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AN ANALYSIS
OF THE SCHARFETTER-GUMMEL BOX METHOD

FOR THE STATIONARY
SEMICONDUCTOR DEVICE EQUATIONS(*)

by J. J. H. MILLER and SONG WANG (X)

Communicated by R. TEMAM

Abstract. — An exponentially fitted box method, known as the Scharfetter-Gummel box
method, for the semiconductor device équations in the Slotboom variables is analysed. The
method is formulated as a Petrov-Galerkin finite element method with piecewise exponential
basis functions on a triangular Delaunay mesh. No restriction is imposed on the angles in the
triangulation, The stability of the method is proved and an error estimate for the Slotboom
variables in a discrete energy norm is given. When restricted to the two continuity équations the
error estimate dépends only on the first-order seminorm of the exact flux and the approximation
error ofthe zero order and inhomogeneous terms. This is in contrast to standard error estimâtes
which depend on the second order seminorm of the exact solution. The évaluation of the ohmic
contact currents is discussed and it is shown that the approximate ohmic contact currents are
convergent and conservative.

Résumé. — On étudie ici la méthode de « box Scharfetter-Gummel ». Cette méthode est
formulée comme une méthode de Petrov Galerkin pour les éléments finis avec comme fonctions
de base des fonctions exponentielles par morceaux sur un maillage Delaunay triangulaire. On
n'impose aucune restriction sur les angles du maillage. La stabilité de la méthode est établie et
on donne une estimation d'erreur pour les variables de Slotboom dans une norme dérivée d'une
énergie discrète. Quand on restreint cette estimation aux deux équations de continuité, elle ne
dépend que de la semi-norme du premier ordre du flux exact, de V erreur d'approximation des
termes d'ordre zéro et des termes non homogènes. Ce résultat contraste avec les estimations
d'erreur standards qui dépendent de la semi-norme d'ordre 2 de la solution exacte. En outre on
calcule les courants de contacts ohmiques et on montre qu'on a une propriété de convergence.

1. INTRODUCTION

Solutions ofthe semiconductor device équations display interior layers due
to the abrupt change in doping profile. Applications of classical discrétisation

(*) Manuscript received August 1992, revised February 1993.
C1) Present address : School of Mathematics, The University of New South Wales,

Kensington, NSW 2033, Australia.
Department of Mathematics, Trinity College, Dublin 2, Ireland.

M2 AN Modélisation mathématique et Analyse numérique 0764-5 83X/94/02/$ 4.00
Mathematical Modelling and Numerical Analysis (Ç) AFCET Gauthier-Villars



124 J. J. H. MILLER, SONG WANG

methods such as the central différence or the linear finite element method to
these équations often yield results with non-physical properties such as
spurious oscillations. To overcome such difficulties Scharfetter and Gummel
[15] proposed a novel method in the one dimensional case. Extensions of the
Scharfetter-Gummel method to higher dimensions have been presented by
different authors [2, 3, 8, 9» 10]. One of them is the Scharfeter-Gumrnel box
method (c/., for example, [3, 9]) which has been widely used in semiconduc-
tor device simulation. Although the Scharfetter-Gummel box method works
well in practice, an understanding of the underlying mathematics is still very
limited. In [12] and [13] Mock analysed the method using discrete
subspaces. His approach, however, gives error estimâtes for only the
approximate flux. In [1] Bank and Rose gave an error estimate for the method
when it is applied to a linear Poisson équation. In this case the Scharfetter-
Gummel box method reduces to the standard central différence box method
{cf. [7]). Based on a mixed finite element formulation Miller and Wang [10]
proposed and analysed a method similar to the Scharfetter-Gummel box
method. This approach could also be used to provide an analysis for the
Scharfetter-Gummel box method, but the resulting error estimate would still
be not satisfactory.

In this paper we analyse the Scharfetter-Gummel box method in the finite
element framework. This error analysis is more satisfactory because the only
assumption on the mesh is that it is a triangular Delaunay mesh, and so no
restriction on the angles (such as no obtuse angles) is needed. This property
has been well known to engineers in practice, but it has not been analyzed
satisfactorily before now. Moreover, the present analysis can be extended
without difficulty to three dimensions and to a gênerai Delaunay mesh
consisting of a mixture of triangles and rectangles in two dimensions and
tetrahedra, pentahedra and hexahedra in three dimensions. A similar analysis
is given in [11] for a singularly perturbed problem. The paper is organised as
follows.

In the next section we give a mathematical description of the semiconduc-
tor device problem. For the sake of mathematical simplicity the original
équations in the variables of électron and hole densities are transformed into
équations in the Slotboom variables. It should be noted that the former
variables are physically more interesting. In Section 3 we reformulate the
method as a Petrov-Galerkin finite element method with exponential basis
functions. In Section 4 the stability of the method is proved and an
O(h) error estimate for the approximate solution in the Slotboom variables in
a discrete energy norm is given. When applied to the two continuity
équations the error estimate dépends only on the first order seminorm of the
exact flux and the approximation error of the zero order and inhomogeneous
term s. This is in contrast to the standard error estimate for the pièce wise
linear finite element method which dépends on the second order seminorm of
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SEMICONDUCTOR DEVICE EQUATIONS 125

the exact solution. It is likely that the flux is physically better behaved than
the exact solution, although mathematically this has not been proved. It
should be noted that the error constant in this estimate still dépends
exponentially on the maximum or minimum values of the exact electrostatic
potential. The évaluation of ohmic contact currents is discussed in Section 5
where the computed ohmic contact currents are shown to be convergent and
conservative. The error estimate for these currents dépends on the first order
seminorm of the exact flux and the approximation error of the inhomoge-
neous term.

2. STATEMENT AND REFORMULATION OF THE PROBLEM

The stationary behaviour of semiconductor devices may be described by
the following (scaled) nonlinear system of second-order elliptic équa-
tions ([19])

V V - « + / > = - # (2.1)
V . (Vn - nVtfs)-R(tj/, n, p) = 0 (2.2)
V. (V/7 +pVtft)-R(if,, n,p) = 0 (2.3)

with appropriate boundary conditions, where ij/ is the electrostatic potential,
n is the électron concentration, p is the hole concentration, N dénotes the
doping function and R dénotes the recombination/generation rate which is
assumed to be monotone with respect to n and p, i.e.

dn dp

Using Gummel's method ([6]) and Newton's method we can découplé and
linéarise the above system so that at each itération step we sequentially solve
a Poisson équation and two continuity équations. We assume that the
Dirichlet boundary conditions for tf/, n and p are homogeneous. The
inhomogeneous case can be transformed into the homogeneous case by
substracting a special function satisfying the boundary conditions. We
consider the following decoupled linearised continuity équation for the
électron concentration n and the appropriate boundary conditions

- V . f + Gw = F in O (2.4)

f=Vu-uVt(s (2.5)

U\MD = 0, f .n | 8 / 3 / v = O (2.6)

where Ü e U2, df2 = df2D U bf2N is the boundary of D, df2D n dON = 0,

n dénotes the unit outward normal vector on 3/2, G e C0(f2) Pi HX{O\
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126 J. J. H. MILLER, SONG WANG

F G L2(f2) and the flux f is the électron current The coefficient function
fi/?

G = — and thus we have G s* 0. Similar results for the corresponding

équations for \p and p follow irnmediateiy on replacing V^ by 0 and
- Vif* respectively in (2.4).

In what follows L2(S% V°{S) and Wm>s(S) dénote the usual Sobolev
spaces with norms || • ||0 5, il • Ile» s an(* il - IL P s> resPectively, for any
measurable open set S c= Mn (n = 1, 2). The inner product on L2(S) and
(L2(S))2 is denoted by ( . , . )s and the jfcth order seminorm on WmtP(S) by
| . \k s. The Sobolev space Wm*2(S) is written Hm(S) with corresponding
norm and Âth order seminorm || . \\m s and | . |* s, respectively. When
S = f2, we omit the subscript S in the above notation. We put L2(/2) =
(L2(/2))2, L°°(/2)= (L°°(/2))2 and Hx

D(n) = {v e Hl(£2) : i; \hÜD = o} .

We use | . | to dénote absolute value, Euclidean length, or area depending
on the context.

We now reformulate (2.4-6) by introducing the Slotboom variable
w (cf. [16]) defined by

w = e~ + u . (2.7)

In terms of w the équations and boundary conditions have the form

- V . f + G e ^ w = F in Q (2.8)

f=e
lffVw (2.9)

w\mD = f . n \ d Û N = 0. (2.10)

The Bubnov-Galerkin variational problem corresponding to (2.8-10) is

PROBLEM 2.1 : Fine w G Hl
D(f2) such thaï f or ail v e Hl

D(n)

(e* Vw, Vü)+ (Ge^w, v) = (F, v). (2.11)

Since G ^ 0, using standard arguments, we know that there exists a unique
solution to Problem 2.1.

3. FORMULATION OF THE SCHARFETTER-GUMMEL BOX METHOD

To discuss the method we first define some meshes on f2. Let &~ dénote a
family of triangulations of Ü
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SEMICONDUCTOR DEVICE EQUATIONS 127

where Th dénotes a triangulation of O with each triangle t having diameter
less than or equal to h and h0 is a positive constant which is smaller than the
diameter of H. For each Th e TS, let Xh = {x,}^ dénote the vertices of

Th and Eh = {et}^ the edges of Th. We assume that the nodes in

Xh and the edges in Eh are numbered such thatX^ = {*;}^ and E'h = {et}^

are respectively the set of nodes in Xh not on düD and the set of edges in
Eh not on df2D.

DEFINITION 3.1 : Th is a Delaunay triangulation if, for every t e Th, the
circumcircle of t contains no other vertices in Xh {cf. [4]).

We assume henceforth that each Th e 75 is a Delaunay triangulation.

DEFINITION 3.2 : The Dirichlet tessellation Dh, corresponding to the
triangulation Th, is defined by Dh = {^-}^ where the tile

di = {x e fl : |JC - Xi | < |JC — JCy |, Xj e Xh, j ^ / } (3.1)

for all xt e Xh (cf. [5]).

We remark that for each xt e Xk, the boundary bdt of the tile dt is the
polygon having as its vertices the circumcentres of ail triangles with the
common vertex xt. Each segment of 9<i, is perpendicular to one of the edges
sharing the vertex x,.

The Dirichlet tessellation Dh is a non-triangular mesh dual to the Delaunay
mesh Th. We define 3 = {Dh : 0 < h ^ h0} to be the family of all such
meshes. The subset of Dh corresponding to X'h is denoted by D'h — {^}^ .

A second non-triangular mesh, dual to Th, is defined as follows. With each
edge ek e Eh we associate an open box bk which is the interior of the polygon
having as its vertices the two end-points of ek and the circumcentres of the
triangles having ek as a common edge. If ek is not on dI2 the région
bk consists of two triangles. The set Bh = {bk}^ forms a box mesh which is

also dual to Th. We let M = {Bh : 0 -< h ^ h0} dénote the family of all such
meshes.

Corresponding to the two meshes Th and Dk, we now construct two finite-
dimensional spaces Lh<^L2(ï2) and Mhcz L2(f2), respectively, each of
dimension N'.

To construct Mh we define a set of piecewise constant basis functions
Çh (i = 1, 2, ..., N ) corresponding to the mesh Dh as follows

l on dt

{0 otherwise .

We then define Mh = span {f/}^'.
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128 J. J. H. MILLER, SONG WANG

For each etj e E'k Connecting xt and x-} we define an exponential function
>ij o n ei% i b y

where ez y is the unit vector from xt to x-r From the définition it follows that
e( i = — e; L. We then extend <f>ij to btj by defining it to be constant along
directions perpendicular to e/ ; . This exponential function can be extended to
fl as follows

\<t>hj on b^j if y e /•

[0 otherwise

where
7,. = {/:e^G^} (3.3)

dénotes the index set of ail neighbour nodes of xt. The support of
<t>i is star-shaped. We put Lh = span {<£j^'- Obviously we have

For simplicity we make the foliowing assumption, which implies that
t// is piecewise linear on H,

ASSUMPTION 3.1 : For every t e Th the function ifj is linear on t.
We comment that since (2.1-3) are solved iteratively using Gummel's

method, if/ used in (2.2) is the numerical solution of (2.1) and thus we can
always use the piecewise linear interpolant of this numerical solution.

For any sufficiently smooth function w we can easily show that for each
etj e E'h the Lh-interpolant w7 of w satisfies

= 0 on e(j

wi (xj ) = w (xj ) •

From this it follows that
., dw, ,,,. W: - W;

( 3 - 4 )

where B(x) dénotes the Bernoulli function defined by

x
px 1
, n ( 3 - 5 )
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SEMICONDUCTOR DEVICE EQUATIONS î 29

xlf. = {b (x:) and W: = w(x,). It is easy to see that f, , = — ƒ. ,. Let
r i r \ i s i \ i / J J i, j J j , i

f; j-. = f. etj. When restricted to etj it is easy to see that ƒ, y is the projection
of ïi j e \jL{ei j) on to the space of all zero-order polynomials onfet j with respect to the weighted inner product e * f g ds for any

ei i

ƒ, g sL2{eij). Thus, from the conventional projection theorem {cf. [14,
Theorem 6.8]) we have

where C dénotes a generic positive constant, independent of h. Using a
Taylor expansion we obtain from the above inequality

| _ + \ e i j \ ] ^ C \ e i i \ \ î i i \ y

for some 17 G ëitj. Taking the square root on both sides, and using the
relation \a\ — \b\ ^ |^ + ^| for any real numbers a and b, we get

I 1 , o o , etj

I 1 / 2where we have used the inequality | f, } \ ^ | f̂ } \ \ etj \ v . Finally,

since et-} <= bitJ, it is easy to see that

where C is a positive constant, independent of h and w.
Let C(/2) dénote the space of all functions which are continuous on

Ö. We introducé the mass lumping operator P : C (Ö ) i—» Lh such that

= J] M(jc(.)f(-(Jc) forall JC e i7 . (3.7)

Using the two finite dimensional spaces Lh and Mh, we now define the
following discrete Petrov-Galerkin problem corresponding to Problem 2.1.

PROBLEM 3.1 : Find wh e Lh such that for all vh e Mh

a{wh9 vh) + (ƒ> (Ge* wh\ vh) = (F, vh) (3.8)
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130 J. J. H. MILLER, SONG WANG

where F is an approximation to F and a{, , .) dénotes the bilinear form on
Lh x Mh defined by

a(wh,vh) = - £ f e*Vwh.ny0(vh\d)ds. (3.9)

Hère vh\d dénotes the restriction ofvh to d, yo(v \d) dénotes the continuons
extension of v | d to dd and n is the unit outward normal vector on
dd.

N'

Let wh = £ wt 4>h where {v Î-}1 is a set of constants. Substituting this

into (3.8) and taking vh = gj, we get, for y = 1, 2, ..., TV'.

. r
e* wt V<f>i.nds + Gj e*J Wj\dj | = F dx (3.10)

Jdj

where G, = G(x.). Let the line segment /, k = dd: O Bdk. It is easy to check
2\*>i k('

that dd: = UkeI h. k and 1/, J - J' . Thus, for j = 1, 2, „ . , A^', we

have from (3.10)

" E f ( e " | ^ ) | * + G,e''W>|4|= [ FJx (3.11)
lj " aaj, k

where Ij is the index set defined in (3.3). Noticing that n = ey k in (3.1) and
using (3.4) we finally obtain from the above

-*k)-î -ï\ljtk\ +Gje+<wj\dj\ = Fdx. (3.12)
j \ej,k\ Jdj

The coefficient matrix of (3.12) is a symmetrie and positive-definite M-
matrix, since it is diagonally dominant with positive diagonal éléments and
négative off-diagonal éléments {cf. [20, p. 85]). Each element of this
coefficient matrix dépends exponentially on tfft for some i. This may cause
the entries of the matrix to be computationally unbalanced (Le., the values
may vary by several orders of magnitude across an element). This drawback
can be overcome by performing the inverse transformation to (2.7) at the
discrete level, i.e., for / = 1, 2, ..., N, we put

wi = e~*iui. (3.13)
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SEMICONDUCTOR DEVICE EQUATIONS 131

Substituting (3.13) into (3.12) we then have

- lte
i*'-+k)B(4>j-'l'k)\ljtk\uk= f Fdx. (3.14)

From the définition (3.5) we have B(-x) = exB(x). Therefore (3.12)
reduces to

J

- Y,B^k-^j)Vj,k\uk= [ Fdx. (3.15)
keij Jdj

For y = 1, 2; ..., N'. Obviously the entries of the coefficient matrix of (3.15)
are more balanced than those of (3.12), although is not symmetrie unless
ip is constant. However, it is diagonally dominant with respect to its
columns. Furthermore, if we use A to dénote the coefficient matrix of (3.15)
and D to dénote the diagonal matrix with Zth diagonal entry e~ ' then we
know that AD" 1 is a positive definite M-matrix and hence DA~ l > 0, (i.e.
each element of DA" 1 is greater than zero). Therefore, it is easy to show that
A~ l > 0. Combining this and the f act that A is a non-singular matrix with
non-positive off-diagonal entries, we know that A is also an M-matrix (cf.
[20, p. 85]). In practice (3.15) can be solved by a preconditioned conjugate
gradient method, for example the CGS method (cf. [17]) or the Bi-CGSTAB
{cf. [18]).

4. CONVERGENCE OF THE APPROXIMATE SOLUTION

In the previous section we showed that the method gives rise to a linear
system having a coefficient matrix that is a symmetrie and positive-definite
M-matrix. This implies the existence and uniqueness of a solution to Problem
3.1. We now show that this approximate solution is stable with respect to a
discrete energy norm and that it converges to the exact solution. We use the
term error estimate in the sense that we estimate the error wh — w} between
the numerical solution wh and the Lh interpolant Wj of w. This estimate is
given in the form of an upper bound for wh - Wj in a discrete energy norm
defined below on the discrete space containing wh and w}. It is important to
note that this norm on Lh is not a norm on the solution space Hl

D(f2)
containing the exact solution w. We start with the following lemma :
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132 J. J- H. MILLER, SONG WANG

LEMMA 4.1 : The mass lumping operator defined in (3.7) is surjective from
Lh to Mh.

Proof : The proof is trivial and is omitted here. D
We let b ( . , . ) be a bilinear form on Lh x Lh defined by

b(wlv vh) = a(wh9 P (i?*)) + (P (Ge* wh\ P (vh)). (4.1)

We define the following Bubnov-Galerkin problem :

PROBLEM 4.1 : Find wh e Lh such that for all vh e Lh

b{wh9 vh)= (F, P (uA)). (4.2)

We say that Problem 4.1 is equivalent to Problem 3.1 if any solution
wh of Problem 4.1 is also a solution of Problem 3.1, and vice versa.

LEMMA 4.2 : Problem 4J is equivalent to Problem 3.L

Proof : The resuit is obvious since the operator P is surjective from
Lh to Mh by Lemma 4.1. •

For any wh e Lh, we define a functional || . ||A by

IKH*= I (77-y )Vul- (4-3)

We then have

LEMMA 4.3 : The functional \\ . ||A defined in (4.3) is a norm on

Proof : The proof is trivial and is omitted here.
On Lh we define the discrete energy norm || . || by

N'

~ + V Gie^wfldA (4.4)

N'

for each wh = ^ wt 4>{ e Lh. Let
i = 1

a = min — . (4.5)

e~* ds

Since | if/ \ is bounded we have e * > 0 and thus er > 0. It is also easy to
verify that a = min e*1 B(t//i - if/j) because of Assumption 3.1. The
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SEMICONDUCTOR DEVICE EQUATIONS 133

following theorem shows the coercivity of the bilinear form b(. , . ) with
respect to this norm.

THEOREM 4.4 : For all wh G Lh we have

b(wh,wh)^min {1, 2 er} \\wh\\
2 . (4.6)

Proof : If wh = 0, then (4.6) holds. Let wh # 0. Using the method for the
dérivation of (3.12) we have

a(wh9 P (wh)) = - £ e* Vwh . nP (wh) ds
d e D'f, * àd\df2

= > (w: — W:) e B(d/- — d/-) — / •
eiJGE'h *i.A

2\bi ,1
In the above we used the relation \ltj \ = ^— . From (4.1) and (4.4) we

I ei, j I
finally have

b(wh9 wh) = a(wh, P (wh)) + (P (Ge* wh\ P (wh))
N1

i = 1

2min {1, 2 o-}

Theorem 4.4 implies that the solution to Problem 4.1 is stable with respect to
the norm || . ||.

LEMMA 4.5 : For any wh e Lh, there is a constant C > 0, independent o f h
and wh, such that

\\P(^)\\ö^C\\wh\\h. (4.7)

Proof: See [10, Lemma 3.4]. •
For any p 6 (Wh °°(/2))2 we define the functional | . 11 w h by

( \ 1/2

Z IPl i . co ,* , , )

vol. 28, n° 2, 1994



134 J. J. H. MILLER, SONG WANG

Obviously | . 11 m B is only a seminorm on (Wl>°°(I2))2. The following

theorem establishes the convergence of the approximate solution wh to the
Lh- interpolant of w.

THEOREM 4.6 : Let wh be the solution of Prohlem 4.1 and wz be the
Lh-interpolant of the solution of Problem 2.1. Then there is a constant
C ^ 0, independent of h, w and tf/t such that

+ \\Ge*w~P(Ge*w)\\Q + \\F - F \\Q). (4.9)

Proof : Let C be a generic positive constant, independent of h and
w. For any vh € Lh, multiplying (2.8) by P (vh) and integrating by parts, we
get

a(w7 P (vh)) + (Ge* w, P (vh)) = (F, P (vh)). (4.10)

From (4.2) and (4.10) we have

a(wh - wh P (vh)) + {P (Ge* wh) - P (Ge"1 w,), P (vh)) =

= a(w -w„ P (vh)) + (Ge* w-P (Ge* w,), P (vh))

+ (F - F, P (vh)). (4.11)

Since P (Ge* W/) = P (Ge* w), using the définition of the bilinear form
b(., . ) and the Cauchy-Schwarz inequality, we have from (4.11)

\b(wh- Wj, vh)\ « \a(w - wh P(vh))\ +

H'-P(G^w) | | 0+ | |F-F| |0) | |P(t ; j | |0 . (4.12)

For the first term on the right side of (4.12) we have

a(w~wj, P(vh))=- Y, f e*V(w-w{).nP(vh)ds
dsD'h
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SEMICONDUCTOR DEVICE EQUATIONS 135

where fitJ is as defined in (3.4). Using the Cauchy-Schwarz inequality and
(3.6) we get from the above

\a(w-whP(vh))\* £ \vj~Vi\ f

^
i,j\

(4.13)

Substituting (4.13) into (4.12) and using Lemma 4.5 we have

+ \\Ge*w-P(Ge*w)lQ+ \\F - F \j\\vh\\ . (4.14)

Letting vh = wh — w, in (4.14) and using (4.6) we obtain

+ | | G * * w - P ( G e * > v ) | | 0 + \\F-F\\0).

Thus we have proved the theorem. D
We remark that depending on the decoupling technique used for the two

continuity équations, we may have G = 0 in (2.4) (as the case in Gummel's
original work). In such cases the error bound (4.9) dépends only on the
seminorm of the flux f and the approximation error of the inhomogeneous
term, while error bounds in the energy norm for classical linear finite element
methods depend on ||w||2. It is remarkable that although our error estimate
looks similar to that obtained in [8], there are some différences between the
two. One is that Wj in (4.9) is the interpolant of w in the subspace spanned by
the exponential basis functions, while w} in [8] is the interpolant in the
piecewise linear finite element space. In fact we have proved in [10] that the
discrete energy norm || . || is equivalent to || . \\x on the piecewise linear
finite element space. Another différence is that our results are based on
arbitrary Delaunay triangulations, while those in [8] are based on triangu-
lations with acute triangles only. Computationally, the Scharfetter-Gummel
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136 J. J. H. MILLER, SONG WANG

box method is simpler than other methods because it is essentially a weighted
central différence method.

Finally we remark that the approximate flux fh = e* Vwh does not
converge to the exact flux f = e* Vw. This is because in each element
bi j , fh = f tj fyj which converges locally only to f. e( y. However, by post
proccessing it is easy to define an approximate flux which converges to the
exact one. For example, we can define

ds

for all e( } e Er
h, where \tj dénotes the unit tangential vector along

lij. Moreover the computed ohmic contact currents are convergent, as is
shown in the next section.

5. THE EVALUATION OF THE OHMIC CONTACT CURRENTS

We now consider the évaluation of the ohmic contact currents. This
discussion is similar to that in [10]. For simplicity, we restrict our attention to
a device with a finite number of ohmic contacts, and so düD is a finite set of
separated contacts. For any ce dfiD, let {^/}ic dénote the mesh nodes on
c.

Let f c be a piecewise constant function satisfying

, . , ' (5-1}

0 otherwise

where dc
t dénotes the element in Dh containing *f. Taking G = 0 in (2.4)

multiplying by f;c and integrating by parts we have

- \ f.nds- %
J e i = 1

Thus the outflow current through c is

J c = [ f . n d s = - Y ï f . n d s - ( F , £c) . (5.2)
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Replacing f by the approximate flux fh = e^ Vw,j and F by the approximation
F, we obtain the following approximate outflow current through c

Nc

= - I fh.n ds- (F, n- (5.3)

From (5.3), (5.1), (3.4) and the argument used in the dérivation of (3.12), we
obtain

'c h = - 1 ! îh.T\ds+ \ F dx

= y y e*jBWj-

where Ij is the index set of neighbouring nodes of Xj as defined in Section 3.
The convergence and the conservation of the computed ohmic contact

currents are established in the following theorem.

THEOREM 5.1 : Let Jc and Jc h be respectively the exact and the computed
outflow currents through c e bï2D. Then, there exists a constant C > 0,
independent of h, ij/ and w, suc h that

. . - . « .

Furthermore

e afin ^ "
F dx.

(5.5)

(5.6)

Proof : We foliow the proof of Theorem 5.1 in [10]. Let C dénote a
generic positive constant, independent of h. From (5.11-2) we have

(5-7)
deDh J 3d\c

Since ^c is constant on c we have from (5.7)

Z
d&Dh J àd\c

-F, n

^Ch
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/ ^ - £c

Ch )Vul '"[ I l'IU^I»ul]'

In the above we used Hölder's inequality and (3.6).
To prove (5.6), we first notice that

(5.8)

since, for all etj e Er
h, fk is constant in each subregion bitj. Summing (5.3)

over all the contacts we have

I ' c * = - E l f écfh.nds+ (F,n\
c e 8/2£> c e dDD \_deDfj <J Bd\c J

= " I [ €th.nds- (F, f) (5.9)

where f = £ gc. From (5.8) and (5.9) we obtain
ce èf2D

. n d s - (F, £ - 1 ) - (F,

= a(wh, f - 1 ) - (F, f - 1 ) - (F, 1)

F ^x

where a ( . , . ) is the bilinear form defined by (3.9). In the above we used
(3.8) with G = 0 since f - 1 e Mh. •

6. CONCLUSION

In this paper we analysed the Scharfetter-Gummel box method for the
ad vection-dif fusion équations arising from the nonlinear System of équations
governing the stationary behaviour of a semiconductor device. The method
was reformulated as a Petrov-Galerkin finite element method with piecewise
exponential basis fonctions on a triangular Delaunay mesh. No restriction is
imposed on the angles in the triangulation. The stability of the method was
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proved and the rate of convergence in a discrete energy norm for the
approximate solution in the Slotboom variables was shown to be O(h). In
contrast to the standard error estimâtes, our estimate dépends only on the first
order seminorm of the flux and the approximation error of the zero order and
inhomogeneous terms. It is likely that the flux is physically better behaved
than the exact solution, although mathematically this has not been proved.
The error constant in the estimate still dépends exponentially on the
electrostatic potential <A. The évaluation of the ohmic contact currents
associated with this method was discussed and the resulting approximations
were shown to be convergent and conservative.
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