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MATHEMATICA! MODELUNG AND NUMERICAL ANALYStS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 27, n° 6, 1993, p. 759 à 775)

THREE MODELS OF NON PERIODIC FIBROUS MATERIALS
OBTAINED BY HOMOGENIZATION (*)

by M. BRIANE C1)

Communicated by O. PIRONNEAU

Abstract. — We de scribe her e three models of fibrous materials in conduction (the results
apply as well in elasticity). The fibers are not periodically arrangea but their orientation varies
continuously in the material. The human heart is an example of suc h a material. The models are
obtained through the homogenization of the fibrous structure.

Résumé. — On présente ici trois modèles de matériaux fibres dans le cas de la conduction
(les résultats s'étendent au cas de V élasticité). Les fibres ne forment pas un réseau périodique
car leur orientation varie continûment dans le matériau, comme dans le cœur humain par-
exemple. Ces modèles sont obtenus par homogénéisation de la structure fibrêe.

1. INTRODUCTION

The cells of the human heart form fibers. Anatomie studies (see [Str]) have
shown that cardiac fibers have preferential directions : they are nearly
parallel to the cardiac wall and their orientation varies continuously from an
angle y0 at the endocardium to - y0 at the epicardium.

Several biomechanicians (see fPesl, [Art], [Fsei] and [Chai) have studied
the mechanics of the cardiac muscle (especially the left ventricle) by
modelling the heart as a material composed of fibers imbedded in a
homogeneous medium. The stress tensor of their model can be written

X= Xm + T T ® T

where Xm is the mediums tensor, T the fibers tension and r the fibers
direction.

(*) Manuscript received October 1992.
(') Laboratoire d'Analyse Numérique, Tour 55-65, Université Paris 6, 4 Place Jussieu,

75252 Paris Cedex 05.
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760 M. BRIANE

Two defaults appear in this modelling :
— interaction bet ween fibers and medium is neglected
— fibers are dimensionless.
The present work avoids the above defaults. It is based on the examination

of a three dimensional geometry which exactly describes the fibrous
structure. It models the mechanical behaviour of a fibrous material whose
basic geometry is given by :

— fibers are cylinders of diameter e
— fibers are perpendicular to the xraxis and make locally an angle

y(xl) with the x2-axis, where y is a given continuous function.
We shall describe the mechanical behaviour of such fibrous materials in

conduction but results also apply in elasticity. Let A1 be the fibers matrix and
A2 the medium matrix (where matrices Ak are symmetrie and definite
positive). The mechanical behaviour law of the fibrous material is then
defined by the matrix-valued function

A* = yFAl + (1 — x e) A2 (1 1)

where xË is the characteristic function of the fibers,
The associated conduction problem is defined by :

~éivA£Vue^f in/2
u" = 0 on B/2 .

where /2 is the open set of R3 where the problem is considered (e.g. the
cardiac wall).

Conduction équation cannot be directly used if there are too many fibers in
the material (like in the heart for example) i.e. when their radius s is too
small. We will thus use homogenization theory which consists in obtaining a
limit problem £P(A°) where s converges to 0 (see e.g. [Spa], [Mur], [B.L.P.]
and ISanj). In this theory, the matrix A° is determined independently of the
right-hand side ƒ by the following limits

i, weak n

M , ^ T o o ( L 2 )

where the scalar function u° is the solution of the problem

div A° Vu0 = ƒ O
} = 0 e/2 .

The matrix-valued function A° is the homogenized matrix of the composite
material.

For example, periodic fibrous materials are classically modelized by
homogenization as follows (see [B.L.P.], [San]) :
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NON PERIODIC FIBROUS MATERIALS 761

The matrix Ae of the periodic fibrous material is defined by

A£(x) = A(x/e)withA(y) = x(y)Al + (1 ~x(y))A2 (1.3)

where x is T-periodic hère the R2 cube Y = [— s/2 ; s/2 ]2 is the basic period
of the material (see fig. 1).
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Figure 1.

lt can then be proved that homogenized matrix-valued function A° is constant
and defined by the formula (see [B.L.P.], [San]) :

V A e R 3 (1.4)

where function if/ K is the unique solution (up to an additive constant) of the
differential équation

Jdiv [A(y)V*ACy)] = div [A(y)A] in R2

A F-periodic .
(1.5)

In the present paper, we shall study three models of fibrous materials by
defining three matrix-valued functions AE by formula (1.1). Of course
characteristic function xe will not be periodic. We shall then obtain by
homogenization the corresponding homogenized matrices A°. Each model
will describe different modes of orientation of the fibers in the material.

The first model (studied in Chapter 2) is defined by the characteristic
function xe of the form

X£(x) = where p (pc) = (xl9 cos y (x^ x3 - sin y (x{) x2)

(1.6)
and the function x is defmed in (1.3).

vol 27, n° 6, 1993



762 M BRIANE

The function p takes the same values along straight hues which are
perpendicular to the xx axis and make an angle y(xx) with the x2-axis (see
Section 2 1)

A homogemzation resuit similar to formulas (14) and (1 5) is given in
Section 2 2 and shows that the homogenized matrix A°(x) dépends on the
matnx-valued function

-d(x) - s i n y ( x , ) cosy(^i)/ „ 7)

d(x) = r'(x!)[cos y (xl)x2 + sm y (x{) x3]

But this model descnbes non cyhndncal fibers because of the continuity of
the function y (see Section 2 3)

To obtam cylindrical fibers, we consider m Chapter 3 a second model
which is stratified by layers Layers are perpendicular to the xraxis and their
width is equal to e' with 0 < r -< 1 In each layer fibers are cylinders of
diameter e and the orientation y of which is a constant dependmg only on the
layer {see Section 3 1)

In this model, a periodic homogemzation is made m each layer (see
Section 3 2) and then the layers are homogenized accordmg to the rules of
one dimensional media

In this model, the homogenized matrix Aü(x) dépends only on the matrix-
valued function

) (18)
0 -sinyC*!) cosy(xl)I

where contrary to the first model, the variations of the orientation y
disappear

The third model exactly meets the requirements on the geometry we
described at the beginnmg From the mathematical standpoint, this is the
most interesting model because it involves a non-penodic homogemzation
problem which is not worked out by usual technics

More precisely, the fibrous matenal is composed hère of layers perpen-
dicular to the x raxis, the width of which is se with s > 1 Each layer contains
one rank of cyhndncal fibers of diameter e whose orientation only dépends
on the rank (see Section 4 1)

In this model, the homogenized matrix A°(x) dépends on the matnx-
valued function Vp (x) defined by (1 7) but owing to the fibers cylindncal
character, A°(x) satisfies the invariance condition (see Section 4 2)

,, , \;)=>A{x) A<y) (19)
d(x) - d(y)+ 1J

where the function d(x) is defined m (1 7)

M2 AN Modélisation mathématique et Analyse numérique
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NON PERIODIC FIBROUS MATERIALS 763

To perform the homogenization, the fibrous material is approximated by a
« locally periodic » material which is periodic into cubes of size er with
0 <: r < 1 {see Section 4.3). The locally periodic material is periodically
homogenized by means of the usual homogenization formula (1.4) in each
cube. Note that the scale er does not appear naturally in this model as it does
in the second model but it is only introduced « artificially » to obtain the
homogenization resuit.

Finally the third model is compared to the first and second models {see
Section 4.4).

This work is a survey of the two first parts of my thesis [Bri 1] and only the
results are set out hère. The mathematical details of the first and the second
models are classical and those of the third model are in [Bri 2].

2. FIRST MODEL

2.1. Description

Let 12 be a bounded open set of R3.
Let x be the characteristic function defined on R2 by

where s > 1 and Y = [- s/2 ; s/2 ]2.
The set {y G R2/x(y) = 1 } is a F-periodic set of disks of diameter 1 as

shown in figure 2 :

Let p : R3 -> R2 be the function defined by

p(x)= (xi9 c o s y (xx)x3 - s i n y (xx) x2) w h e r e y e C ' ( R ) . ( 2 . 2 )

Each connected part of the set {x G flfx (p (x)/e) = 1} is composed of
straight lines of équation p (x) = y = ()>i, J2) where y belongs to a disk of
diameter e which implies cx ^y\ =£ cx + e. Each straight line is contained
between the planes {x{ = q } and {JĈ  = c^ + e} and makes an angle
y(xx) (cx =£*! ^ cx + e) with the x2-axis.

The matrix Ae which characterizes the first model is defined by

A = ^ 1 + ( 1 - ^ ) A 2 (2.3)

where x is the characteristic function defined by (2.1).

2.2. Homogenization result

The homogenization result for this type of problem is given without proof
in [B.L.P.] Chap. 1 Section 18 (this model is called « stratified periodic
homogenization » in this book). For a detailed proof of this result see [Bri 1].

vol. 27, n' 6, 1993
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Figure 2.

The homogenized matrix A° of the matrices A£ defined by (2.3) is given by

-A(y) *Vp(x)Vyfx(x, y)]dy VA G R3(2.4)

where the function i(fA(x,y) is the unique solution (up to an additive
constant) of the differential équation

divv {Vp(x)A(y) *Vp(x
î A (x, y) F-periodic of y

, 301 = àivy [Vp(x)A(y)A] in

(2-5)

(compare with formula (1.4)). In (2.5) x is a parameter, V> (x) is the
derivative of function p (x) defined by (2.2), Le.

Vp(jc) -u 0

d(x) - s i n
d(x) = r'(xi)[cos y(xl)x2 + sin

0 )
rfri)/

(2.6)

and *M dénotes the transposed of the matrix M ï.e. : = M j r

M2 AN Modélisation mathématique et Analyse numérique
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1SRemark 2.1 : The homogenized matrix-valued function AQ

heteregeneous and dépends only on the variable JCJ. If the orientation y of the
fibers is constant, A0 is also constant and this case corresponds to the
periodic case described in the beginning of the Introduction.

2.3. Default of the model

Let us study the shape of a fiber in this model. To simplify the picture we
only draw m figure 3 the square

cx **xx «se! + e , c2^ [cos y(x{)x3 - sin

Let us consider a fiber placed between the two planes {xx = cx} and
{xx = cx + e} and suppose that function y is not constant in a neighbourhood
of cx. Then the fiber is not cylindrical since extreme straight lines of the fiber
make two different angles y (q ) and y(cx + s) with the x raxis as shown in
figure 3.

The default in this model is due to the continuous variation of the function
y which deforms fibers, whereas the fibers orientation has to be constant m
each fiber.

This problem is avoided in the following model which uses layers made of
fibers with constant orientation.

XI Figure 3.

3. SECOND MODEL

3.1. Description

The set ü is divided in Af f layers f2 f n each of which is perpendicular to the
jcraxis and has a width ef with r <c L

vol 27, n° 6, 1993



766 M. BRIANE

Let x be the function defined by (2.1) and p (z, x) the function defined by

p(z, x) = (xl9 cos y ( z ) x 3 - s i n y(z)x2) V z € R » Vx € R3 (3.1)

where y e C
Let xf>rt be any point of OBin.
Behaviour law A£ of layers material is defined by

A*(x)=A(p(xï'n,x)/iO Vxel2ffB (3.2)

where the matrix-valued function A is defined as in (2.3) by
A = X A L + (1 -x)A2.

In each layer /2 f n of width er, the fibrous material is defined as in the first
model with the function p(x[>n, x) which is parametrized by the point
xEjt\ But since the function p(x['nt x) is linear of x, this model actually
describes a periodic set of fibers in the layer f2^n : the fibers are cylinders of
diameter e and make a constant angle with the x2-axis, equal to y (xj1 n) (see
fig- 4).

Remark 3.1 : In this model which uses layers and a parametrization of the
fibers orientation in each layer, cylindrical fibers are obtained the orientation
of which changes in the fibrous material from layer to layer.

Each fiber has s width while the layer has sr width, The number of fibers
rank in each layer is thus proportional to sr~ l and very large with respect to
1. This allows us to homogenize periodically in each layer according to the
classical formula (1.4).

3.2. Homogenization resuit

Since the layers have er width with r < 1, the fibrous material is « locally
periodic » i.e. periodic in each layer and periodic homogenization can be
performed from layer to layer. This « locally periodic homogenization » is
based on the différence between fibers scale (e) and layers scale
(s') (see e.g. [Bri 1] and [Bri 2] for locally periodic homogenization).
The homogenized matrix A0 of the matrices Ae given by (3.2) is defined by

-A(y)*V J lp(x1 ,X)V^A(x1 ,y)]rfy VA E R3

(3.3)

where the function tf/A (xl, y) is the unique (up to an additive constant)
solution of the differential équation

[Vxp {xlt X)A(y) *V,p (Xl, X) sjylf,k(xx, y)} =

Vy[VxP<lxl,X)A(y)\) inR,2= divJVxp(xu X)A(y)\] in R2 4ix{xx, y) F-periodic of y (3.4)

M2 AN Modélisation mathématique et Analyse numérique
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Figure 4

x l

and Vxp (JC1S X) is the denvative with respect to x of the function
p (z, x) defmed by (3 1) at the point (z, x) = (xb X) î e

1 0
0 — sin y (x{) cos

0 ) (3 5)

Note that x, e R is a parameter in (3 4) while X e R3 does not play any role in
(3 4) since the function p(z, x) is hnear of x

vol 27, n° 6, 1993



768 M. BRIANE

Remark 3,2 : The homogenized matrix Â° defined by (3.3) is
heterogeneous but dépends only on xx through the orientation function

3.3. Default of the model

By comparing the matrix-valued function Vp (x) defined by (2.6) and the
matrix-valued function Vxp (x]:> X) defined by (3.5), the second model
appears to cancel the variations of the orientation function y by taking it
constant in each layer. But this is also the default of this model : there is
discontinuity of the orientation between layers which are homogenized
independently.
The third model where each layer is composed of one rank of fibers solves
this difficulty.

4. THIRD MODEL

4.1. Description

This model consists of ranks of cyclindrical fibers perpendicular to the
x raxis . In each rank the fibers are parallel and the fibers orientation changes
from rank to rank (see fig. 4.1).

The x rcoordinate of the ranks is given by xx ~ kx se for kx € Z. Each layer
of coordinate xx = fcj se is made of parallel cylindrical fibers of diameter e
perpendicular to the x raxis and make an angle y(klse) with the
x2-axis. Each fiber is a cylinder C e(ku k2) of axis A£{k\, k2) parametrized by
the pair (kx, k2) £ Z2 and defined by the parametric équation

C£(ku k2) = {x e R3/dist [x, A£(ku k2)] ̂  e}

x = x2 =i t cos y (k{ss) \jt e R
15 2 x 3 \k2$e/cos y(k} se) + t $in y(k{se)J I

where s > 1 and y G C 2(R)( y \ < TT/2 .

(4.1)

Between the two planes defined by {xx = kx se - s/2} and
{xi = ki se + s/2} there is thus a rank of parallel cylindrical fibers of
diameter e which are perpendicular to the x raxis and make an angle
y(k} se) with thex2-axis. The distance between Ae(ku k2)znd Ae(k{ + 1, &2)
or Ae(kl, k2 + 1 ) is se.

Remark 4.1 : Contrary to the second model, this model is no more locally
periodic since the variations of the fibers orientation are of the same order as

M2 AN Modélisation mathématique et Analyse numérique
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the fibers diameter. We will nevertheless see in Section 4.3 that this non-
periodic material can be approximated by a « locally periodic material »
which has to be locally periodically homogenized as the material of the
second model.

The matrix A* of the fibrous material is defined by

A£(X)=A1OXG Ce(*„*2)

C,(*!, * 2 ) .
(4.2)

4.2. Homogenization result

To state the homogenization result, we have to introducé a family of
periodic materials parametrized by a point z of R3. Let Y(z) be the
parallelogram defined by

t2)e [0 ; with

(4.3)

where d{z) = y'(zi)[cos y(zy)z3 - sin y (z,) z3]

Let x(z, y) be the characteristic function defined by

(4.4)
(khk2)eZ2

x\x)-where

which is y(z)-periodic.
The set {y e R2/x (z, y) = 1} is a F(z)-periodic set of disks of diameter 1

as shown in figure 6.
Let BI be the matrix-valued function defined from the function x (z, y) given
by (4.4) through

B*z(x)=A(z9R(zl)(x-zye) A(z, y) = x (z, y) Al + (1 - ^ (z, y))A2

(4.5)

where

vol. 27, n° 6, 1993
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Figure 5.

Ae(ki,k2)

sd(z)

— 1—

Figure 6.
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For z fixed, B\ is the matrix of a periodic fibrous material as defined in the
Introduction. This material is composed of parallel cylindrical fibers of
diameter s which are perpendicular to the x^axis, and make an angle
y (zj ) with the x2-axis. Note that by cutting this fibrous periodic material by
the plane {x̂  = cos y{zl)x2 + sin y {zx)x3 = 0} , we obtain for E — 1 the
periodic set of disks of the figure 6 in the plane of the new coordinates
(xj, X3) defined by

R(zx)x or \X'l=Xl

[X3 = cos y (zx)x3 - sin y (zx)x2 -

The homogenized matrix A0 of the matrices Af defined by (4.2) is defined for
each point x by A°(x) = J3°, where B® is the homogenized matrix of the
periodic matrices B*x defined by (4.5). The classical homogenization
formulas (1.4) and (1.5) for the periodic case thus give

A ° ( X ) A =
 PFTTT \ lMx,y)*-A(x9y)*R(Xl)Vyif,A(x,y)]dy

IJWI JY(x)
VA e R3 (4.6)

where the function if*x(x, y) is the unique solution (up to an additive
constant) of the differential équation

divy [R(Xl)A(x9 y) ^ ( x O V ^ A d , y)] = divy [R(Xl)A(pc, y) A ] in R2
y

tf/À (x, y) y(x)-periodic of y
(4.7)

where the period Y(x) is defined by (4.3) and the matrix-valued function
A(x, y) by (4.5). Hère x e R3 is only a parameter.

The matrix-valued function A0 satisfies the invariance condition

d(x) = d(y)+

where

d(x) = y'C^Otcos y(xl)x2 + sin r(x2)x3] . (4.8)

Remark 4.2 : The invariance condition (4,8) is easy to obtain mathemat-
ically. Indeed, when the xrcoordinate is fixed, the periodic set of fibers
which is associated to the matrix Be

x defined by (4.5), makes a fixed angle
r(xj) with the x2-axis and is unchanged when we replace d{x) by
d(x) + i in the period ¥{x) as shown in figure 6, The matrices B"x and their
homogenized matrix A°(x) are thus unchanged and the condition (4.8) is
proved.

vol. 27, nD 6, 1993



772 M. BRIANE

The invariance condition (4.8) can be found geometrically as follows. For
some fixed integer kl9 consider the axes Ae(k]9 k2) of the fibers C e(k]9 k2)
defined by (4.1) and the projections on the plane {xl = kx se} of the axes
A£(kl + 1, k2) of the fibers Ct(kx + 1, k2). These projections intersect the
axes AE(kl9 k2) periodically with a period Te in the direction
x2 = cos y (ky se) x2 + sin y (kY se)x3 of the axes Ae(ku k2), as shown in
figure 7'.
This period Te is defined by

T = se
tan 0 e

with 6e = y(kx se + se) - y (kx se)

and satisfies lim TF = if lim k} se = c , .
e^O 7 (Ci) r ^ o

When s converges to 0, the period l/y'icy) then appears in the plane
{xx = Cj} along the direction x2 = cos y(cl)x2 + sin y(cx)x3. When the
xrcoordinate is fixed, the homogenized matrix A°(x) is thus periodic with
the period II y ' {xx ) of the variable cos y (xx ) x2 + sin y (x} ) x3, which implies
the condition (4.8).

Ae(ki,k2+1)

Figure 7.

4.3. Sketch of the proof of the homogenization resuit

We just give here an idea of the method used to homogenize non-periodic
matrices Ae defined by (4.2). Detailed proof is given in LBri 1J.

Let us first see how the shift function d(z) which defines period
Y(z) in (4.3), appears :

M2 AN Modélisation mathématique et Analyse numérique
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Let x* be a point of the axis AF(k{, A:2) defined in (4.1) andy£ be the point of
the axis Ae{kl 4 1, k2) with the same x2-coordinate than x£

C kx se

t cos y (kx se)

k2 se/cos y (kx se) 4 t sin y (kx se)j

ki se 4 se

y" = | t cos y(kx se)
y&2 se/cos y (k] se 4 se) 4 t' sin y (^, ,se 4 se) j

The shift ôe along the x3-axis between the points y' and x* is equal to (see

fig. 8)
Se = y€

z - x\ = b\ ~ al 4 X2 tan y (xj 4 se) - xj tan y (x[)
k2 se k2se

= h x\ tan y (x[ 4 se ) - x | tan y (jcf )
cos y (x\ 4 .se) cos y(x\)

and by developing the previous term at order 1 in se, one obtains

COS

Figure 8.

The shift 8e is hence locally approximated by the shift s s d(x£ ) made in the
direction cos y (kx se) x2 4 sin y (kx se) x3 of the axis Ae(kx, k2) in the plane

vol. 27, n' 6, 1993



774 M. BRIANE

This local shift s s d{x£) will allow us to define a locally periodic fibrous
material which approximates the non-periodic material A€ defined by (4.2),
This material is periodic in the neighbourhood of different points xE defined
as follows :
The domain £2 is divided in N e cubes Qt n of size er with r «c 1. In each cube
Qe n, we fix a point xe = x£> n and consider the matrix Be

z defined by (4.5), for
the point z = xe' n. This matrix B^,* is associated to a periodic set of fibers
whose shift is se d{xe*n).

The matrices A€ defined by (4.2) are then compared to the locally periodic
matrices Be defined by

* ' (*) = B£..(x) xeQen. (4.9)

By a simple computation, one obtains the estimate

\AF(x)-B£(x)\ dx^cs21'-1 . (4.10)
a

Then by using an estimate of the différence between two homogenized limits
{see [DonJ) and by taking r => 1/2, estimate (4. lü) implies the equality
between homogenized matrices A0 and B°. On the other hand, the
homogenized matrix B° is deduced from a locally periodic homogenization
(see [Bri 2]) as in the second model. The homogenized matrix A0 is hence
given by formulas (4.6) and (4.7).

4.4. Comparison with the two previous modeis

Contrary to the second model but like in the first model, the third model
dépends on the variations of the orientation function y.

The différence between the first model and the third model comes from the
cylindrical character of the fibers in the first model. This différence appears
in homogenization formulas (2.4) and (4.6) which respectively concern the
first and third modeis. Indeed, after the linear change of variables defined by

the homogenization formula (4.6) of the third model becomes

VA s R3 (4.11)

where the matrix-valued function D(x)R(x]) is equal to the function
Vp (x) defined by (2.6). The différence between the homogenization formula
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(4.11) of the third model and the formula (2.4) of the first one cornes from the
différence between the function Ar(x, y') which dépends on x in formula
(4.11) and the function A (y ) which does not in formula (2.4). In some sensé,
the function A' (x, yr)in the third model « regularizes » the déformation due
to the function p (x) in the first model.
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