P) + *(«*, P)

- [p]2 - ( ƒ , « * ) + ( ƒ , L~l'Bp). (2.39)

In other words, we have the following

S£ (u, p) = ƒ ( « * ) - / ( p ) , (2.40)
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250 O. GOUBET

where

/ ( K * ) = | | | K * | | 2 - (ƒ ,**) , (2.41)

/ (p) = i [pf - (ƒ, L~l lBp) . (2.42)

We summarize the results of this section by the foUowing proposition.

PROPOSITION 3 : Let (u, p)be the solution of saddle-point problem (2.17).
Let u* and p* be respectively the solution of

inf / ( « * ) , (2.43)
u* E W

and of

inf I(p). (2.44)

77se« M, p, M*, p* #r£ related by

p*=p, (2.45)
M* = u+L'lïBp . (2.46)

Moreover, the foUowing equality holds

sup inf £P(u,p)= inf / ( « * ) - inf 7(p). (2.47)

Proof : u * and p are characterized by respectively,

((«*, w))= ( f , w ) , (2.48)

for any w in W, an by

[p, q] = (J,L-XtBq), (2.49)

for any <? in M. Hence, taking w = L~ ' 'B# in (2.48), we obtain

(Bu*, q)M= (f, L-ltBq). (2.50)

We then easily dérive from (2.33), (2.46), (2.49) and (2.50) that
u satisfies

(Bu,q)M = 0, iqeM. (2.51)

On the other hand, we take the scalar product in W of (2.46) with

M2 AN Modélisation mathématique et Analyse numérique
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w to get the following

((M*. W)) = ((«, w)) + {Lr l lBp, Lw). (2.52)

Therefore (2.48) and (2.52) lead to

((M, W)) + b{w, p) = (ƒ, w) . (2.53)

To conclude the proof of Proposition 3, it remains to check (2.47) ; this can
be merely derived from (2,40).

3. APPLICATION TO THE FINITE ELEMENTS MULTISCALE ANALYSIS OF THE
STOKES PROBLEM

3.1. Multiscale analysis of the Stokes problem

Let us define a finite éléments multiscale approximation of a Hilbert space

V, as a séquence of finite element spaces {Vh.}. that satisfies the two

following properties,

* embedding condition

Vh <= Vh . (3-1)

* density condition

' 'hi = V. (3.2)

Hère hj is a nonnegative parameter that represents the mesh size of the
triangulation corresponding to Vh.. Actually we set

h.

(3.3)

then hQ is the mesh size of the coarsest triangulation and j is the number of
refinement levels.

In this paper we are interested in the construction of finite éléments
multiscale approximation to solve the Stokes problem. The natural Hilbert
space related to the Stokes problem is V = Ker B, The main difficulty is to
construct approximations of V which satisfy (3.1) and (3.2) ; even if we are
looking at the Stokes problem in its saddle point formulation, namely (2.4)-
(2.5), it is far from easy to construct finite element multiscale approximations
of W x M that fit with the incompressibility condition (2.5).

To overcome this difficulty, we rather solve the two problems (2.43) and
(2.44). These problems are convenient for multiscale approximations, since

vol. 28, n° 3, 1994



252 O. GOUBET

they feature no constraint conditions. Let us then conclude §3.1 by
describing a suitable finite éléments multiscale approximation for (2.43) and
(2.44).

Let {Wh. x Mh } . be a collection of finite éléments spaces such that we

have the following

(3.4)

(3.5)

(3.6)

(3.7)

We also assume that the following properties involving the finite éléments
spaces above hold :

* Approximation re suit for Wh.,
There exists C > 0, such that for any w* in D(L) = M2(/2 ) n HQ( /2 ) , the

following inequality holds

inf \\u*-y\\*C.hj.\Lu*\. (3.8)

* whj<=whj+

* V J

i

M .

* Approximation resuit for Mh,.

There exists C > 0, such that for any p in Hl (fi ), the following inequality
holds

inf \p-p\M^C.hn\
tBp\. (3.9)

Remark : C dénotes a constant that is independent of hr

There is a broad class of finite element spaces which enjoy (3.4)-(3.9). For
instance» let us mention the P1 iso P^Pi element of Bercovier and
Pironneau, see [2], [3] or [12]. For other examples of suitable finite éléments
we refer to [6].

3.2. The incrémental variables

This section has two aims. On the one hand we introducé an expansion of
M* and /?, the solutions of (2.43) and (2.44), in series whose terms are
actually incrémental variables ; here we are refering to the framework of the
nonlinear Galerkin finite éléments methods (see [17]). On the other hand,*we
establish some results, that also relate to the nonlinear Galerkin framework,
and that will be useful to obtain the error estimâtes of the next section.
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Let Wh, be as in § 3.1. For the sake of convenience, and when no confusion
is possible, we drop the subscript j to write hj = h. A natural approximation
for M*, the solution of (2.43), is u* defined as follows

J(ujt)= inf J(vh). (3.10)
vh e Wk

Due to standard results, u% is well-defined and is characterized by the
following property

((«**, w*))= (f,wk), for any w, in W, . (3.11)

We then define the incrémental variables corresponding to «* as, for each
h,

22* = »** ~«2**- (3-12)

Remark : We observe that the incrémental variable z2 h is the solution of
the following problem

inf J{u£ + wh). (3.13)
wh e Wh

Moreover z2h is the projection of u£ onto the orthogonal complement
W\h of W2h in Wh. In other words, when Computing the approximations
U2h> %*, - of «*, z2/l is along the direction of the steepest descent from
ufh to u* for the ( ( . , . )) norm.

We define by induction on j

zhf = utJ + l - u j ' , (3.14)

that leads to the following expansion of u * as a series

** = < + +f V (2U5)

we observe that (3.15) holds for M* in ? , since

*i2=KII2n » * i 2 = K I I 2 + Z h » 2 - (3-16)
that implies the convergence of the series in W. We shall briefly address
other questions related to the convergence of the series involved in (3.15)
(and in (3.20) below) in subséquent remarks in Section 3.3.

On the other hand, let us apply the same process to p that is solution of
(2.44). For h = hj as above, we define ph as

I(ph)= inf I(ph). (3.17)
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We then define the incrémental variable corresponding to p as

tlh =Ph-P2h-

We observe that ftlh satisfies

= 0 , Vq2heM2h. (3.19)

This leads to the expansion of p as

P=P*o+ I **j ' ( 3*2 0 )

We observe that due to (3.19), for p in M the following equality holds

tpf= lPh0f+
+f [ ^ ] 2 . (3.21)

Hence the series involved in the right hand side of equality (3.20) converges
in M, since [. ] and | . |M define equivalent norms.

We then prove some lemmata that relate to the nonlinear Galerkin
methods. Let W2h be the orthogonal complement in W of W2h

 m

Wh ; W2h is the natural space that contains z2h accordingly to (3.13). Let
M^h ^ e t n e orthogonal complement, in M endowed with scalar product
[., . ] of M2 h in Mh ; M\ H is t n e natural space that contains tylh accordingly
to (3.19). We then have the following strenghtened Poincaré inequaïities.

LEMMA 1 : There exists C that is independent of h, such that for any t// in
M% for any z in W% we have the following

• \*\M*C.h. l'Btffl , (3.22)

• \L~ltB^\ *C.h. M M , (3.23)

• \z\*C .h. \\z\\ . (3.24)

Remark : C dénotes a constant that is independent of h.

Proof ; Let us first prove (3.22). Recall | • |M and [• ] define equivalent
norms on M (see (2.28) and (2.30)). Therefore, the following inequality
holds

M M « C [ * ] . (3-25)

Since ft belongs to M% for any q in Mh we have

[ft~q?= W2+ W2- (3.26)
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Then (3.25) and (3.26) yield

| * | M * E C [ * - * ] ; (3.27)

(3.27) holds for any q in Mh. We use again the norm équivalence between
| . | M and [. ] to obtain

\^\M^C\iff-q\M, (3.28)

holding for any q in Mh. We then use (3.9) to dérive (3.22) from (3.28).
We prove below (3.23) using an Aubin-Nitsche duality argument. Let

ƒ be in H. Let (f, p) be in V x M such that

ƒ = Lv + lBp (3,29)

holds. Let ̂  be in M% Using Bv = 0 and (2.26), it is easy to check that

(L" 1 ' ** ,ƒ ) = [4,,p]. (3.30)

Since \ff belongs to M% we rewrite (3.30) as

( L - w B ^ ? / ) = [ * , p - p A ] , (3.31)

that holds for any ph in Mh. Using again the équivalence between the norms
[. ] and | . |M, (3.31) yields

(L~ltBilf,f)^C\^\M\p^ph\M (3.32)

that holds for any ph in Mh. We then use (3.9) to dérive from (3.32) the
following

(L~ltB4',f)^Ch\ii,\M\tBp\ . (3.33)

We then use the regularity argument (2.15) to deduce from (3.33) the
following

(L-ltB*Jfif)^Ch\$\M\f\ . (3.34)

(3.34) holds for any ƒ in H. Therefore (3.23) is proved.
The proof of (3.24) is also based on an Aubin-Nitsche argument. Let

ƒ be in H. Let w be in D (L ) such that

Lw = ƒ . (3.35)

Let z be in W% We then have, for any yh in Wh, the following

(z, ƒ ) = (z, Lw) = ((2, w)) = ((z, w-yh)). (3.36)
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Using (3.8) and (3.36), we obtain

(z,f)*C\\z\\\\w-yh\\

**C\\z\\h\Lw\ . (3.37)

Recall Lw - ƒ ; hence (3.37) that holds for any f in H implies (3.24).
We now prove another technical lemma that will be useful in the next

section. •

LEMMA 2 : Let us define phas the orthogonal projector in M endowed with
scalar product [., . ] onto Mh. lf we still dénote by ph the following
application

then ph is bounded as an operator acting on Hl{O\ independently of
h.

Proof : For the sake of convenience, we introducé the elliptic projector
ph from Hl(f2) into Mh defined as follows

p, lBqh) = ('Bp, 'Bq^ , Vqh e Mh . (3.39)

We recall the following resuit (see Th. A.2 in Appendix A in [12]), that
holds for spaces corresponding to uniformly regular triangulation of

n.
\p-php\M^C .h. \'Bp\ , (3.40)

for p in Hl(O). Hence we write, for p as above

\lBphp\ ^ | ' 5 (p f c p-p A p) | + |'*P*p| - (3.41)

On the other hand, recalling the following standard inverse inequality (see
the Appendix A in [12])

for any qh in Mh, we rewrite (3.41) as

\tBphp\*£\Ph<p)-ph(p)\u+ \'Bp„p\ . (3.43)

We then observe that, since \ • \M and [. ] define equivalent norms,

\ \ . (3.44)
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On the other hand, we obtain from (3.39)

\'Bphp\* \<Bp\ . (3.45)

Hence inequalities (3.40), (3.43), (3.44) and (3.45) imply

\p-PkP\M^j'h-\tBp\ + l ' / fc l , (3.46)

that concludes the proof of the lemma. •

3.3 Error estimâtes

Let (w, p) be the solution of (2.4)-(2.5). This can be approximated by
(uh, ph) defined as follows ; ph is the solution of (3.17), and uh is defined
from ph and w^, that is solution of (3.10), as

uh = uj?-L-ltBPh. (3.47)

First we state, and we prove, some error estimâtes when ƒ is smooth, i.e.
ƒ belongs to L2(i2). Then we describe some error estimâtes when
ƒ belongs only to H" 1 (/2 ).

PROPOSITION 4 : Letfbe in L2(/2 ). Let u, p, uh, ph be as above. Then the
following estimâtes hold :

• \\u-uh\\^C .h. \f\ , (3.48)

• \u-uh\^C .h2. \f\ , (3.49)

• \p-Pk\M*C.h. \f\ , (3.50)

• \Aivuh\M^C .h. \f\ . (3.51)

Remark : Let us reinterpret Proposition 4 in terms of convergence results
for series (3.15) and (3.20) ; moreover we first define TSh. as

-Ghj = zhj-L-ltBthr (3.52)

for zh, and t//h. as above. This gives the following expansion of u as

We observe that, since the linear operator L~1 lB is bounded from
M into W, and since (3.15) holds in W and (3.20) holds in M, then (3.53)
holds in W.
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Moreover (3.48) is an improvement of (3.53), since it features an error
estimate for the convergence of series (3.53) in W. A similar remark holds for
(3.50) and (3.20). On the other hand, combining (2.46), (3.47), (3.48) and
(3,50)

| | t t * -« A * | | «C .A. i/l , (3.54)

that provides an error estimate for the convergence of series (3.15).

Proof of Proposition 4 : Let us first prove (3.50). Thanks to (2.30) we have

\p-Pk\M^C\p-Ph\. (3.55)

We then use the [., • ]-orthogonal décomposition (3.20) to write

[P-Pk\2=*f U>hf, (3-56)

where h0 = h in (3.56). From (2,28), (3.22) and Lemma 2, we also dérive

WHj*C\*hk\M*C .hk.\'Bif,hk\*C .hk.\'Bp\ . (3.57)

We recall hk = —, and then obtain from (3.56), (3.57) that
2k

lp-Pkf * C • | ^ | 2 . f ^ C • h2 • \tBp\2 . (3.58)

Hence (2.15), (3.55) and (3.58) yield (3.50).
Let us now prove (3.49). From (2.46) and (3.47) we have

|W — M/j j =s= j W — w ^ j - r j i j Ju \p — Ph)\ * V * * ^ " /

On the one hand» using (3.20) as above, we obtain

(L-1 'Bip - P h ) \ ̂  +f JL-1 'Btkt\ . (3.60)

Moreover, due to (3.23), we rewrite (3.60) as

\L-ltBip-ph)\^C +f A|^J . (3.61)

Using (2.30) and straightforward computations, we obtain

\L-ltB(p-Ph)\*C +f | [ ^ ]

/ + « i \ l / 2 ƒ + oo \ 1/2

*C V-r * F [^ü2 • (3-62)
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Hence due to (3.56)

\L-ltB(p-Ph)\ *C .h. [p-ph], (3.63)

and using (3.58) we have

\L-ltB(p-ph)\ ^C .h2. \fBp\ . (3.64)

On the other hand, using (3.15), we write

z h t \ . (3.65)

We then apply (3.24) to dérive from (3.65)

Jfc = 0

( + oo -, \ 1/2 / + oo \ 1/2

lh) I IKI I • (3>66)
k = o ^ ! \ * = o /

In other words

| M * _ t t * | ^C .h. \\u*-u£\\ , (3.67)

since the expansion (3.15) is orthogonal in W. We observe also that
MA* satisfies

||M*-«fc*|| = inf | | w * - ^ | | , (3.68)

since u£ is the projection in W of w* into WA. Therefore, we dérive from
(3.8), (3.67) and (3.68) that

| M * - M A * | ^ C . / Î 2 . |LM*| . (3.69)

Hence (3.49) follows from (3.64), (3.69) and (2.15), observing that

|LM*| ^ |LM| + | '5p | . (3.70)

The proof of (3.48) is similar. We write

\\u-uh\\* | |M*-«A*| | + [p-ph], (3.71)

recalling [q] = \L~m'Bq\. Therefore (3.48) follows from (3.8), (3.58),
(3.68) and (3.71).
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To conclude the proof of Proposition 4, using Bu = 0, we write

\divuh\M= \B(u-uh)\M**y/2\\u-uh\\. (3.72)

Hence (3.51) merely follows from (3.48) and (3.72).
We now consider the case where ƒ belongs only to D-D~l (f2 ).

PROPOSITION 5 : Letfbe in H~ 1 (12 ). Let u, p, uk, ph be as above. Then the
following estimâtes hold

\u-uh\*C.h. U/11., (3.73)

\L'ltB(p-Ph)\ **C.h. || ƒ H * - (3.74)

Remark : Let us observe that series (3.15) and (3.52) still converge in
W, and that series (3.20) converges in M. But we no longer have error
estimâtes for these topologies. On the other hand, we reinterpret (3.73) and
(3.74) as error estimâtes for the convergences of these series for weaker
topologies.

Proof of Proposition 5 : We re write (3.63) as

\L-ltB(p-ph)\ *C .h.[p-Ph]*C .h.[p], (3.75)

observing that ph is the [. , . ] projection of p into Mh. Using (2.28), and the
following classical regularity result (see [23]),

H I I I , | , ( 3 . 7 6 )

we obtain (3.74). Oh the other hand, using

||«*-«**|| ^ IKK = U/11*, (3.77)

we dérive from (3.67) that

| K * - K A * | ^ C . A . I I / I U . (3.78)

Then (3.59), (3.74) and (3.78) provide (3.73). •

4. AN ALGORITHM TO APPROXIMATE THE STOKES PROBLEM

Having described the theorical multiscale analysis of the Stokes problem,
the next task is to address the practical computation of the approximation
(uh, ph) defined above. In a first subsection, we describe a three-step
algorithm. Then we give error estimâtes in a subséquent paragraph.
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4.1. A three-step algorithm

Let us first describe the strategy of the algorithm on the continuous
problem. First we compute «* that is solution of (2.48), Le. solution of the
Dirichlet problem

- A«* = ƒ in Ü ,
M* = 0 on dû .

We observe that w* does not by any mean approximate w, in particular
w* does not satisfy the incompressibility condition (2.5). Next we compute
p that is solution of (2.49), i.e. solution of the problem

(BL-ltB)p - -divw* in Ü .

The last step is to compute u - u * that is solution of the following variational
problem

( ( M - M * , w)) = - ('£/>, w) , VweW. (4.1)

First step : The first step is devoted to the computation of u?, that is solution
of (3.10), and that approximates «*. Actually u? is solution of the standard
elliptic problem (3.11), and the computations can be carried out using the
regular multiscale finite element process ; for instance we refer to [25 j where
this last question is addressed.

Second step : This step should be the computation of ph that is solution of
(3.16) ; nevertheless ph is actually solution of the elliptic équation

[ph, qh] = (Bu*, qh)M , Vqh 6 Mh , (4.2)

and we do not know a priori w*. We then replaceph by ph defined as follows

[ph, qh] = (Bu?, qh)M , V ^ e Mh . (4.3)

We shall prove in the next section that ph is a suitable approximation of
ph, and then a suitable approximation of p as well.

Let us give now a remark concerning the practical computation of
ph. ph defined above is the solution of an elliptic problem, and the
computations can be carried out using standard multiscale technics ;
nevertheless Proposition 2 asserts that scalar products [., . ] and ( . , . )M

pro vide equivalent norm s on M. This implies that the Gram matrix of the
usual nodal basis of Mh for the [., . ] scalar product has a condition number
that is independent of h, since this result holds for the ( . , . )M scalar product
(see Lemma 3 hereafter). Therefore computations of ph can be carried out
without multiscale process.
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Third step : The aim of this step is to compute uh, or at least one
approximation of uh ; we rewrite (3.47) as

Vy G W . (4.4)

A suitable approximation for uh (this point will be addressed subsequently) is
üh defined as follows

((5* - u?, yh)) = - (fiyh, ph)m . Vy& e Wh , (4.5)

for ph defined above. Since ph is known, problem (4.5) is also an elliptic
problem for the Laplacian» and the computations can be carried out by
standard multiscale process, as in the first step.

LEMMA 3 : Let us consider a uniformly regular triangulation of
Ö. Then the condition number of the L2-Gram matrix of the usual nodal basis
of Mh behaves like 0(1) with respect to h.

Proof : Beeause this lemma is classical, we just sketch the proof for
P j éléments. For a node N of the triangulation, we define the corresponding
nodal function aN as the unique function in Mh that enjoys the following

<rN{N') = . 8 N t N . 9 (4.6)

for N ' a node of the triangulation. Let y be

(4.7)

where we sum over all the nodes of the triangulation. Actually, the fact that
we have a uniformly regular triangulation means that we have, for any
T triangle

f \y(x)\2dx^h2- Y \y(N)\2^c2 [\y{x)\2ùx^h2- £ |y(AT)|2«c2 I \y(x)\2dx . (4.8)

We then sum over all the triangles T to conclude the proof of the lemma, •

4.2. Error estimâtes

In this section we assume (without loss of generality) that the data
ƒ belongs to L2(/3).

PROPOSITION 6 ; Let u, pt uhi ph be as above. The following inequalities

hold

\ph-p\M^C.h. l /l , (4.9)

||w-w*|| *sC . * . l/l . (4.10)
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Proof : Let us prove (4.9). Due to (3.50), (4.9) follows as soon as we
prove

\ph-ph\M*C .h. \f\ . (4.11)

On the other hand, thanks to (2.30), we just have to prove

\ph-Ph]*C.h. \f\ . (4.12)

We then substract (4.3) from (4.2), we take qh = ph -ph, and we obtain

\PH-PH\2= (B(u*-unPh-ph)M. (4.13)

Using (2.12) and (2.30), we dérive from (4.13) that

\Pk-Pk\*C. | | « * - M A * | | . (4.14)

Therefore (3.8), (3.68) and (4.14) yield

\ph-ph]**C .h. \Lu*\ . (4.15)

Hence (4.9) holds since |Lw*| = | / | .
We now prove (4.10). We take y = yh in (4.4), we substract this equality to

(4.5) to obtain

(("* - üh, y,)) = - (Pyh, Ph - ph)M - (4*16)

Let us define P1 as the orthogonal projector in W onto Wh. We infer from
(4.16) that

\\Px(uh-üh)\\^C\ph-ph\M. (4.17)

Therefore, using (4.11), we obtain

\\Pl{uh-üh)\\^C.h.\f\. (4.18)

Then (4.10) follows as soon as we prove the folio wing

2*) | |*£C./ i . \f\ . (4.19)

First we observe that, since (ƒ - P x ) uh = 0, we just have to estimate
|| (/ - P ! ) uh ||. Let z belong to the orthogonal complementary of Wh in

+ 00

W, i.e. © W%k. We take y = z in (4.4) to obtain

A> z ) ) = ( - Bz, ph)M = - (z, 'flpA) . (4.20)
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Therefore

|| (/ — P x ) uh || = sup
I I 2 I I = 1

ss ( sup |z| I \*Bph\ . (4.21)

On the other hand, we use the following expansion of z (see (3.15))

z = + f zh zk e Whk. (4.22)
* = o

Writting (3.24) to each zh i.e.

\ Z k \ ^ C .—• \\zk\\ , (4.23)

we dérive (as in (3.65), (3.66))

/ o \ 1/2 / + «> \ 1/2

*Ch. (l\\zkf) h]4-'
v jt / \k = n f

^C*h. \\z\\ , (4.24)

since ||z||2 = Y ||z^||2 accordingly to (3.16). On the other hand, due to

Lemma 2, we have the following
\'BPh\^C\'Bp\, (4.25)

since ph is the [. , . ]-projection of p onto Mh, i.e. ph =
summarize (4.19), (4.21), (4.24) and (4.25) in

| | K * - « A | | * S C * . ( l / l + | ^ p | ) . (4.26)

Hence (2.15) and (4.25) yield

\\uh-üh\\*C.h. l / l , (4.27)

and (4.10) follows from (3.48) and (4.27). •
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