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AN ANALYSIS
OF THE SCHARFETTER-GUMMEL BOX METHOD
FOR THE STATIONARY
SEMICONDUCTOR DEVICE EQUATIONS(*)

by J. J. H. MILLER and SONG WANG (1)

Communicated by R. TEmam

Abstract. — An exponentially fitted box method, known as the Scharfetter-Gummel box
method, for the semiconductor device equations in the Slotboom variables is analysed. The
method is formulated as a Petrov-Galerkin finite element method with piecewise exponential
basis functions on a triangular Delaunay mesh. No restriction is imposed on the angles in the
triangulation. The stability of the method is proved and an error estimate for the Slotboom
variables in a discrete energy norm is given. When restricted to the two continuity equations the
error estimate depends only on the first-order seminorm of the exact flux and the approximation
error of the zero order and inhomogeneous terms. This is in contrast to standard error estimates
which depend on the second order seminorm of the exact solution. The evaluation of the ohmic
contact currents is discussed and it is shown that the approximate ohmic contact currents are
convergent and conservative.

Résumé. — On étudie ici la méthode de « box Scharfetter-Gummel ». Cette méthode est
formulée comme une méthode de Petrov Galerkin pour les éléments finis avec comme fonctions
de base des fonctions exponentielles par morceaux sur un maillage Delaunay triangulaire. On
n’impose aucune restriction sur les angles du maillage. La stabilité de la méthode est établie et
on donne une estimation d’erreur pour les variables de Slotboom dans une norme dérivée d’une
énergie discréte. Quand on restreint cette estimation aux deux équations de continuité, elle ne
dépend que de la semi-norme du premier ordre du flux exact, de I’ erreur d’ approximation des
termes d’ordre zéro et des termes non homogénes. Ce résultat contraste avec les estimations
d’erreur standards qui dépendent de la semi-norme d’ ordre 2 de la solution exacte. En outre on
calcule les courants de contacts ohmiques et on montre qu’on a une propriété de convergence.

1. INTRODUCTION

Solutions of the semiconductor device equations display interior layers due
to the abrupt change in doping profile. Applications of classical discretisation
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124 J. J. H. MILLER, SONG WANG

methods such as the central difference or the linear finite element method to
these equations often yield results with non-physical properties such as
spurious oscillations. To overcome such difficulties Scharfetter and Gummel
[15] proposed a novel method in the one dimensional case. Extensions of the
Scharfetter-Gummel method to higher dimensions have been presented by
different authors [2, 3, 8, 9, 10]. One of them is the Scharfeter-Gummel box
method (cf., for example, [3, 9]) which has been widely used in semiconduc-
tor device simulation. Although the Scharfetter-Gummel box method works
well in practice, an understanding of the underlying mathematics is still very
limited. In [12] and [13] Mock analysed the method using discrete
subspaces. His approach, however, gives error estimates for only the
approximate flux. In [1] Bank and Rose gave an error estimate for the method
when it is applied to a linear Poisson equation. In this case the Scharfetter-
Gummel box method reduces to the standard central difference box method
(cf. [7]). Based on a mixed finite element formulation Miller and Wang [10]
proposed and analysed a method similar to the Scharfetter-Gummel box
method. This approach could also be used to provide an analysis for the
Scharfetter-Gummel box method, but the resulting error estimate would still
be not satisfactory.

In this paper we analyse the Scharfetter-Gummel box method in the finite
element framework. This error analysis is more satisfactory because the only
assumption on the mesh is that it is a triangular Delaunay mesh, and so no
restriction on the angles (such as no obtuse angles) is needed. This property
has been well known to engineers in practice, but it has not been analyzed
satisfactorily before now. Moreover, the present analysis can be extended
without difficulty to three dimensions and to a general Delaunay mesh
consisting of a mixture of triangles and rectangles in two dimensions and
tetrahedra, pentahedra and hexahedra in three dimensions. A similar analysis
is given in [11] for a singularly perturbed problem. The paper is organised as
follows.

In the next section we give a mathematical description of the semiconduc-
tor device problem. For the sake of mathematical simplicity the original
equations in the variables of electron and hole densities are transformed into
equations in the Slotboom variables. It should be noted that the former
variables are physically more interesting. In Section 3 we reformulate the
method as a Petrov-Galerkin finite element method with exponential basis
functions. In Section 4 the stability of the method is proved and an
O (h) error estimate for the approximate solution in the Slotboom variables in
a discrete energy norm is given. When applied to the two continuity
equations the error estimate depends only on the first order seminorm of the
exact flux and the approximation error of the zero order and inhomogeneous
terms. This is in contrast to the standard error estimate for the piecewise
linear finite element method which depends on the second order seminorm of
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SEMICONDUCTOR DEVICE EQUATIONS 125

the exact solution. It is likely that the flux is physically better behaved than
the exact solution, although mathematically this has not been proved. It
should be noted that the error constant in this estimate still depends
exponentially on the maximum or minimum values of the exact electrostatic
potential. The evaluation of ohmic contact currents is discussed in Section 5
where the computed ohmic contact currents are shown to be convergent and
conservative. The error estimate for these currents depends on the first order
seminorm of the exact flux and the approximation error of the inhomoge-
neous term.

2. STATEMENT AND REFORMULATION OF THE PROBLEM

The stationary behaviour of semiconductor devices may be described by
the following (scaled) nonlinear system of second-order elliptic equa-
tions ([19])

Vi —n+p=—-N @.1)
V.(Vh—nV¢)—RW,n,p)=0 2.2)
V.(Vp+pV¢)—R(Y,n p)=0 (2.3)

with appropriate boundary conditions, where ¢ is the electrostatic potential,
n is the electron concentration, p is the hole concentration, N denotes the
doping function and R denotes the recombination/generation rate which is
assumed to be monotone with respect to » and p, i.e.

8R>

OR
—_— = =
on

0, —=0.
ap

Using Gummel’s method ([6]) and Newton’s method we can decouple and
linearise the above system so that at each iteration step we sequentially solve
a Poisson equation and two continuity equations. We assume that the
Dirichlet boundary conditions for ¢, »n and p are homogeneous. The
inhomogeneous case can be transformed into the homogeneous case by
substracting a special function satisfying the boundary conditions. We
consider the following decoupled linearised continuity equation for the
electron concentration » and the appropriate boundary conditions

- V.f+Gu=F in 0 2.4)
f=Vu—-uvy 2.5)
Ujan, =0, f.n|mN:0 (2.6)

where 2 € R?, 302 = 802, U 802, is the boundary of £, 82, N 32, = 7,
n denotes the unit outward normal vector on 302, G € C%°(2) N H'(2),
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126 J. J. H. MILLER, SONG WANG

F € L?(£2) and the flux f is the electron current. The coefficient function

= %S and thus we have G = 0. Similar results for the corresponding

equations for ¢ and p follow immediately on replacing V¢ by O and
— V¢ respectively in (2.4).

In what follows L2(S), L®(S) and W™ *(S) denote the usual Sobolev
spaces with norms || . |{o ¢ ||+ I, g and [|. ||, , s respectively, for any
measurable open set S < R" (n =1, 2). The inner product on L?(S) and
(L*(S))? is denoted by (., . )s and the kth order seminorm on W™ 7(S) by
| - I¢ . s- The Sobolev space W™ 2(S) is written H™(S) with corresponding
norm and kth order seminorm || .||, ¢ and |.|, g respectively. When
S = 2, we omit the subscript S in the above notation. We put L?(2) =
(L2(2))?, L) = (L)) and HH(R) = {u eH'(2):v]50, = o}.
We use | . | to denote absolute value, Euclidean length, or area depending
on the context.

We now reformulate (2.4-6) by introducing the Slotboom variable
w (cf. [16]) defined by

w=e Yu. 2.7)

In terms of w the equations and boundary conditions have the form

—V.f+Ge!w=F in 2 2.8)
f=e?’Vw (2.9)
wlag, =f.m|ag, =0. (2.10)

The Bubnov-Galerkin variational problem corresponding to (2.8-10) is

PROBLEM 2.1 : Find w € H,(£) such that for all v e Hp(2)
e’ Vw, Vo) + (Ge? w, v) = (F, v). 2.11)

Since G = 0, using standard arguments, we know that there exists a unique
solution to Problem 2.1.

3. FORMULATION OF THE SCHARFETTER-GUMMEL BOX METHOD

To discuss the method we first define some meshes on (2. Let Z denote a
family of triangulations of 2

B = {T,:0<h=<hy
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SEMICONDUCTOR DEVICE EQUATIONS 127

where T, denotes a triangulation of 2 with each triangle ¢ having diameter
less than or equal to / and A, is a positive constant which is smaller than the
diameter of £2. For each T, € G, let X, = {x,»}'lv denote the vertices of

T, and E, = {e,»}'l” the edges of 7,. We assume that the nodes in

X, and the edges in E, are numbered such that X, = {xi}ll‘/' and E; = {e;} ';’1

are respectively the set of nodes in X, not on 342, and the set of edges in
E, not on 342,

DEFINITION 3.1 : T, is a Delaunay triangulation if, for every t € T,, the
circumcircle of t contains no other vertices in X, (cf. [4]).

We assume henceforth that each T, € B is a Delaunay triangulation.

DEFINITION 3.2 : The Dirichlet tessellation D,, corresponding to the
triangulation T, is defined by D, = {d,—}llv where the tile

di={xe:|x-x|<|x-—x|,x;€X)j#i} G-D
for all x; € X, (cf. [5]).

We remark that for each x; € X;, the boundary dd; of the tile d; is the
polygon having as its vertices the circumcentres of all triangles with the
common vertex x;. Each segment of dd; is perpendicular to one of the edges
sharing the vertex x;.

The Dirichlet tessellation D, is a non-triangular mesh dual to the Delaunay
mesh 7). We define 2 = {D,:0 <h =< hy} to be the family of all such
meshes. The subset of D, corresponding to X; is denoted by D, = {d,}llv

A second non-triangular mesh, dual to T, is defined as follows. With each
edge ¢, € E, we associate an open box b, which is the interior of the polygon
having as its vertices the two end-points of e, and the circumcentres of the
triangles having e, as a common edge. If ¢, is not on 9842 the region
b, consists of two triangles. The set B, = {bk}';" forms a box mesh which is
also dual to T),. We let # = {B),:0 < h < h,} denote the family of all such
meshes.

Corresponding to the two meshes T, and D, we now construct two finite-
dimensional spaces L, c L?>(£2) and M, < L*(2), respectively, each of
dimension N'.

To construct M, we define a set of piecewise constant basis functions
&, (i=1,2,.., N) corresponding to the mesh D, as follows

£ — {1 on d;
"7 10 otherwise .

We then define M, = span {f,}’lv

vol. 28, n° 2, 1994



128 J. J. H. MILLER, SONG WANG
For each ¢; ; € £} connecting x; and x; we define an exponential function
¢; ;one ; by
d (e"’ d—¢'—i ) =0
de; ; de; ;
¢, (x)=1, ¢i,j(xj) =0

(3.2)

where e; ; is the unit vector from x; to x;. From the definition it follows that
e, ; = —¢; ;. We then extend ¢; ; to b; ; by defining it to be constant along
directions perpendicular to e; ;. This exponential function can be extended to

2 as follows

¢':{¢i,j on b, ; if jel,
! 0 otherwise

where
1, = {j :e,-,jeE,,} (3.3)

denotes the index set of all neighbour nodes of x,. The support of
¢; is star-shaped. We put L, = span {¢,-}'1V. Obviously we have
L, <= L*(2).

For simplicity we make the following assumption, which implies that
¢ is piecewise linear on (2.

ASSUMPTION 3.1 : For every t € T, the function ¢ is linear on t.

We comment that since (2.1-3) are solved iteratively using Gummel’s
method, ¢ used in (2.2) is the numerical solution of (2.1) and thus we can
always use the piecewise linear interpolant of this numerical solution.

For any sufficiently smooth function w we can easily show that for each
e; j € Ej the Lj-interpolant w; of w satisfies

d v dw;
-0 .
de; ; <e de; ; ) on €

wi(x;) =wx;), wi(x)=w).

From this it follows that

dw; v, w; — w;
fij=e’ =e"'B(y; — ;) 1—= (3.9)
! de; el
where B (x) denotes the Bernoulli function defined by
~ d n x#0
B(x)={¢% "~ .
() = o (3.5)
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SEMICONDUCTOR DEVICE EQUATIONS 129

Y;=¢(x;) and w; =w(x;). It is easy to see that fl-,j=—fj,i. Let
f

f; ; = f.e;, ;. When restricted to e, ; it is easy to see that f; ; is the projection

of f, ;€L(e; ;) on to the space of all zero-order polynomials on

e; ; with respect to the weighted inner product e ¥ fgds for any
e,-‘j

f. g€ L2(e,<, j)- Thus, from the conventional projection theorem (cf. [14,
Theorem 6.8]) we have

J lfi,j —fi.jlzdSSC |ei.j|2|fi,j|ie‘.]
e j ’

where C denotes a generic positive constant, independent of %#. Using a
Taylor expansion we obtain from the above inequality

df(n) 1? 2
|:”fi,j_fi,j”w,gi’j+ |ei,j| de, , $C|ei,j||fi,j|1,e‘_‘j

for some 7 € ¢; ;. Taking the square root on both sides, and using the
relation |a| — |b| < |a + b| for any real numbers a and b, we get

“fi,j _fi,j”w,g'_'j =C |ei,j|1/2|fi,j
=<Cle

+ Iei,jllfi,jllym,e.

|1'ei.j ij

i.jl |fi,j|1, o, € ;

172

where we have used the inequality |f; ;| . il o o le; ;| Finally,
since e; ; = b; ;, it is easy to see that
||f.e,~,j——f,-’j||w’bl_.jsCh|f|Lw,b” (3.6)

where C is a positive constant, independent of 4 and w.
Let C (2) denote the space of all functions which are continuous on

2. We introduce the mass lumping operator P : C (2) — L, such that

Pu)(x) = z u(x;) ¢€;(x) forall xe 2. (3.7)

x; € Xy

Using the two finite dimensional spaces L, and M,, we now define the
following discrete Petrov-Galerkin problem corresponding to Problem 2.1.

PROBLEM 3.1 : Find w, € L, such that for all v, € M,

a(w,, v,) + (P (Ge” wy), v,) = (F, v,) (3.8)
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130 J. J. H. MILLER, SONG WANG

where F is an approximation to F and a(., .) denotes the bilinear form on
L, x M, defined by

a(wy, v,) = — Z [ e’ Vw, .nyy(v,|,) ds . 3.9
de Dy, vad\af2

Here v,|, denotes the restriction of v, to d, v,(v|,) denotes the continuous

extension of v|,; to 39d and n is the unit outward normal vector on
ad.
N
Let w, = ) w; ¢,, where {w,—}llw is a set of constants. Substituting this
i=1

into (3.8) and taking v, = &;, we get, for j =1, 2, ..., N".

N
-y f e’ w; V¢,—.nds+Gjewfwj|dj| = [ F dx (3.10)
i=1+vd

/ vd;

where G; = G (x;). Let the line segment l[,», x = 8d; N ad,. Tt is easy to check
2|b; ¢

that 3d; = U, ¢, 1; , and |2 4] = e Thus, for j = 1,2, ..., N, we
€k

have from (3.10)

3 Z J‘ (e'” aw, )
kelj ad; dejsk

where /; is the index set defined in (3.3). Noticing that n = e; , in (3.1) and
using (3.4) we finally obtain from the above

ds + G; " w;|d;| =J Fdx (3.11)
d.

by i y]

¥; W; — Wy v .

Y e "B~ y)—=—— |l | + G e w;|d;| = J F dx. (3.12)
kel lej, el d;

The coefficient matrix of (3.12) is a symmetric and positive-definite M-
matrix, since it is diagonally dominant with positive diagonal elements and
negative off-diagonal elements (cf. [20, p. 85]). Each element of this
coefficient matrix depends exponentially on ¢; for some i. This may cause
the entries of the matrix to be computationally unbalanced (i.e., the values
may vary by several orders of magnitude across an element). This drawback
can be overcome by performing the inverse transformation to (2.7) at the
discrete level, i.e., fori =1, 2, ..., N, we put

wi=e Yiu,. (3.13)
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SEMICONDUCTOR DEVICE EQUATIONS 131

Substituting (3.13) into (3.12) we then have

< IR :ACTER I +Gj|dj|) uj —

kelj

_ Z e('//j_'/’k)B({//j_ l//k)llj,kl U, = J ﬁ dx. (3.14)
d:

kel; i

From the definition (3.5) we have B(— x) = e¢*B(x). Therefore (3.12)
reduces to

(Z B(; — )| +Gj|dj|) uj —

kel

d.

kel; j
Forj =1, 2, ..., N'. Obviously the entries of the coefficient matrix of (3.15)
are more balanced than those of (3.12), although is not symmetric unless
¢ is constant. However, it is diagonally dominant with respect to its
columns. Furthermore, if we use A to denote the coefficient matrix of (3.15)
and D to denote the diagonal matrix with ith diagonal entry e Y then we
know that AD~ ' is a positive definite M-matrix and hence DA~ ! = 0, (i.e.
each element of DA~ ! is greater than zero). Therefore, it is easy to show that
A~! = 0. Combining this and the fact that A is a non-singular matrix with
non-positive off-diagonal entries, we know that A is also an M-matrix (cf.
[20, p. 85]). In practice (3.15) can be solved by a preconditioned conjugate
gradient method, for example the CGS method (¢f. [17]) or the Bi-CGSTAB
(cf. [18]).

4. CONVERGENCE OF THE APPROXIMATE SOLUTION

In the previous section we showed that the method gives rise to a linear
system having a coefficient matrix that is a symmetric and positive-definite
M-matrix. This implies the existence and uniqueness of a solution to Problem
3.1. We now show that this approximate solution is stable with respect to a
discrete energy norm and that it converges to the exact solution. We use the
term error estimate in the sense that we estimate the error w;, — w,; between
the numerical solution w), and the L, interpolant w; of w. This estimate is
given in the form of an upper bound for w, — w; in a discrete energy norm
defined below on the discrete space containing w; and w;. It is important to
note that this norm on L, is not a norm on the solution space Hp(£2)
containing the exact solution w. We start with the following lemma :
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132 J. J. H. MILLER, SONG WANG

LEMMA 4.1 : The mass lumping operator defined in (3.7) is surjective from
L, to M,

Proof : The proof is trivial and is omitted here. O
We let b(., . ) be a bilinear form on L, x L, defined by

bWy, 0;,) = a(w,, P (v,)) + (P (Ge¥ wy), P (v))). 4.1)
We define the following Bubnov-Galerkin problem :
PROBLEM 4.1 : Find w;, € L, such that for all v, € L,
b(w,, v,) = (F, P (V). 4.2)

We say that Problem 4.1 is equivalent to Problem 3.1 if any solution
w;, of Problem 4.1 is also a solution of Problem 3.1, and vice versa.
LEMMA 4.2 : Problem 4.1 is equivalent to -‘Problem 3.1.

Proof : The result is obvious since the operator P is surjective from
L, to M, by Lemma 4.1. O

For any w, € L,, we define a functional | . ||, by
2 Wi —wi \?2
Iwall, = % b:51 - (4.3)
ei; € Eh |ei,j'
We then have
LEMMA 4.3: The functional | .|, defined in (4.3) is a norm on
L,
Proof : The proof is trivial and is omitted here.
On L, we define the discrete energy norm | . || by
v
2 v
Iwall® = lwall, + ¥ Gie™ wildi| 4.4)

i=1

"
for each w, = Y w; ¢, € L. Let

i=1

o = min |€,-,,-l

4.; < Ei J e Yds
e

i

(4.5)

Since |¢ | is bounded we have e~ ¥ =0 and thus o = 0. It is also easy to
verify that o = min e” B(y, — ¥;) because of Assumption 3.1. The

.
e, j €Ej
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SEMICONDUCTOR DEVICE EQUATIONS 133

following theorem shows the coercivity of the bilinear form b(., . ) with
respect to this norm.

THEOREM 4.4 : For all w, € L, we have
b(wy, wy) =min {1, 2 o} |w,]>. (4.6)

Proof : If w, = 0, then (4.6) holds. Let w, # 0. Using the method for the
derivation of (3.12) we have

a(wy, P(wy)) =~ 3 J e’ Vw, .nP (w,)ds
deDj ¥ 3d\a2

= 3 (wj—wi)f e’ Vw,.e; ; ds
L

e, j € Ej

T —w) et B, - ), |

¢ j€Ej, |ei,j|

=20 [|w}.

21b; ;]

|ei,j

In the above we used the relation |/;

1,j| = . From (4.1) and (4.4) we

finally have
b(wy, wy,) = a(wy, P (w,)) + (P (Ge? wy), P (w,))

N
¥;
=2a|lwl;+ ¥ Gie" wi|d]
i=1

=min {1, 2 o} |w,|>.
O

Theorem 4.4 implies that the solution to Problem 4.1 is stable with respect to
the norm | . ||

LEMMA 4.5 : For any w;, € L,, there is a constant C = 0, independent of h
and w), such that

| P (wh)”0 < C|wsl, - 4.7
Proof : See [10, Lemma 3.4]. O
For any p e (W"®(£2))* we define the functional | . |, w.n DY
2 172
IPl) o 5, = < Y Ipll,w,bi‘j> i (4.8)

e j € Ej
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134 J. J. H. MILLER, SONG WANG

Obviously | . is only a seminorm on (W' ®(£))% The following

' I, o, B,
theorem establishes the convergence of the approximate solution w, to the
L,-interpolant of w.

THEOREM 4.6 : Let w,, be the solution of Problem 4.1 and w; be the
L,-interpolant of the solution of Problem 2.1. Then there is a constant
C =0, independent of h, w and ¢, such that :

C

Wy —wi| $m

(hlf‘l,m,8h+

+ ||Ge? w — P (Ge* wil, + “F - F ||0) . (4.9)
Proof : Let C be a generic positive constant, independent of 4 and

w. For any v, € L,, multiplying (2.8) by P (v,) and integrating by parts, we
get

a(w, P (v,)) + (Ge* w, P (v,)) = (F, P (v,)) . (4.10)
From (4.2) and (4.10) we have
a(w, —wy, P (v,)) + (P (Ge’ w,) — P (Ge? w)), P (v,)) =
=aw —wy, P(v),)) + (Ge¥ w — P (Ge? w)), P (v)))

+ (F —F,P@y). (4.11)

Since P (Ge¥ w;) = P (Ge¥ w), using the definition of the bilinear form
b(.,.) and the Cauchy-Schwarz inequality, we have from (4.11)

|b(Wh—'WI, vh)l = Ia(W"WI, P(Uh))l +

+ (|Ge? w =P (Ge? W, + |F = F|IP o], 4.12)
For the first term on the right side of (4.12) we have

alw—wy, P(v,)) =~ Z J e’ Viw —w;).nP (v,)ds
deDj v 3d\3

= Z (Uj—vi)J (f°ei,j_'fi,j)ds
L

€, jEE)
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where f; ; is as defined in (3.4). Using the Cauchy-Schwarz inequality and
(3.6) we get from the above

|a(w—w,,P(vh))|s Z |vj—~vi|J l(f.e,»,j—f,-,j)lds
¢ j€Eh L

21b;,

< Y |vy—v| sup |(F.e; ;- f; )] [6:.)]

¢i,j € Ep xeb;,; lei.j |

v, — v,
<Ch Z /

ej j€E} ei,j'

v, —v; |2 12 , 12
S P ROWT) R (S ML E)
e j€Ejp |ei,j' !

e, j € Ey

= Chlloall, ], o 8,. (4.13)

Ifl 1, o, bi,j | bi,j

Substituting (4.13) into (4.12) and using Lemma 4.5 we have
|bw), —wy, v,)| <C (h|f]1,m,3h +
+ |Get w—P (Ge! wi||, + |F = F || llvall - (4.14)

Letting v, = w, — w; in (4.14) and using (4.6) we obtain

C

”vwh — Wy ” = m

(h‘f|1,oo_Bh +
+ |Ge? w— P (Ge* )|, + |F —F||,).

Thus we have proved the theorem. a

We remark that depending on the decoupling technique used for the two
continuity equations, we may have G = 0 in (2.4) (as the case in Gummel’s
original work). In such cases the error bound (4.9) depends only on the
seminorm of the flux f and the approximation error of the inhomogeneous
term, while error bounds in the energy norm for classical linear finite element
methods depend on ||w||,. It is remarkable that although our error estimate

looks similar to that obtained in [8], there are some differences between the
two. One is that w; in (4.9) is the interpolant of w in the subspace spanned by
the exponential basis functions, while w; in [8] is the interpolant in the
piecewise linear finite element space. In fact we have proved in [10] that the
discrete energy norm || . || is equivalent to || . ||, on the piecewise linear
finite element space. Another difference is that our results are based on
arbitrary Delaunay triangulations, while those in [8] are based on triangu-
lIations with acute triangles only. Computationally, the Scharfetter-Gummel
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box method is simpler than other methods because it is essentially a weighted
central difference method.

Finally we remark that the approximate flux f, = e¥ Vw, does not
converge to the exact flux f= e¥ Vw. This is because in each element
b; ;, f, = fi ; € ; which converges locally only to f.e; ;- However, by post
proccessing it is easy to define an approximate flux which converges to the
exact one. For example, we can define

j\ th.li’jds
1. .

i
fhlbi‘j:fi,jei,j_('— li,j

J e Yds
l. .

i

for all e, ; € E;, where I, ; denotes the unit tangential vector along
l; ;. Moreover the computed ohmic contact currents are convergent, as is
shown in the next section.

5. THE EVALUATION OF THE OHMIC CONTACT CURRENTS

We now consider the evaluation of the ohmic contact currents. This
discussion is similar to that in [10]. For simplicity, we restrict our attention to
a device with a finite number of ohmic contacts, and so 342 is a finite set of
separated contacts. For any ¢ € 842, let {xf}q]“ denote the mesh nodes on
c.

Let £€ be a piecewise constant function satisfying

§C(x) _ 1 xe U dlc (51)

i=1

0 otherwise

where df denotes the element in D, containing x{. Taking G = 0 in (2.4)
multiplying by &€ and integrating by parts we have

NC
—Jf.nds—z f.nds = (F, £9.
c i=1 vadi\c

Thus the outflow current through c is

Ne
JCEJf.ndS=-Z [ f.nds — (F, £°. (5.2)
c i=1 vadi\c
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Replacing f by the approximate flux f, = e¥ Vw, and F by the approximation
F, we obtain the following approximate outflow current through ¢

Jon= Z fh.nds - (F, &%. (5.3)

From (5.3), (5.1), (3.4) and the argument used in the derivation of (3.12), we
obtain

NC
vah=—2lij fh.nds+JFdx:|
j=1 3di\c ds

7

= [ Y By -y )l k|w_wk—Jﬁdx} (5.4)
j=1 d

kelj, x¢c lej kl ]ej,kl jl

where /; is the index set of neighbouring nodes of x; as defined in Section 3.
The convergence and the conservation of the computed ohmic contact

currents are established in the following theorem.

THEOREM 5.1 : Let J, and J, , be respectively the exact and the computed
outflow currents through c € 82p. Then, there exists a constant C > 0,
independent of h, ¢ and w, such that

Me=Jenl <C GIfl, o5+ [|F = F])- (5.5)
Furthermore
y Jc,h=—f F dx. (5.6)
ceaflp n

Proof : We follow the proof of Theorem 5.1 in [10]. Let C denote a
generic positive constant, independent of 4. From (5.11‘—2) we have

Jo=Jen==Y £ ~1f,).nds - (F - F, £°. (5.7)

deDy v ad\c

Since £°¢is constant on ¢ we have from (5.7)

Ve=Joal<| ¥ £°(F—f,).nds

de Dy, ad\C

+|(F - F, €9

2|b;, .
<Ch 3 &~ &8l s, |__’| +|F - F, £

e,lsﬁ,, | l,jl
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§j¢_§f 2 172 5 172
= Ch Z ( le“l ) Ibi,jl [Z I”Lm,bi‘jlbi,jl]
i

e,-‘jEE;, ef_jeEl,

+ “F - F Ho"fcno

< CGlfl, o5+ |F -F)-

In the above we used Holder’s inequality and (3.6).
To prove (5.6), we first notice that

— Z J f,.nds =0 (5.8)
de Dy v 3d\3n

since, for all ¢; ; € E}, f, is constant in each subregion b; ;. Summing (5.3)
over all the contacts we have

Y Jor=— Y [zj foh-nds+(F,§€)}
de Dy v 3d\c

ceaflp cedfp

- J ¢f,.nds — (F, &) (5.9)
deDy v3d\32

Il

where & = z &€, From (5.8) and (5.9) we obtain

cedllp

Z Jc,h

cedlp

- z] (¢ - Df,.nds— (F, £ -1)— (F, 1)
deDy v 3d\32

—a(wy, E—1)— (F, £ —1)— (F, 1)

=—J F dx
n

where a(., . ) is the bilinear form defined by (3.9). In the above we used
(3.8) with G =0 since £ — 1€ M, O

6. CONCLUSION

In this paper we analysed the Scharfetter-Gummel box method for the
advection-diffusion equations arising from the nonlinear system of equations
governing the stationary behaviour of a semiconductor device. The method
was reformulated as a Petrov-Galerkin finite element method with piecewise
exponential basis functions on a triangular Delaunay mesh. No restriction is
imposed on the angles in the triangulation. The stability of the method was
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proved and the rate of convergence in a discrete energy norm for the
approximate solution in the Slotboom variables was shown to be O (k). In
contrast to the standard error estimates, our estimate depends only on the first
order seminorm of the flux and the approximation error of the zero order and
inhomogeneous terms. It is likely that the flux is physically better behaved
than the exact solution, although mathematically this has not been proved.
The error constant in the estimate still depends exponentially on the
electrostatic potential ¢. The evaluation of the ohmic contact currents
associated with this method was discussed and the resulting approximations
were shown to be convergent and conservative.
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