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SEPARATION OF VARIABLES IN THE STOKES PROBLEM
APPLICATION TO ITS FINITE ELEMENT
MULTISCALE APPROXIMATION (*)

by O. GOUBET (})

Communicated by R. TEMAM

Abstract. — The aim of the paper is to describe a method for the multiscale approximation of
the Stokes problem. We first use a transformation of variables to substitute for this problem two
unconstrained optimization problems. We then describe a finite element multiscale approxi-
mation of these problems. It turns out that this approximation allows us to also approximate the
solutions of the Stokes problem. We conclude by describing an algorithm based on this method.

Résumé. — Nous proposons ici une méthode d’ approximation multi-échelles du probléme de
Stokes. Dans un premier temps nous prouvons que celui-ci se découple en deux problémes
elliptiques sans contraintes ; ce résultat est obtenu a I'aide d’un simple changement de
variables. Dés lors nous décrivons une approximation multi-échelles & !'aide d’espaces
d’éléments finis, adaptée a ces nouveaux problémes. En retour cette approximation permet
d’approcher la solution du probléme initial. Un algorithme de calcul est alors présenté.

1. INTRODUCTION

This paper is the first part of a work concerned with finite element
multiscale approximations for Navier-Stokes equations, in the framework of
the nonlinear Galerkin methods. This article is devoted to the stationary
Stokes problem.

Let us first give an overview of the nonlinear Galerkin methods, that were
introduced by Marion and Temam (see {16]). The aim of these methods is the

(*) Manuscript received november, 27, 1992.

(') Laboratoire d’Analyse Numérique, Université Paris-Sud, Batiment 425, 91405 Orsay,
France and Université de Cergy-Pontoise, Avenue du Parc, 8 Le Campus, 95033 Cergy-
Pontoise, France.
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244 O. GOUBET

large time approximation of the solutions of dissipative evolution equations.
The set that describes the large time behavior of solutions is an attractor that
can have a complex structure and even be a fractal; moreover the
convergence of the orbits towards the attractor can be arbitrarily slow.

A first attempt to overcome these difficulties was the introduction of
inertial manifolds (see [11], [20]). They are finite dimensional invariant
manifolds that contain the attractor, and then allow us to reduce the dynamics
of the initial system to the dynamics on these manifolds.

Next came the approximate inertial manifolds (AIM) (see [10]), that are
finite dimensional manifolds that contain the attractor into a thin neighbor-
hood. On the one hand sequences of approximate inertial manifolds that
approximate the attractor with higher and higher order, have been derived for
a broad class of evolution equations (see [7], [9], [19], [21]). On the other
hand, since their equations are rather simple, AIMs make easier the
implementation of numerical algorithms ; as the classical Galerkin method is
related to the simplest of these AIMs, that is the finite dimensional linear
space spanned by the first m functions of the Galerkin basis, the nonlinear
Galerkin methods feature inertial nonlinear algorithms that correspond to
AIMs providing better orders of accuracy.

The theory. first developed in the spectral case extends now beyond : for
instance see [22], [5] for works about finite differences or [13] about
wavelets. In this paper we are interested in finite elements. Hence we return
to the framework of [17]. Let V, be a finite element space corresponding to a
triangulation whose mesh size is 4. Instead of computing an approximation
y, of a solution u of a dissipative evolution equation as the solution of the
approximated problem on V,, we are looking for a nonlinear approximation
yp+ &), where ¢ maps V, into a snitable supplementary W, of
V,into V5. A question we would like to address in this paper is the choice of
a pair (V,, W,) that is convenient to approximate the solution u of the
stationary Stokes problem. In other words, we would like to choose a pair
(V,, W), that allows us to obtain a robust decomposition of u as a sum

+

U=y + Y 2, (1.1)

k=0

where y, is as above and where the incremental variables z, are obtained by
ny
successive mesh refinements i, | = 5 such that z, € W,

On the one hand, the utilization of multiscale approximations has been
advocated and studied for standard elliptic linear problem (see [1], [4],
[25]...). On the other hand, it is difficult to use these methods for saddle point
problems, even using mixed finite element methods. The difficulty is to find
a conforming space V, that enjoys V,, c V,. However we would like to refer
to the numerical work in [18].
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SEPARATION OF VARIABLES IN THE STOKES PROBLEM 245

In this paper, we overcome this difficulty by introducing a separation of
variables in the Stokes problem that replaces the saddle point problem by two
unconstrained decoupled elliptic problems ; these problems can be each
solved by standard multiscale process. Moreover this method provides
approximation of the solution « of the Stokes problem that has the same order
than the one using the usual mixed finite element methods (*).

This paper is organized as follows. In the first section we introduce the
separation of variables. A first subsection is devoted to recalling some
classical results for the Stokes problem on a two-dimensional domain whose
boundary is a polygon. Then in the next subsection we introduce a separation
of variables according to duality arguments. In the second section, we apply
these results to theorical finite element multiscale approximations for the
Stokes problem. Having addressed such a problem in a first subsection, we
then describe expansions of the new (and old) variables into series whose
terms are actually incremental variables. Error estimates conclude this
section. In the third and last section, we describe a three-steps algorithm to
approximate the solution of the Stokes problem ; error estimates are then
derived.

2. SEPARATION OF THE VARIABLES
2.1. The Stokes problem

Let us first introduce some notations. Let 2 be a bounded open set of
R?, whose boundary is a convex polygon. We shall consider the following
two-dimensional Stokes problem. _

For fin L.2(2) = L*(22) x L*(2) (or H~'(2)), we seek a vector function
u = (u;, u;) and a scalar function p, which are defined in 2 and which
satisfy the following equations and boundary conditions

~Au+Vp=f in 2, 2.1)
divu=0 in 2, 2.2)
u=0 on af2. 2.3)

For the sake of convenience, we rewrite (2.1), (2.2) and (2.3) in the
following abstract form

Lu+'Bp =f, 2.4)
Bu =0, 2.5)

where we denote by L the Laplacian operator which maps H?(£2)N
H§(£2) onto 12(£2) (and Hi(£2) onto its dual space H™!(£2)).

(*) These results were announced in [14].
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246 O. GOUBET

B is defined as follows

B:H (2)- LY (2)
Uw— —div u . 2.6)

Hence ‘B is the Gradient operator and maps L?(£22)into H™ ' (£2). We also set
M=L[*2), W=H)R2), V =XKerB.

We also define H as the closure of V in L2(£2 ) ; we recall the following result
(see [23])

H= {uel’);divu=0in2, (u.n)=00nanN}, Q.7

where 7 is the unit outward normal. Moreover we denote by A the Stokes
operator defined by D(A) = H*(2) NV and by

Au=f,forfinHanduinD (A),

if and only if there exists p such that (u, p) satisfies (2.4)-(2.5).
We also set, for any pair w, w' in W and any p, p' in M

b(w,p)= W, 'Bp)y 4. (2.8)
(w, w)) = J Vw.Vw' dx, 2.9
0
w, w') = [ w.w' dx, (2.10)
J0
@, Py = J pp'dx. (2.11)
0

Moreover we denote by | .|, |.]|, |

respectively to (2.9), (2.10) and (2.11).
Let us recall now the following theorem that is crucial for the study of the
Stokes problem (we refer to [23] for a proof ; see also [12]).

. |, the norms corresponding

THEOREM 1 : The three following assertions, that are equivalent, hold

x* B : W/V - M is an isomorphism , (2.12)
*'B: M — (W/V)* is an isomorphism , (2.13)

x There exist a, ||b] > 0 such that for any p in M
alply, = S b p)= Ielllpl, - (2.14)
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SEPARATION OF VARIABLES IN THE STOKES PROBLEM 247

We conclude this section by recalling the following regularity result (see
(23], [15D.

PROPOSITION 1 : There exists C = 0 such that if the data f in (2.4), (2.5)
belongs to 1L.>(2), then the solution (u, p) satisfies the following

|Lu| + |'Bp| <C |f] - (2.15)

2.2. Separation of variables

In this section we first prove that, if p is solution of (2.4)-(2.5), then
p is solution of an unconstrained optimization problem. Next we introduce a
simple change of variables that allows us to replace the problem (2.4)-(2.5)
by two unconstrained optimization problems. Throughout the section we
shall use without proofs some duality results. We refer to [8] for the proofs.

Let us introduce the Lagrangian

£ p) =3 Jul? + b p)~ (o w). 2.16)

Then, (u, p) is solution of (2.4)-(2.5) if and only if
(u, p) is solution of

inf sup L, p). 2.17)

ueW peM

Moreover problem (2.17) is equivalent to its dual problem

sup inf L, p). (2.18)
PEM ueWwW

On the other hand, let g belong to M. Let u, be solution of the following

inf ZL(u,q). 2.19)
ueWw
Hence U, satisfies
((ug, w))+bw, q) = (f,w), YweW. (2.20)

Conversely, if u, satisfies (2.20), then u, is solution of (2.19). Then (2.16)
and (2.20) yield

£ (u, q) = _% ey |12 2.21)

Therefore, due to (2.21), we observe that p is solution of (2.18) if and only if
p is solution of problem (2.22) hereafter :

. 1 2
f = . .22
it (5 l) @22
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248 0. GOUBET

We shall prove now that (2.22) defines on M a well-posed optimization
problem. We have the following proposition.
PROPOSITION 2 : There exists a scalar product [.,.] on M such that

* the corresponding norm [. ] is equivalent to the usual norm | . |,.

x Problem (2.22) is the same as problem (2.23) hereafter
. 1
inf (5191~ lg. m1) . (2.23)
geM
where m is an element of M that will be defined below.
Proof : We rewrite (2.20) as
u, =L~ Vf_L-''Bg. (2.24)

Hence we have the following
1 | - _ 1,,_
-2—”14(1”2:5'[4 12 th|2_(L 1/2th,L 1/2f)+§|L 1/2f|2- (225)

Setting for p, g in M
(5, g1 = L""?'Bp, L~2'Bg), (2.26)

we have a scalar product such that (2.23) holds ; actually n = p in (2.23),
since (2.18) and (2.23) are in fact equivaient.

To complete the proof of Proposition 2, it remains to check that
[.,.] defines an equivalent norm to |.|, on M. For any w in

W, due to (2.14), we obtain

|0, Bady,

< elllwlllgl, - (2.27)
We take w = L~ ‘Bg in (2.27). This yields
(91 =< (bl Lq1]aly (2.28)
observing that
IL="'Bq|l = [q1- (2.29)
It remains to prove the reverse inequality in (2.28), i.e.

lg],<clql. (2.30)

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



SEPARATION OF VARIABLES IN THE STOKES PROBLEM 249

We know that any w in W can be written as
w=v+L ''Bg, (2.31)
where (v, g) belongs to V x M. Hence, for ¢ in M, we have
bw,q)=b®, q)+ (g, q], (2.32)
observing that
b(L™''Bg, @)= [g, 4] - (2.33)

Since v belongs to V, b(v, g) vanishes. On the other hand, we easily derive
from (2.31)

Iwll? = llvl* + 1g1%, (2.34)
observing that b(v, ¢) vanishes as well. Therefore, (2.32) and (2.34) yield

Wl = g -4 @33

Hence (2.14) and (2.35) yield (2.30). |
Now we introduce in (2.16) the following change of variables

u*=u+L"''Bp, (2.36)
while p is kept unchanged, i.e.
=p. .37)
Then (2.16) becomes
1 1,,_ _
£ @, p) =5 |lu*|*+3 IL™ " Bp||* — (w*, L™ 'Bp))
+b*, p)—b(L "'Bp,p)— (f,u*)+ (f, L' 'Bp). (2.38)
Using (2.8), (2.29) and (2.33), we transform (2.38) into
1 1
£ (u, p) =3 |u*|* + 3 [PV = b(u*, p) + b(u*, p)
~ PP~ (f,u*)+ (f, L” ' 'Bp). (2.39)

In other words, we have the following

Lu,p)y=Ju*)-1(p), (2.40)
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250 O. GOUBET

where
J(u*):%nu*”zv f, u*®), (2.41)
10) =3 PP - (F, L Bp). 2.42)

We summarize the results of this section by the following proposition.

PROPOSITION 3 : Let (u, p) be the solution of saddle-point problem (2.17).
Let u™ and p* be respectively the solution of

inf J(u*), (2.43)
u*eW
and of
inf I(p). (2.44)
peEM

Then u, p, u*, p* are related by

p*¥=p, (2.45)
u*=u+L ''Bp. (2.46)

Moreover, the following equality holds

sup inf ZL(u,p)= inf Ju*)— inf I(p). (2.47)
PEM uew uteWw peM

Proof : u* and p are characterized by respectively,
(@*, w)) = (f,w), (2.48)
for any w in W, an by
p, g1 = (f, L' 'Bq), (2.49)
for any ¢ in M. Hence, taking w = L™ ! ‘Bq in (2.48), we obtain
(Bu*, q)y = (f, L' 'Bg). (2.50)

We then easily derive from (2.33), (2.46), (2.49) and (2.50) that
u satisfies

Bu,q)y=0, VgeM. 2.51)
On the other hand, we take the scalar product in W of (2.46) with
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w to get the following
((u*, w)) = ((u, w)) + (L”" 'Bp, Lw) . (2.52)
Therefore (2.48) and (2.52) lead to
((, w)) +bw, p) = (f, w). (2.53)

To conclude the proof of Proposition 3, it remains to check (2.47) ; this can
be merely derived from (2.40).

3. APPLICATION TO THE FINITE ELEMENTS MULTISCALE ANALYSIS OF THE
STOKES PROBLEM

3.1. Multiscale analysis of the Stokes problem

Let us define a finite elements multiscale approximation of a Hilbert space
V, as a sequence of finite element spaces {th}je y that satisfies the two
following properties,

+ embedding condition

thCth+l . (3.1)
= density condition

Vi, =V. 3.2)

jeN

Here h; is a nonnegative parameter that represents the mesh size of the
triangulation corresponding to V,,j. Actually we set

ho
h; = ok (3.3)
then 4, is the mesh size of the coarsest triangulation and j is the number of
refinement levels.

In this paper we are interested in the construction of finite elements
multiscale approximation to solve the Stokes problem. The natural Hilbert
space related to the Stokes problem is V = Ker B. The main difficulty is to
construct approximations of V which satisfy (3.1) and (3.2) ; even if we are
looking at the Stokes problem in its saddle point formulation, namely (2.4)-
(2.5), it is far from easy to construct finite element multiscale approximations
of W x M that fit with the incompressibility condition (2.5).

To overcome this difficulty, we rather solve the two problems (2.43) and
(2.44). These problems are convenient for multiscale approximations, since

vol. 28, n° 3, 1994



252 0. GOUBET

they feature no constraint conditions. Let us then conclude § 3.1 by
describing a suitable finite elements multiscale approximation for (2.43) and
(2.44).

Let {Whj x M h,}]- . be a collection of finite elements spaces such that we
have the following

* W, W, 3.4)
il i+l
My =M, (3.5)
s W, =W (3.6)
j=0
« (UM, =M. 3.7
j=0

We also assume that the following properties involving the finite elements
spaces above hold :

* Approximation result for W,,j.
There exists C = 0, such that for any u* in D (L) = H*(£2) N H{(£2), the
following inequality holds

inf |u*-5|| <C.h. |Lu¥|. (3.8)

yeW,

= Approximation result for M By

There exists C > 0, such that for any p in H'(£2), the following inequality
holds

o~
Lo

I

| 1. D
|, <C.h.|'Bp|. (2.9)

it

inf |p-—
peMy

Remark : C denotes a constant that is independent of 4.

There is a broad class of finite element spaces which enjoy (3.4)-(3.9). For
instance, let us mention the P, iso P,/P, element of Bercovier and
Pironneau, see [2], [3] or [12]. For other examples of suitable finite elements
we refer to [6].

3.2. The incremental variables

This section has two aims. On the one hand we introduce an expansion of
u* and p, the solutions of (2.43) and (2.44), in series whose terms are
actually incremental variables ; here we are refering to the framework of the
nonlinear Galerkin finite elements methods (see [17]). On the other hand,-we
establish some results, that also relate to the nonlinear Galerkin framework,
and that will be useful to obtain the error estimates of the next section.
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Let W,,} be as in § 3.1. For the sake of convenience, and when no confusion

is possible, we drop the subscript j to write 4; = h. A natural approximation
for u*, the solution of (2.43), is u;* defined as follows

J(u¥) = inf J(,). (3.10)

vy € Wy

Due to standard results, u;* is well-defined and is characterized by the
following property

(i, wp)y= (f,w,), foranyw,inW,. (3.11)

We then define the incremental variables corresponding to u* as, for each
h,
22h=uh*—u2*h. (312)

Remark : We observe that the incremental variable z, , is the solution of
the following problem

inf T +wy). (3.13)

w, €W,

Moreover z,, is the projection of u* onto the orthogonal complement
W9, of W,, in W,. In other words, when computing the approximations

usy, uy, ... of u*®, z,, is along the direction of the steepest descent from
uy¥, to u* for the ((.,.)) norm.
We define by induction on j

zhl_zu,j‘;H—u,f;, (3.14)

that leads to the following expansion of u* as a series

u* =up+ Y Z, 3 (3.15)

i=0

we observe that (3.15) holds for «* in W, since
) = Jul* + % Nz, 017 (3.16)
j=0

that implies the convergence of the series in W. We shall briefly address
other questions related to the convergence of the series involved in (3.15)
(and in (3.20) below) in subsequent remarks in Section 3.3.

On the other hand, let us apply the same process to p that is solution of
(2.44). For h = h; as above, we define p, as

I{p,) = inf I@,). (3.17)

preM,
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We then define the incremental variable corresponding to p as

$an=DPn—Dan- (3.18)

We observe that ¢, , satisfies

(Y2n qanl =0, Vg€ M,y,. (3.19)
This leads to the expansion of p as

+ o0

P=Pi+ 2 Y- (3.20)

i=0

We observe that due to (3.19), for p in M the following equality holds

[PY = o4 + ¥ Lw)7. (3.21)

j=0

Hence the series involved in the right hand side of equality (3.20) converges
in M, since [.]and |. |, define equivalent norms.

We then prove some lemmata that relate to the nonlinear Galerkin
methods. Let W,, be the orthogonal complement in W of W,, in
W, ; W3, is the natural space that contains z,, accordingly to (3.13). Let
M3, be the orthogonal complement, in M endowed with scalar product
[.,.]of M,,in M, ; M3, is the natural space that contains ¥, , accordingly
to (3.19). We then have the following strenghtened Poincaré inequalities.

LEMMA 1 : There exists C that is independent of h, such that for any ¢ in
MY, for any z in WS, we have the following

o |4],<C.h.|By}, 3.22)
o |[L7'By|<C.h.|¥]|,, (3.23)
o |z| <C .h.|z| . (3.24)

Remark : C denotes a constant that is independent of 4.

Proof : Let us first prove (3.22). Recalil | . |,, and [. ] define equivalent

norms on M (see (2.28) and (2.30)). Therefore, the following inequality
holds

¥y =<Cly]. (3.25)
Since ¢ belongs to M), for any ¢ in M, we have

(v —q) = W)+ [q)*. (3.26)
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Then (3.25) and (3.26) yield
[¢|ly<Cl¥ —ql; (3.27)

(3.27) holds for any ¢ in M,. We use again the norm equivalence between
| .|, and [. ] to obtain

[y <Cle—qly, (3.28)

holding for any g in M,. We then use (3.9) to derive (3.22) from (3.28).
We prove below (3.23) using an Aubin-Nitsche duality argument. Let
f bein H. Let (v, p) be in V x M such that

f=Lv+'Bp (3.29)

holds. Let ¢ be in Mg. Using Bv =0 and (2.26), it is easy to check that

LBy, f)=1¢,p]. (3.30)
Since ¥ belongs to MY, we rewrite (3.30) as
LBy, f)=1¢.p-pi), (3.31)

that holds for any p, in M,. Using again the equivalence between the norms
[.]and |.|[,, (3.31) yields

@By, [y=Clelylp —pul,, (3.32)

that holds for any p, in M,. We then use (3.9) to derive from (3.32) the
following

@ "By, fy<Ch|y|,\Bp| . (3.33)

We then use the regularity argument (2.15) to deduce from (3.33) the
following

LBy, f)<Chly|,If] - (3.34)

(3.34) holds for any f in H. Therefore (3.23) is proved.
The proof of (3.24) is also based on an Aubin-Nitsche argument. Let
f be in H. Let w be in D (L) such that

Lw=f. (3.35)
Let z be in W). We then have, for any y, in W,, the following

@z f)= @ Lw)= ((z, w)) = ((z, w—y,). (3.36)
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Using (3.8) and (3.36), we obtain

@ HI=Clz|lw -yl
=< C|z||h|Lw] . (3.37)
Recall Lw = f ; hence (3.37) that holds for any f in H implies (3.24).

We now prove another technical lemma that will be useful in the next
section. [ ]

LEMMA 2 : Let us define p, as the orthogonal projector in M endowed with
scalar product [.,.] onto M,. If we still denote by p, the following
application

py:H ()M,
P PPy,

then p, is bounded as an operator acting on H'(£2), independently of
h.

(3.38)

Proof : For the sake of convenience, we introduce the elliptic projector
p, from H'(2) into M, defined as follows

(‘Bp,p, '‘Bqy) = (Bp, 'Bq,), Vq,eM,. (3.39)

We recall the following result (see Th. A.2 in Appendix A in [12]), that
holds for spaces corresponding to uniformly regular triangulation of
0.

|p - pup|,<C.h.|Bp|, (3.40)
for p in H'(£2). Hence we write, for p as above
|'Bewp| < |'Blowp — bp)| + |'Bowp| - (3.4

On the other hand, recalling the following standard inverse inequality (see
the Appendix A in [12])

|'Bgy| s% [94l,, » (3.42)
for any g, in M,, we rewrite (3.41) as
'Bowp| <5 |0~ 54@),, + |'BAwp| (3.43)
We then observe that, since | . |, and [. ] define equivalent norms,
lew@) = 6,@)|,<Clp - 5@, (3.44)
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On the other hand, we obtain from (3.39)
|'B54p| < I'Bp] - (3.45)
Hence inequalities (3.40), (3.43), (3.44) and (3.45) imply

~ C
|p—phlesz-h-l'Bp|+I’Bpl, (3.46)

that concludes the proof of the lemma. |

3.3 Error estimates

Let (u, p) be the solution of (2.4)-(2.5). This can be approximated by
(uy,, p;,) defined as follows ; p, is the solution of (3.17), and u, is defined
from p, and u;*, that is solution of (3.10), as

u, = uF —L ''Bp,. (3.47)

First we state, and we prove, some error estimates when f is smooth, i.e.
f belongs to L2(£2). Then we describe some error estimates when
f belongs only to H™'(£2).

PROPOSITION 4 : Let f be in L?(2). Let u, p, u,, p, be as above. Then the
following estimates hold :

o |lu—-u=<C.h.|f], (3.48)
® |u—u,| <C.h*. |f]|, (3.49)
® |p—pul,<C.h.|f], (3.50)
o |divu|, <C.h.|f]. (3.51)

Remark : Let us reinterpret Proposition 4 in terms of convergence results
for series (3.15) and (3.20) ; moreover we first define ‘Ghj as

By, = 2, — Lt ’B«//,,j , (3.52)

for z, and ), as above. This gives the following expansion of « as

U = uho + Z Ehj . (3.53)

j=0

We observe that, since the linear operator L ''B is bounded from
M into W, and since (3.15) holds in W and (3.20) holds in M, then (3.53)
holds in W.
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Moreover (3.48) is an improvement of (3.53), since it features an error
estimate for the convergence of series (3.53) in W. A similar remark holds for
(3.50) and (3.20). On the other hand, combining (2.46), (3.47), (3.48) and
(3.50)

le* —uf|<C.h.|f], (3.54)

that provides an error estimate for the convergence of series (3.15).
Proof of Proposition 4 : Let us first prove (3.50). Thanks to (2.30) we have
|p —pul,, <Clp—p4l- (3.55)

We then use the [., . J-orthogonal decomposition (3.20) to write
p—pal® =Y [¥,)°, (3.56)
k=0

where Ay = & in (3.56). From (2.28), (3.22) and Lemma 2, we also derive
[, =<C|wn|, <C .he- |'Boy| <C .k |'Bp|. (3.57)

We recall A, = %, and then obtain from (3.56), (3.57) that

4+ h2
[p—pul*<C - |'Bp|*- Zzsc-hz-VBplz. (3.58)
k=0
Hence (2.15), (3.55) and (3.58) yield (3.50).
Let us now prove (3.49). From (2.46) and (3.47) we have

1 U T B skl lr=1tpgy 0]
U — Uy = |U — iy | T OP —Ppiy - (

W
19,1
\O
N~

On the one hand, using (3.20) as above, we obtain
|IL-1Bp - py)| < f |L=" By, . (3.60)
k=0
Moreover, due to (3.23), we rewrite (3.60) as
LB - py)| <C AZD:% |04 ] - (3.61)
Using (2.30) and straightforward computations, we obtain

L B -po| <C T 1)

k=0
+ 1 12 +® 172
<C < y o ) h( Y [(//,lk]2> . (3.62)
k=0 k=0
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Hence due to (3.56)

|L‘“B(p—ph)|sC.h. [p —piul, (3.63)
and using (3.58) we have

|IL="B@ —py)| <C .h*. |'Bp|. (3.64)

On the other hand, using (3.15), we write
[u* —wf| < ) lzhkl . (3.65)
k=0
We then apply (3.24) to derive from (3.65)

+ h
lu* —uif| <C Y * 2,
k=0
+ 1 172 + o 2 172
sCh(Z 7) (Z ll 25| ) : (3.66)
k=04 k=0
In other words
|u* —ufF| <C .h. ||u*—u¥|, (3.67)

since the expansion (3.15) is orthogonal in W. We observe also that
u;¥ satisfies

|lu* — ujk|| = inf ||u* —¥ull » (3.68)
Yhe W,

since u;* is the projection in W of u* into W,. Therefore, we derive from
(3.8), (3.67) and (3.68) that

|u* —uif| <C .h*. |Lu*| . (3.69)
Hence (3.49) follows from (3.64), (3.69) and (2.15), observing that
|Lu*| < |Lu| + |'Bp]| . (3.70)
The proof of (3.48) is similar. We write
e — wll < llu* — wiil| + P = Pal s (3.71)

recalling [q] = |L~ 12 ‘Bg|. Therefore (3.48) follows from (3.8), (3.58),
(3.68) and (3.71).
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To conclude the proof of Proposition 4, using Bu = 0, we write
div uy |, = |B@—1w)|, < V2|lu-u,] . (3.72)
Hence (3.51) merely follows from (3.48) and (3.72).
We now consider the case where f belongs only to H~'(£2).

PROPOSITION 5 : Let f be in H™ ' (2). Let u, p, u,, p, be as above. Then the
following estimates hold

lu—uy| <C .0 |If)., (3.73)
|IL Y B —p)|<C.h.|f].. (3.74)

Remark : Let us observe that series (3.15) and (3.52) still converge in
W, and that series (3.20) converges in M. But we no longer have error
estimates for these topologies. On the other hand, we reinterpret (3.73) and
(3.74) as error estimates for the convergences of these series for weaker
topologies.

Proof of Proposition 5 : We rewrite (3.63) as
|L‘“B(p—ph)|sC.h.[p-ph]sC.h.[p], (3.75)

observing that p, is the [ ., . ] projection of p into M,. Using (2.28), and the
following classical regularity result (see [23]),

lull + 1Pl < Clfl- (3.76)

flw* =il < Nlw*l = 171 (3.77)
we derive from (3.67) that
|u* —uf| <C.h.|f].. (3.78)

Then (3.59), (3.74) and (3.78) provide (3.73). [ |

4. AN ALGORITHM TO APPROXIMATE THE STOKES PROBLEM

Having described the theorical multiscale analysis of the Stokes problem,
the next task is to address the practical computation of the approximation
(uy, p) defined above. In a first subsection, we describe a three-step
algorithm. Then we give error estimates in a subsequent paragraph.
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4.1. A three-step algorithm

Let us first describe the strategy of the algorithm on the continuous
problem. First we compute #* that is solution of (2.48), i.e. solution of the
Dirichlet problem

— Au* = f in '{2 )
u*=0 on 3.

We observe that u* does not by any mean approximate u, in particular
u* does not satisfy the incompressibility condition (2.5). Next we compute
p that is solution of (2.49), i.e. solution of the problem

(BL™''B)p = —divu* in 2.

The last step is to compute u — u* that is solution of the following variational
problem

(u—u*,w))=-(Bp,w), YweW. 4.1

First step : The first step is devoted to the computation of u;, that is solution
of (3.10), and that approximates u*. Actually u;* is solution of the standard
elliptic problem (3.11), and the computations can be carried out using the
regular multiscale finite element process ; for instance we refer to [25] where
this last question is addressed.

Second step : This step should be the computation of p, that is solution of
(3.16) ; nevertheless p,, is actually solution of the elliptic equation

(Pw 9x] = Bu™, q,)y, Vg,€M,, 4.2)

and we do not know a priori # *. We then replace p, by p, defined as follows

(Pr 9] = Bu's gy s Vg,€M,. (4.3)

We shall prove in the next section that p, is a suitable approximation of

P, and then a suitable approximation of p as well.
Let us give now a remark concerning the practical computation of
Dy Dy defined above is the solution of an elliptic problem, and the

computations can be carried out using standard multiscale technics ;

nevertheless Proposition 2 asserts that scalar products [.,. ] and (., . )y
provide equivalent norms on M. This implies that the Gram matrix of the
usual nodal basis of M, for the [ ., . ] scalar product has a condition number

that is independent of A, since this result holds for the (., . ), scalar product
(see Lemma 3 hereafter). Therefore computations of p, can be carried out

without multiscale process.

vol. 28, n° 3, 1994



262 O. GOUBET

Third step: The aim of this step is to compute u,, or at least one
approximation of u, ; we rewrite (3.47) as

(up—ufF,y))=— By, ppdu, VyeW. 4.4)

A suitable approximation for u, (this point will be addressed subsequently) is
u;, defined as follows

(@~ uif, y)) = — BYp P> Yy, €Wy, 4.5)

for p, defined above. Since p, is known, problem (4.5) is also an elliptic

problem for the Laplacian, and the computations can be carried out by
standard multiscale process, as in the first step.

LEMMA 3: Let us consider a uniformly regular triangulation of

2. Then the condition number of the L*-Gram matrix of the usual nodal basis
of M, behaves like O (1) with respect to h.

Proof : Because this lemma is classical, we just sketch the proof for
P, elements. For a node N of the triangulation, we define the corresponding
nodal function oy as the unique function in M, that enjoys the following

oy(N') =8y n s (4.6)

for N' a node of the triangulation. Let y be

yx) =Y yWN)oyx), 4.7

where we sum over all the nodes of the triangulation. Actually, the fact that
we have a uniformly regular triangulation means that we have, for any
T triangle

c]-J. [y ?dx<h?. ¥ |y(N)|2$c2J [yx)|?dx.  (4.8)
T NeT T

We then sum over all the triangles 7 to conclude the proof of the lemma. B

4.2. Error estimates

In this section we assume (without loss of generality) that the data
f belongs to L2(£2).

PROPOSITION 6 : Let u, p, u,, p, be as above. The following inequalities
hold

|Pr—rpl,=<C.n.\f], 4.9)
lu—a,| <C.n.|f]. (4.10)
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Proof : Let us prove (4.9). Due to (3.50), (4.9) follows as soon as we
prove

|Ph—paul,, <C -h.|f]. 4.11)
On the other hand, thanks to (2.30), we just have to prove
r—p)<C.h.|f]. (4.12)
We then substract (4.3) from (4.2), we take ¢, = p, — Py, and we obtain
[P — Pal> = B@™ — ui¥), pp— D - (4.13)
Using (2.12) and (2.30), we derive from (4.13) that
Pr =Pl <C . |l —uif|| . (4.14)
Therefore (3.8), (3.68) and (4.14) yield
py—Pr)<C .h. |Lu*|. (4.15)

Hence (4.9) holds since |Lu*| = |f].
We now prove (4.10). We take y = y, in (4.4), we substract this equality to
(4.5) to obtain

(Quy, — Upy y3)) = — By, Pr— Pyt - (4.16)

Let us define P, as the orthogonal projector in W onto W,. We infer from
(4.16) that

||P1(uh—12h)HsC|ph—ﬁh|M. 4.17)
Therefore, using (4.11), we obtain
[P1Gw, — @)|| <C .. |f]. (4.18)
Then (4.10) follows as soon as we prove the following
ld -P)w,—a)|<C.h.|f]. (4.19)

First we observe that, since (I —P,)u, =0, we just have to estimate
| —P,)u,||. Let z belong to the orthogonal complementary of W, in
+

W, ie. @ Wj. We take y = z in (4.4) to obtain

k=0
((uy, 2)) = (= Bz, pp)yy = — (2, '‘Bpy,) . 4.20)
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Therefore

| ~P)u| = sup () 2))

Izl =1

= ( sup |z| ) |'Bp| - (4.21)
=l =1

On the other hand, we use the following expansion of z (see (3.15))

+ ¢

z = Z zp, z € Wy, . 4.22)
k=0
Writting (3.24) to each z,, i.e.
h
A SC'?' llzell > (4.23)

we derive (as in (3.65), (3.66))

lz| = Y |lz| <C-h- Y 275 )z
k=0 k=0
) 12 + ‘ 172
sc.h.(zuzkn) (24)
% k-0
<C-h-|z||, (4.24)

since ||z =Y llze||* accordingly to (3.16). On the other hand, due to
k
Lemma 2, we have the following
|'Bp,| <C |'Bp| , (4.25)

since p, is the [.,. ]-projection of p onto M,, ie. p,=p,({p). We
summarize (4.19), (4.21), (4.24) and (4.25) in

lup — || <C .h. (If] + |I'BR|). (4.26)
Hence (2.15) and (4.25) yield
lun—anl| =C AL |f], (4.27)

and (4.10) follows from (3.48) and (4.27). n
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