
M2AN - MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

ARMEL DE LA BOURDONNAYE
High frequency approximation of integral equations
modeling scattering phenomena
M2AN - Modélisation mathématique et analyse numérique, tome
28, no 2 (1994), p. 223-241
<http://www.numdam.org/item?id=M2AN_1994__28_2_223_0>

© AFCET, 1994, tous droits réservés.

L’accès aux archives de la revue « M2AN - Modélisation mathématique et
analyse numérique » implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1994__28_2_223_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


PffPfn MATHEMATICALMOOELUNGANDNUMERICALAMALYSIS
f / 1 , \ t i MODÉUSATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 28, n" 2, 1994, p. 223 à 241)

HIGH FREQUENCY APPROXIMATION
OF INTEGRAL EQUATIONS MODELING

SCATTERING PHENOMENA (*)

by Armel de L A B O U R D O N N A Y E (l)

Communicated by C. BARDOS

Abstract. — In this paper, we present a new way of discretizing intégral équations coming
front high frequency wave propagation. Indeed, using the eikonal équation, we will write that
the solution is locally the product of an amplitude by an oscillating function whose phase
gradient modulus is the wave number. Discretizing in order to keep this relation, we will show
that, is the limit of high frequencies, the matrices we obtain are sparse (as sparse as volumic
finit e-el e ment methods, infact), which is not the case with the classical way of discretizing for
example with Pî-Lagrange or Hd[v (see [11] or [13]) finite éléments. More precisely, ifN is the
number of degrees of freedom, we lower the complexity from (9(N2) to (9(N).

Résumé. — Dans cet article, nous présentons une nouvelle maniere de discrétiser les
équations intégrales qui viennent des phénomènes de propagation en régime harmonique à
haute fréquence. En effet, utilisant l'équation eikonale nous allons écrire que localement la
solution que Von cherche s'écrit comme une amplitude multipliée par une fonction oscillante
dont le gradient de la phase est de module proportionnel au nombre d'onde. En discrétisant de
manière à conserver cette information, nous verrons que, dans la limite des hautes fréquences,
les matrices que nous obtenons sont très creuses, ce qui n'est pas le cas lorsque Von discrétise
de manière classique avec des éléments finis PI ou Hd[v (cf. [11] or [13]). Plus précisément, si N
est le nombre de degrés de liberté, nous passons d'une complexité en O (N2 ) à une complexité en
0(N).

1. INTRODUCTION

For solving scattering problems in frequency domain, there exists a large
number of methods. Among them, the one of intégral équations is known to
be the most accurate. It is often chosen to validate other approaches (see [15]
for instance). Nevertheless, its main drawback is that it cannot be used at
high frequencies. Indeed, the resolution of intégral équations with finite

(*) Manuscript received July, 23, 1993.
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224 A. DE LA BOURDONNAYE

éléments leads to Ml matrices with G ( —- J degrees of freedom, where<P(-L)degr

A is the wave-length. Lots of studies have been done to reduce either the
number of degrees of freedom or the number of significant coefficients in the
matrix. In two space dimensions, V. Rokhlin [14] proposed a method using a
décomposition in Hankel functions and addition formulae for these fonctions.
This technique cannot be used in three dimensions because the corresponding
addition formulae (Gegenbauer's formulae, [12], [17]) are much more
complicated and cannot be treated in the same way. In [2], F. X. Canning
post-treats the matrix with Fourier transforms, which allows him to neglect
lots of coefficients, just keeking a few significant ones. Nevertheless, in this
case too, the extension to three dimensions is not so easy, because Fast
Fourier Transforms can be used only on regularly meshed parallelograms.
Attempts have been performed using wavelets, following the idea of G.
Beylkin, R. Coifman and V. Rokhlin [1], but the Green kernel of the
Helmholtz équation is not enough decreasing to use this technique.

In [5] we presented a method using the coupling between intégral
équations (on an axisymmetric shape wrapping the scatterer) and volumic
finite éléments (between this shape and the scatterer). The technique we are
going to describe hère is more efficient but less gênerai since it does not
allow to treat heterogeneous media. It is based on the same idea as F. X,
Canning's one [2], Furthermore, it gives a mathematical explanation for it.
Instead of localizing the basis functions only in space with a step
proportional to the wave-length, we will localize both in space and in the
direction of propagation (i.e. in the cotangent fiber bundie) with a larger
spatial step in order to keep the number of degrees of freedom constant (or of
the same order). We will show that this idea will lead to a really small
number of significant interaction coefficients. This method will allow the
treatment of scattering problems with much higher frequencies than before.
Furthermore, it can be easily coupled with volumic or surfacic finite
éléments.

2. POSITION OF THE PROBLEM

Hère we will set some notations and write the problem we want to solve.
Let /2j be a bounded open set of IR3, Fits boundary and Qe the interior of its
complementary (see figure 1).

We suppose i'is regular. We look for u in H1 (/2() Pi H]
l0C(Oe) solution of

the Helmholtz équation with Neumann or Dirichlet boundary conditions. The
function u satisfies :

Au + £2w = Oin/2,. U De (1)
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SCATTERING PHENOMENA 2 2 5

Figure 1. — Position of the problem.

for r -• co (2)
r }

either - = g o n r (3)
dn

or u = f on F (4)

with the Dirichlet right-hand side ƒ in Hm(r) and the Neumann right-hand

side g in H~ m{F). As usually, the wave number k satisfies k = -^- where A

is the wave-length. We will use an intégral équation. In the case of the

Dirichlet problem the unknown is the jump of — through F, which is in

H~m(F): p = I" — 1 and the intégral équation is (see for instance [4]) :
L dn J

= \ q(x)f(x)dx. (5)

For the Neumann problem, the unknown is the jump of
u:<t> = [u]<= Hm(F) and the intégral équation is (following Hamdi, [9]) :

(6)

f fk\f-y\ (rotr (A (x) . rotr <f> (y) -

-k2nx.nyij'(x)<t>(y))dxdy - $ (x) g (x) dx .

In our case, we will restrict the space of the right-hand side functions ƒ or
g which correspond to a given incident wave. We will consider only traces of
harmonie waves whose sources have a non zero distance from the scattering
object. These functions are thus very regular (analytic if the surface F is
analytic). It describes a space which is no longer dense in HU2(F) or

m
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226 A. DE LA BOURDONNAYE

3. PRESENTATION AND JUSTIFICATION OF THE FINITE ELEMENT BASIS

With the restriction made above on the space of admissible incident
waves, it is usual to consider (at least in the case where the scatterer is
convex) that the solution of the intégral équations problem can be written as :

: y^fc^^1^1 (7)

where the sum is locally finite and the a^x, k) admit a development in
- (see [16]). In that case, the eikonal équation is

|V<H2 = 1. (8)

We know that the formula (7) is not correct in what is called the penumbra
région and in the neighborhood of the caustics. In the last case (see [8] or
[10])

( ^ ^ ) (9)

where Ai is the Airy function. In the same way, we have an eikonal équation
(see [16] for instance) :

V<f> . Vp = 0 .

We can see that, locally (i.e. on a région smaller than @(\ikm), see [7]), the
solution is asymptotically equivalent to a finite sum of terms like

eikx-f a(x) (11)

where £ is a unit vector of R3.
We will show that, locally, one can approach the solution by a function

like the one of formula (11) where a will be compactly supported and with a
limited regularity (for instance P {) and £ varies in a discrete set of vectors of
the sphère S2. What we are going to do is thus a microlocal discretization.
Instead of having basis functions on the surface F whose support's
characteristic length is 0 (A ), leading thus to & (k2 ) degrees of freedom, we
will discretize the cosphere bundie FS2 with functions whose support size is
G(Aa) on the surface multiplied by an oscillating term etx '* where
£ describes a discrete set of values of S2 whose cardinal is G (k2 ~ 2 a ) and thus
with a step of &(A l " a), where 0 < a <c 1, in order to still have globally
&(k2) degrees of freedom. More precisely, we take <Pij(x) =

iké; • (x — X-)

e J' ' <f>i(x) as basis functions, where the points x, describe the surface
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SCATTERING PHENOMENA

F and their number is (9{1^a ), the vectors £; describe the sphère
S2 and their number is (9 (k2 ~2 a ), at last, the functions <f>( are piecewise
C00 and globally Cm~ \ their value is 1 in xt and 0 in xj9 j =£ i, and their
m first traces are null on the boundary of their supports. The diameter of the
support of a basis function is thus <P(A").

4. ASYMPTOTICS

As in a classical finite-element method, we try to compute the interaction
of two basis functions. Here, since we are interested in the high frequency

limit, we will compute only the first term of the expansion in - . Thus, we are

looking for an equivalent of

In order to take the homogeneity in A into account, we rewrite the spatial
function as <f> t (k

a (x - xt ) ). We set x = ka (x - x( ) and y = ka (y - xi < ). Then,
we have :

(13)

To evaluate the different term s, we will use stationary and non-stationary
phase theorems ([3] or [6]). In (13), the amplitude is

4 i i '

ir \x — y |
and the phase is

p= | * ( x ( - v r ) + * 1 - a ( x - ? ) | + * 1 - a ( ^ . i + f / . y ) . (15)

In order to perform stationary phase computations, we will restrain
a to be inferior to 1/2.

4.1. Far field interactions

We study first far field interactions which correspond to the cases where
the supports of <£, and <pr are disjoint. Then, the amplitude is regular with
Cm ~ l continuity. We will show a series of three propositions which cover the
different kinds of interaction. We have first

vol. 28, n° 2, 1994



228 A. DE LA BOURDONNAYE

PROPOSITION 1 : Lef s suppose that the phase is neither stationary in x nor
in y. Then,

(i) if it is not stationary on the Unes of singularity of cf>i and

(ii) if it is not stationary on the Unes of singularity of only one of the two
functions <t>i and <f>r and does not degenerate,

(iii) if it is stationary on the Unes of singularity of both <j>{ and
>i< and does not de gêner atef

— (0 I -
k4a \ £ ( 2 ^ + 2 ) ( l - a ) £ l - 2 a

A{k) = ~G 1——-J———- . (18)

Proof : Let us dénote by L the vector xt•— x r. Then, we have the

development \ k ( x ( ~ x r ) + Jfc1 ~ a ( x - y ) \ = kL + k l ~ a ( x - y ) - j +

&(kl~2a). So, to the same order, the phase p is

j j j (19)

We dénote by =Sf x the operator

which is well defined if the phase is regular in x. We introducé the same
notations in y. This operator is bounded in k as one can see in formula (19). In
case (0, we integrate m times by part in x and in y and we obtain ;

A (k) = J - — i | eip <£*m <$e*m
 4 dx dy (21)

where J*f *m dénotes the adjoint of J?. As functions $f and <f>v are both
piecewise C00, and globally Cm~l, we can integrate by part once more in
each variable. We have both an intégral on the support of <pi . <f>r and an
intégral on its boundary and its Unes of singularity. Nevertheless on both
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SCATTERING PHENOMENA 229

terms we have again one order in k{ ~ a. Now, for the intégral on the support,
we can again integrate it by part and we again obtain an order in
k1 ~ a. For the intégral on the lines of singularity, if the phase is not stationary
on them, we can integrate by part and we obtain another term in
kl ~a. If it is stationary we develop the phase up to the next order in
k. Let x0 be the point where the phase is stationary. In the neighborhood of
this point,

p(8x) = \k(x0 -y) + kl'a 8x\ + f, . (x0 + <5.v), (22)

, „ (8x£i.n)2 , , ,
= W\xo-y\ +t .xö) + kl-2a —— - + (9(ôx3kl-3a) (23)

2\xo-y\

where n is the normal to F, since the term of order k[ = a is null for the phase
is stationary. In this case the stationary phase theorem says that the intégral is
& (kl!1 ~a). This allows us to conclude the proof of the different cases of the
proposition. •

Then, we show

PROPOSITION 2 : When the phase is stationary in one of the two variables
only (we dénote it by x) without degenerating, then :

(i) If it is not stationary on the set of singularity of the shape function of
the other variable (<f>f),

1 / 1 \

(24)

( i i ) If it is stationary on the set of singularity of

Proof: In y we do the same job as for the previous proposition. In
x, we have to develop the phase to the next order in k. We dénote by

Cx the curvature operator of F in x. lts eigenvalues are — and

— where Rx and R2 are the two radii of curvature of the surface. Hence,

x — Xi = r + - C J C . ( T , T) . nx. + (9(\ r |3) where r is tangent to the surface
F in xt. We use the same notations with primes (') for y. We perform the
change of variables : r = ka r. Then,

\k(x-y)\ = IJkL + J k 1 - " ^ - T') + kl-2a(C(ï, r) n - C'(r\ rf)n')\ +

vol. 28, n° 2, 1994



230 A. DE LA BOURDONNAYE

The second order term of this expression is

a - 2 «
^ A ( r - r ' ) . (26)

The term of second order in the last part of the phase is

h' = ^ - y ^ «7 . »C (f, r ) + ^ . . n ' C ' ( f ' , r ' ) ) . (27)

Thus, according to the stationary phase theorem, when the phase is not
degenerated but is stationary in the variable r ' , the intégral in this variable

leads to a term in 1_2a . This concludes the proof of the proposition.

At last, we have

PROPOSITION 3 : When the phase is stationary in the two variables,
without degenerating,

k ' , < 2 s )

Proof : We proceed as in the proof of the previous proposition for the

stationary variable. We then have A(k) = - j — G dim er2) . This
k a \ kl~2a) I ~ /

ends the proof of the proposition. D
We are now presenting the cases when the phase is stationary.

PROPOSITION 4 : In A(k\ the phase is stationary when — + Ç//nx, and
La

k _ £yffnx with an accuracy of G(k^a).
La

Proof: In formula (19), the term of first order is

( (x — y) • y + €j*x+ €j'*y\ and the rest is G (k~ a ). Then, projecting the

gradient of this term on Tx F x TXi F9 the product of the planes tangent to

F at xt and xr, we obtain that the tangential gradient is null if and only if

— + ij//nx, and — - £y//nXi,. The relative accuracy comes from the terms in

kT a that we neglected. D
Let us give a geometrieal interprétation of these conditions. Saying that

— + ij^nx, means that gj is either - — , or its symmetrie with respect to the
La l La
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SCATTERING PHENOMENA 231

plane tangent to F in x(. The relative accuracy given in the proposition means
that instead of considering x{ we can consider any x in the support of
<f>i. Hence, f, is the direction of a ray going from the support of
4>t to the support of 4>r either directly or after a specular reflection on the
surface F (see/zg. 2). The condition on Çy can be interpreted in the same way

Figure 2.

and the relative accuracy means that we can consider any y in the support of
4>v instead of xv. So, the phase is stationary if we are in one of the four cases
illustrated in the following figures (figs. 3 to 6). When the phase is stationary
only in one variable (x for instance), the interprétation is simpler. Indeed, we
then have only two cases : transmission in xt or reflection in xt.

Figure 3. — Transmission in x, transmission in y.

vol. 28, n° 2, 1994



232 A. DE LA BOURDONNAYE

Figure 4. — Transmission in jr, reflection in y.

Figure 5. — Refleetion in x, transmission in y .

Let us see now in which cases the phase is stationary on a line of singuiarity.

PROPOSITION 5 : The phase is stationary in x along a Une if and only if
x — xv

h g : is orthogonal to the tangent to the Une with an accuracy of
\x-Xi,\

Proof : Indeed, we just have to write that the gradient of the phase
(computed as before) in the plane is orthogonal to the tangent to the line.

D
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SCATTERING PHENOMENA 233

Figure 6. — Reflection in x, reflection in y.

This situation is illustrated on figure 7. Let us remark that, when the phase
is degenerated, we may have a decay rate of A(k) which is still slower. It
dépends on the value of a. Finally, we have shown that, for points which are
not neighbors, the basis functions whose interactions are dominating are
those corresponding to the four cases illustrated above.

\

Figure 7. — Stationary phase on a line.

4.2. Near field interactions

Now we are doing the same study in the case where the supports of the
basis functions have non empty intersection. Thus, we can suppose that
Xf = xr. So, we perform the change of variables : x = ka x and y = ka y.
Then A (le) becomes

<t>(x)<f>' dy. (29)

vol. 28, n° 2, 1994



234 A. DE LA BOURDONNAYE

As previously, we write :

x = r + i c (T, r)n and y = T' + | C ( r \ T ' ) n

where r is in the plane tangent to F at xh n is the unit vector normal to
F at the same point and C is the curvature matrix. Writing r = ka r and
similarly for r ' , we have

ƒ•
0(3, jx)dô d/x (30)

where we have set 8 = f - r ' , /x = r + r ' , C = C (r, r) , C' = C (f', r ' ) ,

£ = _i__̂ —L 9 rj = -̂ ——— and <̂  (5, û, ) is a regular function. We show the

following proposition.

PROPOSITION 6 : (i) If the phase is neither stationary in fx nor in 8 and is
not stationary in /x on a Une of singularity of <j> or <f>',

(ii) If the phase is stationary neither in /x nor in S and is stationary in jx on
a Une of singularity of <j> and <j>',

(iii) If the phase is stationary in fj. but not in S and is not degenerated.

A(k) = ®( l ' ) . (33)

(iv) If the phase is stationary both in /J- and in 8,

(34)

Proof ; For point (i), we keep only the first-order term in k in the expansion
of the phase. Then, in JUL, we can use the same technique than for the far-field

interactions and we obtain the term in ——— ;. In 8 we use polar
£(m + 2 ) ( l - a ) v
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SCATTERING PHENOMENA 235

coordinates and we integrate by parts. The first term coming is in

taken in 8 = ö.
kl~a

For point (ii), still using the same technique, we have in JJL a term

due to the stationarity, nothing is changed in 8.

For point (iii) we still have the same order in 8. In pL» we have to evaluate,
with the terms of second order in k in the phase,

r (35)

Then, we obtain a term in for the intégral in /JL.

For point (iv), we keep the previous result in IJL. In 87 things become more
complicated. Indeed, here, when the phase is stationary in 5, we have

/?
-—- 4- gT = 0 where gT is the orthogonal projection of g on the plane tangent
\8\
to F inx/. Then the phase is degenerated in direction g. Thus, we décompose
8 in two directions (8U 82\ with dl transverse to g. Then the phase is not
degenerated in 8V Using the stationary phase theorem we gain a term in

— - — . For the variable 87i if a > 1/3, the intégral is of order 0 in

k. Otherwise, by homogeneity, there is a factor of — .

Lastly» let us see the geometrical meaning of the two cases of stationarity
we have encountered for the near field interactions.

PROPOSITION 7 : (i) The phase is stationary in JJ, if and only if
gj — gj> is parallel to the normal to F in x^

(ii) The phase is stationary in JJL and in 8 if and only ifgj = g y is tangent to
the surface.

Proof : Indeed the phase is stationary in fi if and only if rj is normal to the
surface and rj = gi - gj. This ends the proof of point (i).

The phase is stationary in 8, as we have already remarked» if and only if

— - + gT = 0, This means that \gT\ = L So, g is in the tangent plane and its

modulus is 1, since its projection is of modulus 1. Thus, necessarily
ij = g- because both vectors have a modulus equal to 1. Then, g = gj. We
remark that the phase is then also stationary in ju.. This ends the proof of the
proposition. D

The situation of point (i) corresponds to the cases of transmission or
reflection in x,-. The situation of point (ii) corresponds to the case where the
wave is tangent to the surface.
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236 A. DE LA BOURDONNAYE

5. APPROXIMATION OF THE OPERATOR

Now, we are going to give a method to compute intégral équations using
the results of the previous section. We will approximate the exact matrix and
give an évaluation of the error. We dénote by <Ptj the basis function
introduced in section 2. We will retain in the matrix the interaction of
&ij and &i>j' if and only if:

**""*" ij*Ck-~ (36)
I x i ~~ xi

and

Y.
(37)

where TTT is the orthogonal projection onto the plane Tx, F, and 7rr is the
corresponding in xr. In the opposite case, their interaction, which we have
shown to be negligible, will be considered as null.

5.1. Accuracy of the approximation

We now analyze the accuracy of this approximation, and how it behaves
with respect to k. First we observe how the different terms computed in the
previous section compare. We will suppose we use unstructured meshes on
the surface. The shape functions on F will be Pm — Lagrange, then
Cm~l and piecewise Cœ with their m first traces null on the boundary of their
support. We choose a = 1/2. Doing this, we avoid considering the special
cases where the phase is degenerating. Then, we have the following table
which summarize the expansions of the previous section. It is easy to see that
the rule exposed above (36 and 37) which détermines which interactions are
to be retained, says exactiy that we have to keep only the terms which are in
the last two lines of table î.

Now we choose an algebra norm on the matrices. We will choose the one
coming from the euclidian norm.

DEFINITION 1 : Let A = (aitj)be a squared matrix, we define its norm as ;

||A |i = max ||A* || (38)
11*11 =i

where ||-T||2 — VJC^.
i

Let us dénote by A the full matrix of approximations and Â the
approximated matrix. We can state the following proposition

M2 AN Modélisation mathématique et Analyse numérique
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Table 1. — Order of the different terms.

237

Far field interactions

prop. 1 case (!) ^ (m + 4 )

prop. 1 case (ii) ^(m + ?/2)

prop. 1 case (m) ^(m + 3)

prop. 2 case (i) ^(m/2 + 3)

prop. 2 case (n) ^ / 2 + 5/2)

prop. 3 —
k

Near field interactions

prop. 6 case (i) ^(m/2 + 3)

prop. 6 case (ii) ^(m/2 + 5/2)

prop. 6 case (iii) -^
K.

prop. 6 case (iv) —
Kr

PROPOSITION 8 :

A -
k™12)

(39)

Proof : We are going to evaluate the number of terms in the matrix for each
case of the previous table. We have the table (2).

• Indeed, let us start with the top of the first column. The first case
corresponds to the generic case. As we have (9{k2) degrees of freedom, we
have the result.

• For the next case, it corresponds to a phase which is stationary on an
edge only. Then, denoting by x, £ the degree of freedom corresponding to
the row of matrix we are considering, if we want the stationarity to occur in
the x variable, we can choose (9(km)y on F and any direction of
propagation, thus (9{k)r). If at the opposite, there is no stationarity in
x, then we can choose any y (thus (9{k)), but just (9(km) directions

• For the next case, the phase is stationary on an edge in x and on an edge
in y. Hence for a given x, f, we can choose ö(km)y and then (9(km) 77.

vol. 28, n° 2, 1994



238 A. DE LA BOURDONNAYE

Table 2. — Quantity of the different terms in the matrix.

Far field interactions

prop. 1 case (i) G (k4)

prop. 1 case (ii) (9(k112)

prop. 1 case (iii) (9(k3)

prop. 2 case (i) (9 (k3)

prop. 2case(ii) (9 (k512)

prop. 3 (9(k2)

Near field interactions

prop. 6 case (i) (9(k3)

prop. 6case(ü) 6 (km)

prop. 6 case (iii) (9 (k2)

prop. 6case(iv) (9 (km)

• Then, we have the cases where the phase is stationary on F. The first
one is the generic situation. For a given x, £, if the stationarity occurs for the
x variable, we can choose (9(1) y and any 77. Else, we choose any
y and we have (9(1) possible 77.

• The next case corresponds to an additional stationarity on the edge.
Thus, either the phase is stationary on F in x and we have (9(1) y and
(9(km) 77, or we have (9(ky2)y and (9(1) 77.

• Then we have the case where the phase is stationary on F x F. Hère, for
a given x, £, we have (9(1) possible y and as many directions.

• For the near field interactions we use the same kind of arguments. For
the first case, for a given x, £ we have (9(1) possible y and any
rf is convenient.

• For the next case, we still have the same number of possible
y, but 77 is to be choosed among (9(km) values due to the stationarity on the
lines of singularity.

• Finally, for the last two cases, nothing is changed in y, but we have
(Ç-r})±F. Thus, we have (9(1) possible y, This leads to (9(k2)
coefficients in case (iii) and (9(k3/2) in case (iv) since we have the additional
constraint that £ is tangent to F.

Now, we just have to evaluate the importance of each line of Table 1 in the
matrix. Then, we see that ||A|| - 0(1). On the other hand, for A - À , the
leading term is the one of the fifth row of the former tables. Then, we see that

Ij A - À IJ = 0 l — - j . This ends the proof of the proposition.
\ K f D
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5.2. Complexity

We are now going to evaluate the complexity of the method presented here
for the number of opérations as for the memory requirement. First we show.

PROPOSITION 9 : The computation of an interaction coefficient of
Â is done with (9{l) opérations,

Proof : For far-field interactions, the coefficients retained in A correspond
to cases where the phase is stationary. Then, with a = 1/2, the foliowing
non zero term in the expansion of the phase is in k°. We then have to integrate
a function which is not oscillating. Thus we can integrate it numerically with
0(1) points. For near field interactions, the leading-order term corresponds
to ô = 0, and as the phase is stationary in JJL, with the same arguments as
above, we can compute the coefficient with 0(1) opérations. •

Finally we can state the result :

PROPOSITION 10 : With the method exposed here,

(i) The complexity of the computation of the matrix Â is (9(k2).
(ii) The complexity in terms of memory requirements is 0(k2).

Proof: Indeed, since for each degree of freedom, we keep in the
corresponding line of the matrix only 0(1 ) coefficients (see table 2), the total
number of coefficients is 0(k2). This proves point (ii). Then, the previous
proposition ends the proof of point (i). •

6. CONCLUSION

We developped here a method to solve intégral équations for scattering
problems at high frequencies. This method keeps the interests of the intégral
équations since the accuracy is controlled and the matrix is computed once
for all the incident waves. At the opposite, it has no longer the main
drawback of the finite-element method in terms of CPU requirements and
overall in terms of memory requirements. Indeed, for a classical discreti-
zation using finite éléments the complexity is (9(kót). Thus, our method which
is still not a high frequency one since the complexity increases with
k9 may be used in the same range of frequencies. In fact, we can qualify our
method as an essentially mid range frequency one since it is not accurate for
small k. Furthermore, it has the interest over the asymptotic methods like
GTD or physical opties to have no special sensitivity to the geometry.

S ome developments of this work seem worthwhile. Beyond the implemen-
tation and the necessary numerical tests, it is possible to study the pattern of
the profile of matrix Â considering geometrical and mainly homological
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eharaeteristies of the manifolds (FS2)2 which represent the retained interac-
tions. We also intend to analyze the accuracy of the discrétisation. At last we
want to study the possible hybridation of our method with others, and
particularly those which, like the finite-element one, allow to take into
account the heterogeneity of the medium.
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