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MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol. 27, n® 4, 1993, p. 421 a 456)

HOMOGENIZATION AND EFFECTIVE PROPERTIES
OF PLATES WEAKENED
BY PARTIALLY PENETRATING FISSURES :
CONVERGENCE AND DUALITY (*)

by J. J. TELEGA (})

Communicated by P. G. CIARLET

Abstract. — In the present paper the asymptotic method used in [1] is justified by means of
the method of epi-convergence. Next, the dual homogenization is performed. The explicit form
of the homogenized complementary potential is derived.

Résumé. — On justifie dans cet article la méthode asymptotique de [1] par la méthode de
I’épi-convergence. On applique ensuite I’ homogénéisation duale. On obtient une forme explicite
du potentiel complémentaire homogénéisé.

1. INTRODUCTION

For a two-layer plate model the problem of finding effective properties was
studied in a previous paper [1], provided that one of the layers is weakened
by periodically distributed fissures. To simplify the presentation of basic
ideas it was assumed that the plate material is homogeneous. Inhomogenei-
ties are introduced by the fissures. By using the method of two-scale
asymptotic expansions the overall behaviour of such a fissured plate was
investigated. It turns out that the homogenized plate is nonlinear, hyperelastic
and without fissures, which are smeared-out by the process of homogeniza-
tion. The macroscopic behaviour is still elastic because friction was
neglected. The presence of friction at the microscopic level results in
inelastic macroscopic response (cf. Refs. [2, 4]).

(*) Manuscrit regu le 25 janvier 1991 et sous forme révisée le 25 mai 1992.
(1) Polish Academy of Sciences, Institute of Fundamental Technological Research, ul.
Swietokrzyska 21, 00-049 Warsaw, Poland.
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422 J. J. TELEGA

The purpose of the present paper is twofold. Firstly, by using the method
of epi-convergence [3] we shall justify the results obtained in [1] by the
formal method of asymptotic expansions. It is also concluded that the total
potential energy J¢ of the fissured plate (¢ > 0) tends to the total potential
energy of the homogenized plate as £ — 0. Secondly, the dual homogeniza-
tion problem is solved. Consequently, the homogenization problem in terms
of generalized forces is resolved.

Before passing to the study of epi-convergence and duality we adduce
indispensable notions and results, thus facilitating the reading of the paper.
Mechanical aspects of the problem studied as well as the local one and its
properties are discussed in the paper [1] (cf. also Ref. [4]). Most essential
results presented here were primarily obtained in [4]. Sometimes we shall use
Roman numerals, which refer to reference [1].

2. ELEMENTS OF THE THEORY OF EPI-CONVERGENCE. EPI-CONVERGENCE AND
DUALITY

2.1. Epi-convergence

Detailed presentation of the theory of epi-convergence, which is a
particular case of so called I-convergence, is available in the book by
Attouch [3], see also references [5, 6, 7].

DEFINITION 2.1: Let (X, ) be a metrisable topological space and
{G.},_, a sequence of functionals form X into R, the extended reals.

a) The m-epi-limit inferior v — li, G, denoted also by G', is the functional
on X defined by

Gw)=7r-1i,G,(u)=minu, > uliminf G, (u,) .

£

b) The t-epi-limit superior T —1s,G,, denoted also by G°, is the
functional on X defined by -

G'wm)y=7-1s,G,(u) =min u, > ulim inf G, (u,) .

£

c) The sequence {GE}>0 is said to be t-epi-convergent if G' = G°. Then
we write

G=r71-1im,G,.
PROPERTIES : Let G, : (X, 7) —» R be a sequence of functionals which is
T-epi-convergent ; G = 7 — lim, G,. Then the following properties hold :
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(i) the functionals G' and G° are t-lower semicontinuous (7-1.s.c.).
(ii) If the functionals G, are convex then G° = 7 — ls, G, is also convex.
Hence the epi-limit G = v — lim, G, is a T-closed (7-1.s.c.) convex functional.

(i) If @:X->R is a rcontinuous functional, called perturbation
functional, then

7—1lim, (G, +®)=7-1lm, G, + P=G+ D.
@iv)

Yu, 5> u, G(u)=<liminf G,(u,), ueX;

e—0 e-0
G)=7—1lim,G,(u)<> {VYue X3u, > u such that
£=0

Gu)=limsup G,.(u,).

-0

In practical situations the last property plays an essential role. Very useful
is also the following theorem.

THEOREM 2.1: Let G = 7 — lim, G, and suppose that there exists a -
relatively compact subset Xy < X such that inf G, = inf G, (Ve > 0). Then
X, b'e

inf G = lim (inf G€>. Moreover, if {u.},6_, is such that
X -0 \ X

G,(u,)—inf G, -0, then every tcluster point of the sequence
X e—0

{u.: ¢ - 0} minimizes G on X. [

Remark 2.1 : From a practical viewpoint the following sufficient condition
of existence of a compact set X, is very convenient :

If X is a Banach space with 7-compact balls, then a sufficient condition of
existence of a compact set X, is that the sequence {GE}E satisfies the

>0
condition of equicoercivity :

lim sup G,(x,) <+ o© = lim sup |u.|| <oo. 2.1)

Remark 2.2 : If the topology 7 is not metrisable then the notion of
sequential epi-convergence is used [3, 8].

DEFINITION 2.2 : A sequence {G.} _ mepi-converges sequentially to G if
and only if in every point u € X one has

Du, 5 u= liminf G,(u,)=G (u).

-0
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2) Ve =03u, > usuch that

limsup G, (u,)<Gu)+ €.

Then we write G = seq 7 — lim, G,. ]
-0

The notions of epi-convergence (definition 2.1) and sequential epi-
convergence (definition 2.2) are equivalent, provided that 7 is metrisable.
Moreover, the condition (2) above is satisfied for ¢ = 0, see the property (iv)
formulated earlier.

In practical situation of interest is the case when (X, 7) is the dual space,
say E*, of a separable Banach space E, equiped with the weak-* topology.
For instance, E* = M'(2) and 7 = o (M'(2), C,(2)); M'(Q2) is the
space of bounded measures [8].

The following result relates the topological and sequential notions of epi-
convergence, where o denotes a weak-* topology on E*.

THEOREM 2.2 [9] : Let E be a separable Banach space and E* its dual. If
{G.} ._o is defined and equi-coercive on E* then the following statements
are equivalent :

(a) G=0-1m,G,,
B) G =seq o —lim, G, . m

We observe that for o non-metrisable, the o-epi-limit in the statement
(a) is to be understood in the topological sense, see [3]. A consequence of
theorem 2.2 is that if {G.} _ is equi-coercive on E* and G is its sequential
o-epi-limit then G is o-l.s.c.

To end up with notions of epi-convergence let us adduce the topological
one [3].

DEFINITION 2.3 : Let (X, 7) be a topological space and N .(x) a set of
neighborhoods of x € X. Further, let {G.} _  be a sequence of functionals,

G, > (— 0, + ©]. The Tepi-limit inferiof and the t-epi-limit superior are
defined by

G (x) =7-1i,G,(x)= sup liminf inf G, (u),
VeN,(x) -0 uev

G'x)=7-1s,G,(x)= sup limsup inf G, (u),
VeN,x) ] ueV
respectively. If G'(x)=G*(x), for each xe€X, then we write
G = 7 — lim, G, (cf. definition 2.1). In a metrisable topological space the

e—0

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis
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definitions 2.1 and 2.3 coincide. For instance, in a general topological space
we have

inf x, % x lim inf G,(x,)= sup liminf inf G,(u). 2.2)
£ VeN, (x) £ uevV

If (X, 7) is a metrisable space then in (2.2) equality holds.

2.2. Epi-convergence and duality

Having a sequence of functionals {G,} . .o One can construct the sequence
of conjugate funtionals G* by using the Fenchel transformation

GXw*)=sup {{u*,u) —G.(u)}, u*eX*. 2.3)

ueX

As usual, (X*, X, {.,.))is a dual pair (¢f. Ref. [10]).

Now a natural question arises : what is a relation between epi-convergence
of the sequences {G,} _ and {G*} _ . respectively ? Existing results are
confined to convex problems, see references [3-6, 11-13]. Attouch [3]
investigated such an interrelation provided that X is a reflexive separable
Banach space. More general results were obtained by Azé [13] who assumes
that X is a separable Banach space.

By I'j(X) we denote the space of convex lower semicontinuous and proper
functions (c¢f. Refs. [10, 14]).

THEOREM 2.3 [13]: Let X be a separable Banach space and
{G5}5>0 < I'y(X). Assume that

() G=s—1im,G,,

(i) limsup G*(u}) <+ oo = sup |uX|,. <.

£ £

Then
G*=w*—-1lim, G} . (2.4)

|

In the assumption (i) s stands for the strong topology of the space
X whereas in (2.4) w* denotes the weak-* topology of the dual space
X*. Thus in (2.4) the epi-limit is to be understood in the sense of sequential
epi-convergence.

Theorem 2.3 plays an important role in homogenization of perfectly plastic
solids loaded at the boundary [15] and perfectly plastic plates subjected to
boundary bending moments [4, 16]. This theorem is also involved in the
formulation of the duality theory proposed by Azé [12]. Azé’s theory is
convenient for performing dual homogenization.

vol. 27, n° 4, 1993
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We pass now to a concise presentation of the Azé’s theory of duality. Let
X and Z be separable Banach spaces such that (X*, X, (.,. ). y) and
(Z*, Z, {.,.) 4, ) are dual pairs. Further, let {G,} ..o be a sequence of

functionals belonging to I'y(X* x Z). For a fixed € > 0 the primal problem
has the following form :

P.) inf {G.(x* 0)|x* e X*} .
We see that z € Z is a perturbation (c¢f. [10, 14]). Let us set
h.(z) =inf {G,(x* z)|x*e X*}, zeZ. 2.5)
Hence
h¥(z*)=GX0,z*), z*eZ*. (2.6)
Accordingly, the dual problem is formulated as follows

P sup {-G(0,z%)}, 2.7

*ez*
or equivalently

@) sup {— h¥*@z*)} . 2.8)

z*eZ*

Now we make the following assumption :
there exists 7 > 0 such that for each sequence {z,} ..o from the ball
(Z) |B,= {z€Z: |z|| <r} there exists a bounded sequence {x}} _ such
that lim sup G,(x}, z,) < + oo.

£

After necessary preparations we can formulate a basic theorem interrelat-
ing epiconvergence and duality.

THEOREM 2.4 [12]: Let X and Z be separable Banach spaces and
{G.},_, G functionals from I'y(X* x Z) satisfying the following conditions

G=w*xs-Ilim,G,, 2.9)
@) (2.10)
G,.(x*, 0 =m(|x*|), e >0, x* e X*, 2.11)

where m is a coercive, convex and even function.
Then we have

(i) h=s-—1lim,h,.
(i) h* =w* —lim, h}.
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(iii) G(., 0) = w* — lim, G,( ., 0).

(iv) If x* is a minimizer of the problem (P,) up to &, and if
z} is a minimizer of (P *) up to & where ¢ - 0, then the sequences
{xX},_oand {zX} _  are bounded. If x* and z* are limits of subsequences
then :

x* realizes the infimum of (P),
z* realizes the supremum of (P *),

infP =supP*,
infP, » infP,

]

supP* - supP*.

e—-0

u
The above theorem requires some comments. The function A in
(i) has the form

h(z) = inf {G(x*, z)|x* € X*} ,
whereas h* is the conjugate function, i.e. :
h*(z*)=G*(, z*), z*e Z*.

The limit problems (P ) and (P *) have the following form

P) inf {G(x*, 0)|x* e X*},
P*) sup {— G*(0, z*)|z* € Z*} ,
respectively.

Having in mind applications to homogenization, one can say that
(P ) is the homogenized problem while (P *) represents its dual. It is worth
noting that theorem 2.4 requires no assumption of periodicity.

3. SOME BASIC RELATIONS

In this section we recall some relations and derive the form of functionals
G,. Notations used in reference [1] are preserved. As previously £ < R?
denotes the upper face of the plate. The plate is parametrized by Cartesian
coordinates x = (x, x3), x = (x,), @ = 1,2. The upper face £2 (x; = 0) plays
always the role of a reference plane. By a and b we denote the thicknesses of
the upper and lower layer, respectively. Moreover, h =a + b is the
thickness of the plate.

vol. 27, n° 4, 1993
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Let us consider the plate clamped at the boundary and weakened by
fissures ¢F distributed &Y-periodically and of constant depth b, see
figure 1.6. The basic cell Y is two-dimensional and &Y is homothetic to
Y. We assume that F is of class C' and F = F Y, where F denotes the
closure of F. We note that F may be a sum of disjoint fissures. The domain
YF = Y\F is connected, and F does not intersect the boundary 8Y of
Y. The following notation is introduced for the sum of fissures such that the
corresponding &Y-cells are contained in the domain (2

F£=UF£,,-, 0°=0\F°. 3.1)

iel(e)
By r = (r,) is denoted the in-plane displacement vector at x; = a. Further,
(¢.), (¥,)and w stand for the rotations of plate transverse cross-sections in
the upper and lower layers and the vertical displacement, respectively.
N = (N,p) is the membrane force tensor, while M = (M,z) and L = (L,p)
denote moment tensors in the upper and lower layers, respectively.

Q= (Q,)and T = (T,) are transverse internal forces in the upper and lower
layers, respectively.

For a fixed £ = 0 the functional J° of the total potential energy of the
fissured plate is given by

T, @, b, w) = %J IV o (. @, W) €0 () +
.
+ M, (r, @) pog(@) + Lopg(r, &) k,5)

+Qa(w,<P)ga(w,‘P)+Ta(w,¢)da(w,llf)]dx—J pwdx, (3.2)
0

where

2 2
Naﬁ(r’ ¢, q‘) = CaBAu[heAu(r) - g_p)‘,u,(‘P) + % K/\y.(lh)] s (3'3)

2

: 02 - a3
MaB("? ‘P)=CaBAﬂ[_?eAp(r)+§'pAy(‘P)] s (3'4)

b b’
Lap @) = Caprs| T ean®)+ 5 0, )] 3.5)
Q.w,@)=aH,g ggw, @), H,z=Cu3p3, 3.6)
Ta (W, ‘1’) = bHaB dﬁ (W, lb) ’ (3'7)

or, org

e,g(®) =T, pgy= <5x—ﬁ+a—{>/2’ Paﬁ(‘P)=‘P(a,ﬂ), (3.8)

Kaﬁ(‘b) = ‘/’(a,B) ’ ga(wa ‘P) =W, + Pous du(w7 \b) =W, + (r[]a s (3~9)
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HOMOGENIZATION AND EFFECTIVE PROPERTIES OF PLATES 429

The summation convention is used throughout the paper, unless otherwise
stated. Obviously, the plate is subjected to transverse loading p. We assume
that p € L2(£2). The loading functional could include a boundary term. Yet,
as we shall soon see, the loading functional will play a role of a perturbation
functional in the process of homogenization.

For the sake of simplicity we assume that the elastic moduli C,4,, and
H , are constants. However, our considerations can readily be generalized to
the case when C,z,, € L*(2) and H,z € L* (£2), thus allowing for two
layer plate model made of different materials with perfect bonding at the
interface. Anyway, we have

IV =0, Coaprptaptin<A|t|>, tek?l, (3.10)

3¢, >0, H,pd,dg=<c(|d|?, deR?. (3.11)
Further, we make the following assumption
IN=>0, Cuprptaptrp=Ar|t|?, tekZ, (3.12)

Jcg=>0, H,pd,ds=co|d|?, de R2. (3.13)

According to our considerations performed in [1], kinematically admissible
fields r, ¢, ¥ and w are such that

re H(2,R?), ¢ e H (2, R?), we H{(2), (3.14)
yekK,={veH (2°R>)|[v,]=00nF*v=00naR}. (3.15)
Taking account of the relations (3.14) and (3.15) we write

Jir, @, b, w) =Gi(r, ¢, b)) + Di(¢, ¥, w) + Pr(w), (3.16)

where
¢1(¢’ ‘l", W) =
= %f Q. W, @) g, W, @)+ T, (w, b)d,(w, ¥)]dx, (3.17)
)
D,(w) = — J pwdx = — f(w), (3.18)
N

2
1, @, ¥) = %J [hcaﬁAu eaﬁ(r)e)\p(r)_ %Caﬁ/\,u eaﬂ(r)p/\#(‘p)
n

3
+MaB(rv ‘p)paﬁ(‘P)] dx+%J‘gE [%'Caﬂz\y. Kaﬂ(l") KA}L("")

+ B Cuprp €ap(r) k), ()] dx. (3.19)
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430 J. J. TELEGA

For w € H'(£2) we have
D,(w) = ||p"L2(_Q)||W”L2m) = C(p)”W”LZ(n) =c "W”1 0 (3.20)

where ¢ (p) = ||p|| 2, and c is a constant which depends on p and (2.

Thus we conclude that epi-convergence concerns only the sequence of
functionals {J°(r, ¢, ., w)}_ _,. Further, the relation (3.17) suggests that

the functional @, (¢, ., w) is convex and continuous in the strong topology

of L2(£2, R?). Thus the functional @, + @, is a perturbation functional.
We set

Jle), p(e), k()] = % [N g @ B) eap(®) + Moy (r, @) pop (@) +

+Lap(r, W) x,5(W)] = jole), p(e)] +jlelr), k@)], (3.21)

where

Jole(), p(@)] = % (hC o prp €ap(F) €, (1)

2
G Catin €021 (@) 4 Mg (5, ) £ (0], 3.2

3
jile(e), ()] = 2 [%CQW kg () Ky () 4

+ 52 Cuprp €ap®) Ky, ()], (3.23)

The properties of the matrix D, given by (1.2.26), and the inequalities (3.10)
and (3.12) imply, (cf. (1.2.28))

dey=cy=0,

(e|>+ |p|>+ |x|>) <j(e, p, x)=<c (Je|?+ |p]*> + |x|?), (3.24)

for each e, p, x € E2. Obviously, the constant ¢, and ¢, are not the same ones
as in (3.11) and (3.13).

The relation (3.19) suggests that the epi-convergence will involve only the
integral over {2 °. However, in order to pass to the limit in the sense of epi-
convergence non-negativeness of an integrand will be used. Thus we have to
work with the function j, and not only with j,.

Let us set

Gi(r, e, ¥), if r,eecH'(2,R*), beK";

. (3.25)
+ o0, otherwise,

Gg(r’ ¢, ‘l’) = {

M?2 AN Modélisation mathématique et Analyse numérique
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where

K ={veH (2°R*)I[v,]=0, on F*} . (3.26)

In the sequel epi-convergence of the functionals G*(r, ¢, . ) will be
investigated.

4. EPI-CONVERGENCE OF SEQUENCE OF FUNCTIONALS {G‘(r,¢,. )}

£>0

Let us recall the definition of Y-periodic functions defined on Y\F :
H., (Y\F) =
= {v e H'(Y\F) | traces of v are equal at opposite sides of Y } . (4.1)

We shall also use the notation E = e*, x = k", etc.

The main result of this section is given in the form of the following
theorem.

THEOREM 4.1 : The sequence of functionals {G*(r, @, . )} _ defined by
(3.25) epi-converges in the strong topology of L*(2, R?) to

G(r, ¢, ¥b) =

f Jole(r), p(@)ldx + J Wile@), k@)ldx, if r, ¢, b € H' (2, R?);
0

n
+ 00, otherwise, 4.2)
where
. 1 .
W1 (E, x) = 1nf T 1 J ]1(E’ Ky(v) + X)dy ’ (4'3)
ve Ky | Yl YN\F
and

3
jl(E’ Ky(V)+ X) = % [%Caﬁz\y(’(yaﬂ(v) + Xaﬂ)(Ky/\,u(v)+ XA;;,)+

+ 2 Coprn(Kyap (V) + Xap) Expl, (4.4)

Kyr = {ve H\ (Y\F, R*)| [oy] =0 on F}, 4.5)
av, dvg P (4.6)
Kyap (V) = EJFE . :

vol. 27, n° 4, 1993



432 J. J. TELEGA

Proof : Towards this end we follow the approach proposed primarily by
Attouch [3] for scalar elliptic problems and next used by Attouch and Murat
[17], also in the scalar case, but in the presence of fissures. However, we do

not follow precisely this approach, because some ideas due to Bouchitté [8]
are also exploited.

According to the property (iv) of epi-limit (¢f. Section 2), we have to
demonstrate that :

a) For any ¥ € H!(£2, R?) there exists a sequence {{s*} ..o < K° strongly
convergent to ¥ in the strong topology of L?(£2, R?) such that

G(r, ¢, ¥)=limsup G°(r, ¢, ¥°). “4.7)

£-0

b) For any sequence {\lﬁ}£> : c K° such that $* — ¥ in the strong

e-0

topology of L?(£2, R?), the following inequality holds

G(r, @, ¥) < lim inf G°(r, ¢, ¥°). 4.8)

]
The proof is performed in several steps. In steps 1 and 2 we shall prove (4.7).

Step 1.
Let {£2;}, _, be a finite partition of £ by polyhedral sets. Such a partition

i
enables one to use the local character of the functionals G*(r, ¢, . ). We set

2= {xe 2,;ldist x, 32,)> 8}, 5=0,

and let ¢ € Z(£2;)be suchthat 0 < ¢ < 1, ¢/ s _ . 2 (£2,) is the space
of functions of class C® with compact support in (2,.

Let ¥ € H'(£2, Rz) be a piecewise affine continuous function, that is
Yo(x)=xkgxg+2,, X' €k, ZeR*, Vxen,, (4.9)
where i € J. Hence we have
kWx) =X, xeN,, iel. (4.10)

With every family of functions {vi}i <; < Kyr we associate the sequence

W) =@ +e ¥ (pf(.x)v"(%) . e=0. 4.11)

ielJ
Jﬂi

Since

. 2
v‘(£>| dxsn%J |v,-(y)|2dy,
€ Y
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HOMOGENIZATION AND EFFECTIVE PROPERTIES OF PLATES 433
where ny(¢) is sufficiently large [18], therefore we have
U2 (x) > B (x),

in the strong topology of L?(£2, R?).
Further, equation (4.11) yields

[vi’le=¢ Y e’[vi],.=0. (4.12)

iel

Let <1 (intended to go to 1) and set w;/ = 2°N 2,. We note that
tcp{S +t(1 - <p,-’s) + (1 —t) = 1. The function j,(e, . ) is convex. Exploiting
these facts we obtain

) ® chf(x)) ] dx <

om | =

G o b )= T | j[eww bt refeo(x +w (v (

ieJ Yyw;

+t(l—@fENx +( —t)ls_ttsym (v"(

<y UJ e o). x'+x(v(2))]ax+

iel

m | =

+f A=) jler(x)), ple()), X'] dx

ra ")L;"[e(r("”’ pee. T sym (v() @ ZHON dx}

< Z, Uw;j [e(r), p(e), X + K (v" ( x ) )] dx +

M _[ A= e2N[ex)|? + |p(@@x)|*+ |X'|*1dx

+A,(1 - t)J ] [le@&)|> + |p(e(x))]?

¢ tzom (+() ovwre) [ o)

since j is non-negative. Here we have used the following notation

; 1 ae/? ap?
[sym (V' ® V‘P,'B)]aﬁ =3 (Ua a—x-;— + Vg ax‘ . 4.13)
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The function j[e(r), p(@), X' +x (vi ( E ) >] is gY-periodic, hence we
arrive at the following inequality

lim sup lim sup G*(r, ¢, t¥* %) <
80 -0
to1-

=Y J‘ {I—II/T J jler @), ple(x)), X' + K, (v'(y))] dy} dx. (4.14)
ies V2 Y\F

After Attouch [3, p. 33, Corollary 1.16] we formulate

LEMMA 4.1: Let {a, lIA=1,2,...:B=1,2, ... } be a doubly indexed

family in R. Then there exists a mapping A — B (A), increasing to
+ 00, such that

lim sup a, p4) < lim sup (lim sup aA,B) . |
A->© B> A ©

By using this lemma we see that one can construct a mapping & —» (¢(¢),
6 (e)) with (t(e), 6(e)) > (17, 0), € - 0, such that setting

Yi=1(e)y©°, (4.15)

(thus ¢ — & strongly in L?(£2, R?)) from (4.14) we deduce that

-0

lim sup G°(r, ¢, ¥°) <

e-0
s):J' {ILY'J JTe@()), p@E)), X' + 1, (v ()] dy}dx. (4.16)
iel Y, YNF :

Taking now the infimum in the r.h.s. of the last inequality, when
v' runs over the set Ky, we arrive at the relation

G'(r, @, &) < lim sup G°(r, @, ¥°) =<

-0

= J Joler(x)), ple(x)]dx + Y W[e(r(x)), x;]dx =
(]

iel
= J Jole(r(x)), p(e(x))] dx + J Wile(r(x)), k(W (x))]dx. (4.17)
0 N
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Step 2.
Let us put v = 0 in (4.3). Then one obtains

. ) 1 .
Jo(E,9)+W1(E,X)$10(E,9)+—J J1(E, x)dy =
RPN

=Jjo(E, )+, (E, x)<A,(JE|*+ |0]* + |x]|?). (4.18)

From the property (ii) of epi-limit (Section 2) it follows that the convexity of
G*(r, @, . ) is preserved by the epi-limit superior G*(r, ¢, . ). Moreover,
(4.18) yields

G'(r, o, )< A, J (le(rGN|* + |p@@)]|* + |k@W(x)|*)dx, (4.19)
n

for each ¥ € H'(£2, R?). Being convex and finite, the functional G*(r, ¢, . )
is continuous on H'(£2, R?). Consequently, due to the density of piecewise
affine  continuous functions in H'(£2) [14], the inequality
G(r, @, ¥) <G (r, ¢, ¥) can be extended to the whole space H'(2, R?).
Moreover, the functional G (r, ¢, . ) is convex and continuous on this space.
More precisely, for each ¥ € H'!(£2, R?) there exists a sequence {lbk} LeN of

piecewise affine continuous functions, such that ¥ — ¥ in the strong
k- ©

topology of H'(£2, R?). Here N stands for the set of natural numbers.
Consequently, one has

G, ¢, ) > G(r, ¢, ¥). (4.20)

k- ©

From the previous steps it results that there exists a sequence {t!:"’ 3
converging strongly to ¥ in L2(2, R?) as ¢ —» 0 and such that

>0

lim sup Gi(r, ¢, ¥* ) <G (r, @, ¥*). (4.21)

£-0

Thus (4.20) and (4.21) result in

lim sup lim sup G°(r, @, ¥* ) <G (r, ¢, &),

k— o e-0

lim sup lim sup ||¥* ° — U2 2 =0
k — o0 -0

Using now Lemma 4.1 we deduce that there exists a mapping £ — k(&) with
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k(g) » o such that, setting ¥¢ = P*©» ¢ we eventually obtain

G'(r, @, ¥)<limsup G°(r, ¢, ) <G (r, ¢, ¥),

e-0

for each ¥ € H'(£2, R?). In this way (4.7) has been proved.
We pass now to proving the inequality (4.8).

Step 3.
Firstly, let us prove that if ¥ is an affine function
YoX)=XapXg+2,; x€E?, zeR?, (4.22)
then
lim G°(r, @, ) =G, ¢, ¥), (4.23)
-0
where
W) =@ + b (2 (4.24)
Here ¥ ,, is a solution to the following local problem
. 1 .
inf — J Ui(E, x,(v) + x)]dy . (4.25)
veKyr Y\F

Passing with ¢ to zero in the functional G*(r, ¢, ¥°) we obtain, (cf.
Refs. [18, 19])

lim G*(r, ¢, ¥°) = J Jole(r(x)), p(e(x))] dx +
N

0

+ J = J AJile@ ), X + 1y (W), xy O] dy} dx =
o Yl Y\F :

= J {jole(rx)), p(@(x))] + W (e(r(x)), x)} dx.
0

Equation (4.22) gives k() = x. Consequently we may write
lim G*(r, ¢, ¥°) =

-0
= J {ole @), p(e(x)] dx + W [e(r(x)), k(W (x)]}
n

=G(r, e, ¥).
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Step 4.

Let {¥°} _ <= K° be a sequence of functions converging strongly to a

certain { € LZ(.Q, Rz). We take q, a continuous piecewise affine function ;
hence

Ga(X) = xhpxg+7,, xe,;, (4.26)
k(@) =x', on £, (4.27)
where x' € E2, e R?, i e J.
Let us denote by V' (i € J) a solution to the following local problem
. 1 . ;
inf — J Ui(E, w,(v) + x')] dy. (4.28)
v €Kyp YNF

Obviously, v depends on E and x'. We set
a° () = q) + &7 ( ! > , iel. (4.29)

Clearly, for each i € J we have q©' — q strongly in L>(£2, R?).

]

Next, let us introduce, for each i € J, a function ¢, € & (£2;) such that
O=¢;(x)=<1, xe £2,. The fact that the function j is positive implies

J Jo(e(r), p(¢)) dx + J Ji(e(r), k(¥%)) dx =
0 0

=Y | ei@jge@). p@Ndx+ Y | i), k() dx, (4.30)

ie v 2; iel vo;

where w = 2 ° N (2,. Subdifferential inequality for the subdifferential at the
point k(q” ') gives

Y @ijole(r), p(e))dx + Y ®iji(e(r), k@) dx —

iel V2 ieJ Yo;

=X | eidole@), ple)dx— Y | ¢;ji(el), k(@) dx=

ieJ v 2 ieJ vyw;
=Y | @iDapl(e(r), k(q”'))] ke —q=")dx, (4.31)
ieJ v
where
D,gle(r), x(q®')] = [D,j(e(r), k(@”))]ap =
b3 . b2
=?CaBAp KA;.L(qE”)'*'—Z'Caﬁu eA,u.(r)

Here D, j,(e(r), . ). D is the gradient of the function j,(e(r), .)
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By using (4.23) we arrive at

lim U <p.~jo(e(r),p(<p))dX+J
N

e-0

@idi(e(r), k(@"))dx| =

i i

= J ®iliole), p(e@)) + Wi(e(r), k(q)ldx, ielJ. (432)
0.

Integrating by parts the last term of the inequality (4.31) we readily obtain
J @D, pe(r), k(q"")) k,z(W° —q~")dx = Af + B] + C}, (4.33)
where (no summation over i)

Af = — J #ilDaple(r), k(@] 5 (Yo —qih)dx, (4.34)

i

B =~ | Dustetrx@ e, wi-arhdx,  @39)

i

Ci = f el (W —qsh)|, (Daple@), k(@ ) ng)| ~
F¢

— (s —q2")|, Daple), k(@ ) ng))|1,dS. (4.36)
Here F; =F° N Q2,.
Before proceeding further, some localization considerations are indispens-

able. The local minimization problem (4.28) is equivalent to the following
variational inequality [1] :

find ¥ € Kyg such that

f Dos(E, 1,(¥) + X;) K yop (V — V)dy=0, VveKy, 4.37)
Y\F

where E = e(r). Let us now take v = V' + ¢, ¢ € Kyz. Then (4.37) gives

J Do E, .,(V) + X;) Kyop(®)dy=0, VeeKy.. (4.38)
Y\F

Particularly, one can take ¢ € 2 (Y\F ), that is ¢ equals (0, 0) in a
neighbourhood of 8 (Y\F ) = 8Y U F. In such a case from (4.38) one obtains

_.a—i]—DaB(E,Ky(Vi)+xi)=0, in  2'X\F,R%. (4.39)
B
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Let us consider (4.38) once again and take ¢ € Ky, such that ¢ = (0, 0) in
a neighbourhood of F. Integrating by parts and taking account of
equation (4.39) we deduce that

vectors [D,5(E, k,(V') + x;) N 5] are opposite
at the opposite sides of Y . (4.40)

Therefore equation (4.39) can be extended to R*\ U (F + R, y,, N, y,),
that is

G

_WDQB(E, K,V)+x)=0, in 2" R\U (F +RN,, N,y,)), (4.41)
B

where M,, N, € 3, and 3 stands for the set of integers.

Let us return to the inequality (4.37). Integrating by parts and taking
account of (4.39) and (4.40) we arrive at the following relation

J {(Ua_;,iz)|1 [DaB(E’ Ky(;l)+xl)]|1Nﬁ_
F

_(ua—vg)|2[Da,,(E, Ky(v")+x")]|2N,,}ds;0, Vve Ky . (4.42)
Now we replace vby t= (1 —¢) (¥ + X' y) + o€ — X'y, where & € Ky

and 0= ¢ <1, ¢ € Z(Y). Obviously, we have [[t] =0, on F. In such a
case the inequality (4.42) yields

j ¢ {[€a— Vi + Xiy 3, 1|, [Dap(®, w,7) + x| [ Nj -
F
— Lba — Gl + by 9|, Dep B, 1,3+ XD1| N} ds =0, (4.43)
VEeKy,, ¢€eDF(XY).
By changing scale (y —»Z;- ), from (4.41) and (4.43), we obtain

{Daple@®)), k(@' (N1} , =0, in 229, (444

and
f 0 {(We—q2h)|, Dae@), x@ M|, np -
Fi

— (W q5h)|, Dap(el), k(@ N1, np} ds=0, (4.45)

respectively, since ¥° € K° and ¢; € 2% (w/). Now, taking account of
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(4.44) and (4.45) from (4.30), (4.31) and (4.33)-(4.36) we derive the
following relation

Gi(r, @, B°) = J Jole(r), p(e))dx + j
n

Jile(), k()) dx =
0¢

=3 | eidoem) pleNd+ 3 | e;jier) (@ "))dx ~

e v, ieJ Jof
-y J D,ge), k(@) @; s(Ws—qs')dx. (4.46)
iel Yo

Before passing to the limit (¢ —» 0) in (4.46) we shall demonstrate the
following property

1 . -
D, W, (E, x)=|—Y—|J D, j(E, x,(V) + x)dy, (4.47)
Y\F

where Vv € Ky realizes the minimum in (4.3). Obviously we have
[DZjI(E’ Ky(;) + x)]aﬁ = Daﬂ(E’ Ky(“}) + X) =

b’ - b?
= ?CGBAu(KyAu(v) + Xap) + 5 Caﬁ).y, E,,. (4.48)

Since j,(E, . ) is convex and finite, therefore we have, cf. [21]

Dy ji(E, . ) =38y,(E, .). (4.49)

Here 3,j, is the subdifferential of the function j,(E, . ). Similarly we can
write : .

D, W, (E, x) = 3,W,(E, x). (4.50)

Let us denote by (m,gz(y)) (y € Y\F) the microscopic moment tensor
corresponding to v(y), that is, cf. (4.37)

maﬂ(y) = Daﬁ(Es Ky(;l) + X) s

and
j Map (V) Kyag(v—V)dy =0, VveKy. 4.51)
\F
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By using (4.49) and (4.50) we have the following subdifferential inequality

W](Ev X(l)) - Wl(Ev X) =

=

= 77] f Dy j (B, k") + x) — D, j (B, x,(¥) + x)]dy =
Y\F

l .

=

h<

J‘ mtxﬁ(y) [Kyaﬁ(v(l))+/\/£lg‘ (Kyaﬂ(;’)‘l"/‘/aﬁ)] dy
YN\F

Hence, taking account of (4.51) we obtain

1
W, (E, x) - W, (E, x)= { 1] J maﬁ(y)dy} ({8 — Xap) =
Y\F

1 _

=Lhy(x{d— Xap)» (4.52)

where

1
Lis = 37 J Mmas ) dy (4.53)
RN :

are macroscopic moments in the lower layer of the homogenized plate.
Now we can pass to the limit in (4.46) as ¢ —» 0. First, we notice that

v —q”' > W—q stronglyin L%(2, R?), (4.54)

e-0

D, (e(r)), x(q”")) =

)] - LJ Dsle(®), X' + 1,7 ()] dy,
£-0 YNF

= Dag et X+ @) ( o

o | =

(4.55)

weakly in L?(£2, E2) (cf. Refs. [18, 19]). Taking account of equation (4.47)
we see that the limit in (4.55) is equal just to D, W, (e(r), x'). Thus we obtain

lim inf G*(r, @, ¥°) = ) @i (x) lole(r), p(@)) + Wi(e(r), x(q))] dx —

£-0 ies v,
-y [D, Wi(e(), X ap ¢i.p(¥a — qo) dx . (4.56)
ieJ v
According to theorem 2.2 of the paper [20], there exists an extension
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operator
Q¢ :H' (25, R?) 5 HI(2, RY)
such that the sequence {Q°v°} _  isboundedand ||O° v¢ —v* ”Lz(n’ R?

as & — 0, provided that a sequence {v‘} _ is bounded in H'(2°, R?).
By using this result and knowing that * — s in L2(£2, R?) we infer that

e-0

)—>0

¢ € H' (2, R?). Performing integration by parts in the last term of the
inequality (4.56) we obtain

lim inf G*(r, @, )= @;(x) [ole(r), p(e)) +

£-0 ieJ v 2;

+ Wie(r), x(@)]ldx + Y ®i(x) [Dy Wy(e(r), k(@)]ap, g (Yo — qa) dx +

ieJ Y12

i

+ z (Pi(x) [DZ Wl (e(r)s K(q))]aﬁ Kaﬂ (ll‘ - Q)dx s (4‘57)

ieJ Y12

since k(q) = x' on £2,. Let now ¢; converges to 1 for i € J. Hence we can
write

lim inf G*(r, ¢, ¥°) = J Uole(r), p(e)) + W;(e(r), k(q))]dx +
n

e-0
+ f D, Wi(e(r), x(@)]ap, (Yo — qo) dx +
(]

+J [D, Wi(e(r), x(@)]ap kop(b —q)dx. (4.58)
n

In the last inequality the function q is continuous and piecewise affine. Thus
one can use an argumentation based on the density of such functions in the
space H' (12, R?). Because the functional G (r, ¢, . ) is convex and continu-
ous on the space H'!(£2, R?), the inequality (4.58) can be extended to an
arbitrary q € H' (2, R?).
Setting now ¥ = q we finally arrive at the following inequality
lim inf G°(r, ¢, $°) =G (r, ¢, &),

e-0

what proves (4.8) | |

Remark 4.1 : From the above considerations we conclude that
JEre, @5 b°, wo) s T, o, Ut wh) as £ 0, (4.59)
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where (cf. Ref. [1])
P)J a0, b, w) =
= inf {J°(r, @, b, w) | 1, 0 € H)(2, R?), b e K., we Hy(2)} ,
P T (", @, Wt wh) =
=inf {J'(r, @, b, w) | 1, @, b € Hj(£2, R?), w e Hy(02)} .
Indeed, according to our theorem 4.1 and comments preceding it we infer
that for (r, ", ¥", w") e [H} (2, R x Hi(2) there exists a sequence
(¥, ", U, W} .o [H)(2, R*)T* x K, x H)(2) strongly convergent in
[L*(2, R*)]® x L*>(2) and such that
JHrt @, W, w") = lim inf J°{F°, &, ¥*, W}, (4.60)

-0

see the formula (4.7). Moreover, taking account of (4.8) we can write

lim inf J°(r¢, @°, ¥, w®) =J"(r", ", W', wh). (4.61)

e->0
Since (r, ¢°, ¥*, w*) is a minimizer of the problem (P ), therefore we have
JOe, @, W, w) < JO{F 7 W0, W (4.62)

The relations (4.60)-(4.62) demonstrate that the total potential energy of the
fissured plate converges to the total potential energy of the homogenized
plate as ¢ — 0. We also note that such a convergence holds true for more
general boundary conditions like mixed ones.

5. DUAL HOMOGENIZATION

The direct homogenization of fissured plates performed both in [1] and in
the previous section involves generalized displacements only. Now we shall
study the problem of the dual homogenization involving generalized stresses.

As we know, the matrices C and D) given by (1.2.4) and (1.2.27),
respectively, are non-singular. Hence we can write

D'=DPP"'®B, B=C', (5.1)
where
4 6 _6 ]
h ah bh
6 12a+3b 9
-1 _ 2 eerTss . 5.2
(D] pr h abh (5.2)
6 _0 3a+12b
" bh abh b’ h
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Thus the inverse constitutive relations have the following form

e N
¢e|=D1M]|, (5.3)
K L

9oa=a0"'Z,5305, do=b"1Z,3Ty, Z=H". (5.4

To derive the dual problem (P *) we apply the Rockafellar theory of duality
in the form presented by Ekeland and Temam [14]. Let us define
A, a linear and continuous operator, in the following way

A(r, @, U, w) = (A1, Ao Az, Ay(w, @), As(w, ¥))
= (e(r), p(e), x(b), g(w, @), d(w, ¥)),
A [HYQ2, RHP x H(2°5, R) x HY(2) >
- [L*(2, EH]? x L*(2F, E}) x [L2(2, RH P,

where
Hi(25R*) = {v= (v,)|v, e H(2°),v=00n0d02} . (5.5)

To find the conjugate operator A* we have to give explicit expressions for
the operators A, ..., AZ. Simple calculations yield

(N, Ar) 2 o= jn Nop €ap(r)dx = — Jﬂ Nop pTedx =
= (AN s (56)

provided that r € H(l,(.(), R?). In a similar manner we obtain

AFM= (M, ), inQ; (5.7
N _ : 08
ApL = | Fepp. dn ’ (5.8)
-L,, on F°?;
—Q ’ in 'Qa (W)
A¥ - { o a . 5.9
f8=1q. @i 2. ©9)
-T , in 2, (w)
AFT = @ .
$T { T, in 2, (¥). (.10)

Further, we set
L., )= Dy(v) + g (W),
where I _stands for the indicator function of the set K,. To formulate the
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dual problem P * we first calculate

LXA*N,M,L,Q; T)) =

=SUP{J (NaB,ﬁra+Maﬁ,B ‘Pa+Qa,aw_Qa ‘Pa+
n

+T, ,w-T, ¢a+pw)dx+J
o°

—Ix,(W)|r, ¢ € Hy(2, R%), b € H{(2°, R?), w € H{(2)}

Lop p ¥a dx + f L,[¢,]ds

F

0, if Nupp=0,-M,3 g +0,=0,in2,
(Q.+T,) o+p=0,in 2,
= —Log g+T,=0,in02°, (5.1
L,<0,onF°*;
+ 00, otherwise .

We set
G (A, ¢, ¥, w)) = J jle(), p(e), x(p)ldx +
0°

+ J Jolgw, @), dw, ¥)ldx, (5.12)
n

where
j2[g(W, ‘P), d(W1 ‘l’)] =
- % [Q. (W, ©) Go (W, @) + To(w, $)dy(w, $)]. (5.13)

In our case we can write, cf. reference [14, Chapter 9, Th. 2.1]

G2))*(N, ML, Q, T) = J J*ING), M(x), L(x)] dx +

+ J JFQKx), T(x)ldx, (5.14)
Ko}

where
J#@Q, T)=sup {Q-g+T-d—j,(g d)|g, de R*} =

| -
=5 @ ' Zup QuQp+ b7 Zup Ta Tp),  (5.15)
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]*(N’ M’ L) = sup {NOIB eaﬂ +MaB Pap +
+Lﬂﬁ Kap —j(e’ P, K)Ie9 P, RE [E?}

= 5 IN M, L]D"'[N, M, L}

2 6 6
=Baﬂ,\,‘(EN,,EN,\,L+EM,,BNM—-B—ENHBLM
34a+b)
+28a40)y
243 h A
3(4b+a) 9
+—m‘— “ﬁL)“‘-—.ZELaBMAF«) Py (5.16)

where the superscript « ¢ » denotes transposition.
For a fixed £ = 0 the set € of statically admissible generalized stresses is
defined by

%:={Nel’(2,E}),MeL*(2,E}), Le L>(2°, E}),
Qe L’ (2, R?), TeL*(2,E*)|N,p 5 =0,in02;
“M,p s +Q,=0,in2;(Q,+T,),+p=0,in02;
~L,g p+T,=0,in02°L,<0,0nF°}. (5.17)

By using the aforementioned theory of duality [14] we can formulate the
dual problem or the complementary energy principle for a fixed £ = 0.

Problem P *(¢ = 0)
Find
sup {_ L U*(N(x), M(x), L(x)) +
+jFQE), TE)1dx| (N, M, L, Q, T)e 45} . (5.18)

Introducing the indicator function of the set €; we can formulate the above
problem in an equivalent way.

Problem R}

Find

inf {J U*(N(x), M(x), L(x)) +j#Qx), T(x))] dx +
0

+14:(N, M, L, Q, T)|(N,M, L, Q, T)e H}, (5.19)
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where
H = [L2(2, E})]® x [L2(2, R)P. (5.20)
Obviously we have
supP*=—infR}*.

By using theorem 4.2 of Ekeland and Temam [14, Chap. 3] we infer that a

solution (N, M*, L%, QF, T?) € €, to the problem P * exists and is unique.

We observe that the complementary potential j * + j* is strictly convex.
Let us set

SN, M,L,Q, T) = J U*(N, M, L) +j*(Q, T)ldx +
0
+14:(N,M,L,Q, T). (5.21)

Before discussing the problem of epi-convergence of the sequence of
functionals {©°} _ we shall derive the dual macroscopic potential

W*, where W is given by (1.4.35).
Towards this end we follow an approach primarily used by Telega [2] for a
three-dimensional fissured solid. By using Fenchel transformation we write

W*(N,M,L,Q, T) =
=Sup {N,gEoap +M,500p +Lop Xap+QoGa+Tod, —
~W(E,8,x 8d)E, 0 xekE};g deR?
= Go+W)* (N, M, L) +j3(@Q, T), (5.22)

where N, M, Le E; and Q, T € R?; moreover

Go+WD* (N, M,L)= sup (N gE,s+M,p0,5+

E,O,XEIE?
ve Kyp

. 1 . .
+Log Xap —Jo(E, 0) — m inf J J1(E, vy (v) + x)dy} . (5.23)
Y\F

To find the explicit form of the function (j, + W;)* we consider the
following convex optimization problem :

(P g, y)) inf {j J1E, Ky(v)+x)dy|veKYF} =
Y\F

= inf {J J1(E, k,(v) + X)dy + IKYF(v)|v € Hpe,(Y\F, RZ)} .
\F
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Let us set Av = k(v) and

Gg V) = J J1(E, AV+X)d}’,VEH1(Y\F, R?),
Y\F

FW)=1Ig (v),ve H, (Y\F, R*).

We see that A : H'(Y\F, R?) » L>(Y\F, E2). One readily finds the conju-
gate functional G § ,) It has the following form

G o) = J J1(p* ), E, x) dy, (5.24)
Y\F

where

J1(P* E, X) = sup {pXs p.p —j1(E, p+X)|peE} =

3 3 3b
= 2—b33aﬂAu p:BpA*u - np:rkﬂ EaB _p:B XaB - ?CaﬂA,u, Euﬁ EA;A. .

Further, we calculate
<AV, p*>L2xL2= J Kynﬂ(v)p:xkﬁ dy=— j p:ﬂ,ﬂva dy+
Y\F Y\F
+ J plgng v, ds — J pil[on] ds
5% F
N J pit- [vrlds = (A*P* V)1 -
F
Thus we can write

—div, p*, in Y\F,
(p;“ﬁnﬂ), on dY,

A*p* = 5.25
P - DN, on F, ( )
-pf, on F.
Taking account of (5.25) we obtain
F*(— A*p*) =sup {(— A*p*, v) — F(vV)|ve Hp(Y\F, R} =
_ {0 if p*e S;‘er © (5.26)
+ oo, otherwise,
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where
S = {p* € L*(Y\F, E2)|div,p* =0, inY\F;ps#=0,
py =0, on F ; p* - n takes opposite values at opposite sidesof Y } . (5.27)
It is worth noting that
Sper = [, (Kyp)1*, (5.28)

or Sy, is the polar set of w,(Kyr) (in L*(Y\F, E?)). To corroborate this
statement we have to find the set [k, (Ky;)]*. By definition, we have, cf.
Refs. [10, 14, 21]

[Ky(KYF)]* = {p* € L2(Y\F, lE?)

J‘ p:ﬁ KyaB(v)dy?O VVEKYF} .
NF

(5.29)

Performing the integration by parts and using (5.25) we arrive at (5.28).
Now taking account of the relations (5.24) and (5.26) we obtain the dual
problem of (P g ,))

P& ) — inf “ J1P*»). E, x)dy|p* € Sﬁe,} .
Y\F

By applying the convex duality theorem [14] we write
infP g,y =—infP§ ,,. (5.30)
Substituting (5.30) into (5.23) we obtain

Go+W)* (N,M,L)= sup {NopgE,p+Myp 0,5+
E, 0, x e E2

3b

+Laﬂ Xap —jO(E: 0) + g

Caﬁ‘,\;l. Eaﬁ E/\;l.

1 . 3
+ — inf J;\F (2_b33aﬂ,\,u.p:3p;k;¢

| |p*eslf)er

3
- Z_I;p:ﬂ Eaﬁ —P:ﬂ Xaﬂ) d)’} . (5.31)
Let us set
. 3 3
J3(p* E) = 2_b—3BnﬁAu Pag Py — ﬁp;kﬂ E,p . (5.32)
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Calculating the supremum with respect to 0 in (5.31) and taking account of
(5.32) we obtain

. 3
o+ WD*(N,M, L) = 2_a33aﬂA“Ma8 M,, +
1 h 3
+ sup - NaﬁEaﬁ__CaﬁA;LEaﬁEAu+—-MQBEQB dy
E xcE2 |Y] Y\F 8 2a

+ inf [J J3(@* ), E)dY+J Lap —Pap ) Xap dy]} - (5.33)
p* € S5er YNF Y\F

We shall now transform the last infimum by using the notion of inf-
convolution, see [10, 21]. In our case we have

inf [J. j3(p*(y),E)dy+j (LaB_p:B(y))XaB d)’] =
Y\F Y\F

P* € Sper
— inf U J3@*), E)dy + I (p*)
Y\F
+ j (Lap — P23 (0)) Xap dy|p* € L*(V\F, E2]
Y\F
=inf” J3(L=p*(), E)dy + I (L —p*)
Y\F

+ f PEO) Xapdy|p* € L*(Y\F, ED)] . (5.34)
N\F

Substituting (5.34) into (5.33) we conclude that the supremum with respect
to x is finite, provided that

f p*(y)dy =0. (5.35)
Y\F

Of interest are thus only those local fields p* € L>(Y\F, E2) satisfying the
following condition

p*e (L—Sk)N {q*GLZ(Y\F,'E?)I q*(y)dy=0} =

= (L —S%) N (ED* . (5.36)

Y\F

Here (E2)* denotes the complement of E2 in the space L>(Y\F, E2). Simple
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calculation yields

€ = {q* € L(N\F. E2)

J q3()E,pdy =0, VE € rEf} =
Y\F

= {q* e L>(Y\F, E?)

J- q*(y)dy = 0} . (8.37)
Y\F
Let us set

Sper(L) = (L — S5) N (E2)* . (5.38)
Thus we can write

. 3
(10 + Wl)* (N’ Ma L) = ﬁBaBApMaﬂ Maﬁ +

+ sup inf { —11/— J [Naﬁ E.p— ‘gcamu E.pExp
EE[E? Q*Esger(L) | l YNF

3 3
M . E .__>
tog e Far T 5

3
+ 5 Bagru Lap — dup) Loy — )| v} -

LaB Eaﬁ

Calculating now the supremum over E € E2 we finally obtain

. 2 6
(]0+W1)* (N’ M, L)=BaBA,u<ZNaBNA;L+ENaﬂMA/L_
6 3(4a+b)
——N_,sL —_ M, M
bh ap A,u.+ 2a3h ap Ap

9 9
‘—MM‘,BLA“ +mLﬂﬁL/\ﬂ-

. 1 3
+ lnf { —I—YT JAy\F ﬁBaBAM(Laﬁ - an)(L)\;L - q/\;l,)dy|q € Sger(L)} ’

(5.39)

where N, M, L € E2.
The complete form of the complementary macroscopic potential W* is
found by using (5.22), where (j, + W;)* is given by the formula (5.39). It is

worth noting that in order to calculate W* we have to solve solely the
following local problem :
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for a given L € [E? find

. 1 3
inf { IVl L\F ﬁgBaﬂAy.(Laﬁ ~qap(¥)) X

X (Lap — 4ap (7)) dy|q € Spe (L)} . (5.40)

The infimum over q € Sge,(L) can be written in an equivalent manner.
Namely we observe that for a q € Sge,(L) we have

1 c
q=L-p* <Q>=mj q()dy =0, p* € Sg,, (p*) =L.
Y\F

Hence the last local problem can be reformulated in the following way

for a given L € E2 find

. 1 3
mf{Tﬂ—J z_bSBaﬁ).up:ﬁp;\ku dylp*ES;er, <p*> - L. (541)
Y\F

Let us pass now to the problem of epi-convergence of the sequence of

functionals {S} .o Where & is given by the formula (5.21). We set

Jp(r, @, b, w; py, P2 P3s Pas Ps) =
= {ile() + py, p(@) + Py, k(W) + p3] +
0¢
+jalgw, @) + ps dw, &) + psl} dx, (5.42)
where p, € L*(2, E2), p; e L*(2°F, E?), p, € L2(2, R?), ps € L}*(2, R?).
The epi-convergence of the sequence {J°} _  to the functional J" implies the

epi-convergence of {f;}g 0’ in the” strong topology of the space
L2(2, R)P x L2(2) x 9, to the following functional

Ty, @, b, wip) = J {Wie@)+ p1, p(b) + py, k(W) +
0]

+P3, W, @) + py, d(w, W) + psl} . (5.43)
where I =1, 2, 3, 4, 5. Strictly speaking, to prove the aforementioned epi-
convergence of the sequence {J ;} ..o Onecan exploit the approach proposed

by Azé[12]. In our case we use the fact that J* is the epi-limit of
{Je}e> o- Moreover, one has to choose approximating sequences for

p;I =1,2,...,5). Towards this end we first consider the case when
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the functions p; are constant on the sets {2; constituting a partition of
£°. For such functions p, one proves the following inequalities

Jh(r, @, W, w; p;) =< liminf JS(rf, @, ¥, w*; p;), (5.44)

-0

Ja(r, @, b, wip,)=lim sup J5(rf, @°, ¥°, we;p)), (5.45)

-0

according to the property (iv) of the epi-limit (¢f. Section 2) of the present
paper. In the second stage arbitrary elements p; (I = 1, 2, ..., 5) from the
corresponding spaces L? are approximated by piecewise constant functions.
Next, inequalities like (5.44) and (5.45) are proved for such a general case.

To apply theorem 2.4 one has to verify the coercivity condition (2.11). To
prove it let us set

S,(r, @, b, wip) =J,(r @, b, wip,)+ Pr(w). (5.46)

By using the relations (3.13), (3.24) and the Korn inequality for the two-
dimensional domain (2 ¢ [20] we arrive at the following inequality

S,(r, ¢, ¥, w;0,0,0,0,0 )=
=c(rlld o+ lellf o+ Il o+ Wl o= el o Wl o)

where ¢ >0 is a constant. The assumption (Z) of the theorem 2.4 is
obviously verified for each r = 0. Thus we may write

Sh=[w-9]-lim &°, (5.47)

e-0

where
S"N,M,L,Q, T) = J W*[N(x), M(x), L(x), Q(x), T(x)] +
0

+14 (N,M,L,Q, T), (548
and
€ ={NM,LeL*(2,E});Q TeL*(2,R*)| N, 5=0,
M, p+Q,=0,-L,g s+T,=0,(Q,+T,) ,+p=0,in02}.
(5.49)
We recall that w-9 stands for the weak topology of the space 9.

Remark 5.1 : The study of duality performed in Section 5 suggests that the
formulas given in the paper [2] for the complementary macroscopic potentials
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are not the general ones. After [4] we shall now present general results. We
preserve notations of our paper [2], where three-dimensional problems were
investigated.

(i) Frictionless case

The general form of the formula (5.15) of reference [2] is

W*(T) = inf {LJ J*, T—7)dy | e Sﬁer(T)} ,
Y] Jnr

where T € E2 is a macroscopic stress tensor and

Sper(T) = (T = S5¢) N {"' | J T(y)dy = 0} .
\F

The cone S;e, is still given by the relation (5.11) of reference [2].

(i) Frictional case — o y prescribed
Now the general form of the formula (5.25) of reference [2] is
WE (T, a*) = inf [ LJ J*@, T—7)dy | 7€ € e (T, T)} ,
Y1 Jnr

where
Cper(oy, T) = [T — A (@) N {T | f T(y)dy = 0} :
Y\F

and

H(a*)= {ve L2(Y\F, E2) | div, 7 = 0, in Y\F ; 7(y) n(y) takes opposite
values on opposite sides of Y; 7y <0, 7, € C(oy), 70+ |Y]| a* =0, on
F}.

(iii) Frictional case — o  unsprescribed

The complementary macroscopic potential W7 has now the following
form

ws, (T, A)Z_]_IY-IJ\ J*, T - a (T, A))dy,
YN\F

and replaces the one given by equation (5.31) of reference [2]. Here
o (T, A) is a solution to the following local problem :

for T € E? and A given, find o € € per(oy, T) such that

J <*@, T-0),7-0=>dy=0 Vre € (o T).
Y\F
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