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SOME OPTIMAL CONTROL PROBLEMS OF MULTISTATE
EQUATIONS APPEARING IN FLUID MECHANICS

by Frederic ABERGEL (') and Eduardo CasAs (T)

Communicated by Roger TEMAM

Abstract — This work deals with two optimal control problems associated to the steady state
Navier Stokes equations The state of the system is the velocity of the fluid and the controls are
the body forces or the heat flux on the boundary In the second case the Navier-Stokes equations
are coupled with the stationary heat equation The control problems consist in minimizing a cost
functional involving the turbulence Some control constraints can be added to the problem
Existence of an optimal control 1s proved and some optimality conditions are derived In both
problems the relation control — state 1s multi-valued and therefore the derivation of the
optimality conditions 1s not obvious To overcome this difficulty, we introduce an approximate
farmily of optimal control problems governed by a well posed linear elliptic system, we obtain
the opumality conditions for these problems and then we pass to the limit The approach
followed 1n this study can be used in the numerical resolution of the optimal control problem

Résumé — Nous étudions deux problemes de contrdle optimal se rapportant aux équations
de Navier-Stokes stationnaires L’état du systéme est le champ de vitesses dans le fluide, et les
contrdles sont, soit les forces volumiques, sout le flux de chaleur au bord , dans le second cas,
les équations de Navier-Stokes sont couplees avec I’ équation de convection-diffusion pour la
température, dans I’approximation de Boussinesq On cherche a mimimiser une fonctionnelle
caractérisant I'état de la turbulence a I'intérieur du fluide, éventuellement sous certaines
contrawites poriani sur les comrdies Nous prouvons | existence d' un contrble optimal, et
donnons les conditions d’ optimalité qui le caractérisent Dans les deux cas, la relation contrble-
état est multivaluée , nous surmontons les difficultés que cela entraine en utilisant une famille de
problemes approchés, qui suggérent par la méme occasion un algorithme numérique adapté a la
résolution de ces problemes
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224 F. ABERGEL, E. CASAS

1. INTRODUCTION

In this paper we study two optimal control problems that consist in
minimizing a cost functional involving the vorticity in the fluid. The controls
are the body forces or the heat flux on the boundary. The state is the velocity
of the fluid and the equations relating the control and state are the Navier-
Stokes equations. If the control is the temperature then the heat equation
must be added to the previous ones.

This type of problems have been studied by Abergel and Temam ; the
time-dependent two-dimensional case can be studied directly [1], whereas,
for three-dimensional evolutionary flows, they obtain partial results [2],
which comes from the fact that the Navier-Stokes equations are not known to
be well posed. For time-dependent problems, one should also mention recent
results by Choi et al. [4], which pertains rather to the problem of
characterizing a feedback control operator.

When the stationary equations are considered, the nonuniqueness of
solution occurs in dimensions two and three. Hereinafter we will deal with
this situation : stationary equations. In order to simplify the exposition we
will only consider the three-dimensional case, however the results and
methods are the same for the two-dimensional flows. The control of the
stationary Navier-Stokes equations has been investigated by Gunzburger
et al. [6], [7]. They derived the optimality conditions for these problems by
using a iheoreimn of Ioffe and Tikhomorov [8] and assuming a property, called
property C, on the feasible control set. We will follow a different approach
which allows us to deduce some optimality conditions of Fritz John type for
any convex feasible control set and derive these conditions in a qualified
form when the property C is assumed. Our approach provides a numerical
method to deal with these multistate equations and solve the control
problems.

In [2], the authors use a method similar to ours, in order to deal with the
optimal control of the high frequencies for the stationary Navier-Stokes
equations.

In the next section we formulate a distributed control problem that
corresponds to the control by the body forces. We prove the existence of a
solution for this problem and derive some optimality conditions satisfied by
the optimal controls. To obtain these conditions we introduce a family of
control problems that approximate the initial problem and that are associated
with linear and well-posed state equations. We deduce the optimality
conditions for these problems and then we pass to the limit and derive the
desired conditions for our control problem. In Section 3 this scheme of work
is repeated for a boundary control problem, the control being the temperature.
For a precise account of the methods and results of the optimal control
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CONTROL PROBLEMS IN FLUID MECHANICS 225

problems governed by partial differential equations, the reader is referred to
Lions [9].

Before finishing this section let us introduce some notation. The fluid is
supposed to occupy a physical domain 2 < R>. We assume that £2 is
bounded and its boundary I is Lipschitz, 7 (x) denoting the outward unit
normal vector to I" at the point x ; see Necas [11]. LZ(.Q) is the space of
square integrable functions and H'(£2) is the Sobolev space formed by the
real-valued functions which, together with all their partial distributional
derivatives of first order, belong to L>(£2). H}({2) is the subspace of
H'(£2) constituted by the functions of null trace and H~!(£2) is its dual. We
set

Y={ye H'(2)):divy =0} and Y,= {ye (Hy(2))Y:divy =0} .

It is well known that Y and Y|, are separable Hilbert spaces ; see Temam [1].
Finally ¢  will denote a fixed element of (H'?(I"))?, H'?(I") being the trace
space of H'(£2), such that

$r.7n=0 onT. (1.1)

In Appendix we will prove that for every # =0 we can find an element
qZ € Y such that the trace of ¢ on I'is ¢ and

3
‘ Z Vi 8,2 ?; de| s p ”;“ H (@) ”E“(Hl(ﬂ)f Vy,ZeY,. (1.2)

Lj=1+v02

2. A DISTRIBUTED CONTROL PROBLEM

7 NII1QAMITG TS ies SO 1 e

nsider 1ary viseous ;u\,mupxcomble flow 1n §Z; the
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0
equations of motion are

{_VA§+@.V)§+Vw=f+Buinn, @1

divy=0inf2, y=ééronl,

where » >0, fe (H'(2)P, Be LU, (H'(2))®), ue U, U being a
Hilbert space. y is the velocity,  the pressure, f the body forces and u is the
control that can act over all domain {2 or only over a part of £2 or even only in
a given direction of the space. All these possibilities can be treated by
choosing a suitable space U and the corresponding linear mapping B.

It is well known that (2.1) has at least one solution
(3, 7)€ (H§(2)) x L*(2); see for example Lions [10] or Temam [13].
However there is not, in general, a unique solution.
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226 F. ABERGEL, E. CASAS
Now we define the functional J: (H'(2))’ x U > R by

- 1 - N
160 =2 [ 1vxsrace Xz,

v

with N = 0 and
VXY= (85 — 92 .01 — 8x¥3 35 Y2 — 3x)1)

denoting the vorticity of the flow. The physically relevant term in J is of
course

%L IV x 7|2 dx,

which provides an estimate of the level of turbulence within the flow.
Given a nonempty convex closed subset K of U, we formulate the optimal
control problem as follows :

Minimize J (3, u)

P1
( ){ (>, u) € (H'(2)) x K and (3, u) satisfies (2.1) for some 7 € L*(£2).

The first thing to study is the existence of a solution of (P1).

THEOREM 2 : Assumed that N = 0 or K is bounded in U, then (P1) has at
least one solution.

Proof : Let {( uk)}:;l c (H'(2))’ x K be a minimizing sequence.
From the definition of J and the assumption of the theorem it follows that
{u;} ZO=1 is a bounded sequence in U. Now using (2.1) we deduce the

estimate

”5;"”(1.]1(_(2))3sc1||f+Buk|[ C2$

H @)y +

<Cy (170l yrorgapy + IBN Il ) + Co=C

where C, depends on J; r

Thus we can take a subsequence, denoted in the same way, and an element
G ug) € (H'(2)) x U such that Gy, u) » (o, Up) in (H'(R2)) x U
weakly. Using the compactness of the inclusion H' ()< LS(n)itis easy to
pass to the limit in the state equation and verify that (¥, u,) satisfies (2.1) for
some pressure 7, Since K is convex and closed, we deduce that
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CONTROL PROBLEMS IN FLUID MECHANICS 227

uy € K. Finally, from the convexity and continuity of J it follows the lower
semicontinuity of J in the weak topology, which allows us to conclude that

J (o> ug) < lim infJ (¥, u,) = inf (P1),

k-

and thus (¥, ug) is a solution of (P1). O
We now state the optimality system for Problem (P1).

THEOREM 2.2 : If (3, ug) € (H (22 ))® x U is a solution of (P1), then there
exist a number a = 0 and some elements py e (H' (2))’ and my, Ay € L*(2)
verifying

@+ “ﬁ()” H @)y =0, 2.2)
_VA§o+@o-v)j"0+V7To=f+Bu0in.Q 2.3)
divy,=0inQ2, Yo=éronTl,

— v APy — Go-V) Do+ (V¥o) Do+ VAg=a Vx (Vx¥)in 2 2.4
divp,=0in2, py=0onT,
B*Pg+ aNug, u —ug)y =0 Vuek. (2.5)

Before proving this theorem let us remark that sometimes it is possible to
get (2.3)-(2.5) with a = 1. Following Gunzburger et al. [7] we say that the
control set K has property C at (¥, 4p) if for any nonzero solution

@, m)e (H'(2)) x L*(2) of the system

— v AP — 3g-VIP+ (V¥) P+ VA =0in 2

. . (2.6)
(divp=0inf2, p=0onIl,
we can find u € K such that
B*Pp,u—uy)<0. 2.7)

Convention will have it that property C is to hold vacuously if there are no
nonzero solutions of (2.6).

COROLLARY 2.3: If K has property C at (Yo, Uy), then there exist
Do € (H'(2)) and 7y, Ay e L2(2) verifying (2.3)-(2.5) with a = 1.

Proof : It is enough to remark that (2.6) and (2.7) implies that
a # 0 in (2.3)-(2.5). Then we can replace p, by py/a and so deduce the

desired result. O

vol. 27, n°® 2, 1993



228 F. ABERGEL, E. CASAS

Remark 1 : It is obvious that if U = K = (L*(£2))* and B = inclusion
operator from (L?*(2))® into (H~'(2))’, then K has property C at
Gos Uo)-

The rest of this section is devoted to the proof of the optimality conditions
exhibited in Theorem 2.2.

2.1. The problems (P1,)

In order to prove Theorem 2.2 we are going to introduce a family of
problems (P1.), whose solutions converge towards a solution @0, Uy), then

we will derive the optimality conditions for these problems and finally we
will pass to the limit in these optimality conditions.
First let us introduce some notations. We will denote by

a: (HY(2))P x H'(2)Y >R
and
b: (H'(2))P x (H'(2)P x H'(2)) >R

the bilinear and trilinear forms defined by

3
a(y, z)=Y. f Vy; . Vz; dx
j:lJﬂ

and

3
by, z, w) = Z Jy,azwdx—J G.V)Z.wdx.
z o

Concerning the trilinear form b, the following properties can be easily
proved for every (¥, Z, w) € ¥ x (H'(2)) x (H'(£2))*:

1) b3, Z, W)= —bG, w,z)if y.7#=0on I
2) b(y,7,72)=0ify.ni=0on I
3) |b6;’ E’ VV | = ||y“(L4(!2))3 ”Z ” H (2)) ”W” (L4(.(l))

On the other hand it is well known that y € (H'(£2))? is a solution of the
problem

Find y € Y such that
y = qu on I" and (2.8)
va(y, 2) + b, ¥, 2) = (f + Bu, 7y Viey,
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CONTROL PROBLEMS IN FLUID MECHANICS 229

if and only if there exists an element (unique up to the addition of a constant)
7 € L?(£2) such that (y, 7 ) satisfies (2.1) ; see Temam [13]. Problem (2.8)
is the variational formulation of (2.1).

Let us fix a solution (¥, #y) of (P1). For every ¢ >0 we define the

functional J, : {VveY:ﬁ'zz q_gronl’} x U >R by

. - 12 . 2
J.W, u) =J(Gw, u),u)+§—8 Y . |Vy, %, u) — Vw, |” dx +

J=1

1 1 2
o I o e L o 12
j=1

where y(w, u) is the unique solution of the variational problem

Find y € Y such that
Y =¢ronl and (2.9)
va(y,2) + b, ¥, 2) = (f + Bu, ) VieY,.

The existence and uniqueness of solution of (2.9) is a direct consequence of
the Lax-Milgram theorem and the second property of b stated above.
Now we formulate the problem (P1,) in the following way

Minimize J ,(w, u)

®1,) . . -
w,u)eYxK and w=4¢r on I.

We prove that each problem (P1,) has at least one solution and that they form
an approximating family for (P1) in a sense that we make precise.

PROPOSITION 2.4 : For every e =0 there exists at least one soiution
w,, u,) of (Pl,). Moreover if we denote by y. the solution of (2.9)
corresponding to (W, u,), then we have

3
tim |, — ugll, = Tim 5= 3 | |y, —Vw,[Pdx=0, (2.10)
n

£-0 £-0 J=1

W, >y, weaklyinY (2.11)

Y. —> Yo weaklyinY, (2.12)
lim Je(;{}s, us) = J(_'_);(), u()) . (2-13)
e—=0

vol. 27, n° 2, 1993



230 F. ABERGEL, E. CASAS

Proof : The existence of a solution can be proved as in Theorem 2.1. Let
us prove the second part of the theorem. Let { (., u,)} , be solutions of

(P1,). Since y(¥y, uy) = yp, we have
Je(vvw ue) $JE(3;O, uo) = J(S;m uo) ’
from where it follows

e = w012 <27 G o) => |12 < 47 Gior o) + 2] o], (2.14)

and
j |Vy€j—Vw€j|2dxs2€J(530, uy) >0 when e¢-0. (2.15)
0

From here and the identity y, = W, = ¢ on I" we deduce the convergence

(. — w,) — 0 strongly in (H'(£2))’. Thus there exists £, > 0 such that
Ve <egg. (2.16)

—

-
||ws —Ye

iy =1

Now let us take $ € Y verifying that q? = $,~ on I'and (1.2). Let us denote

- —

Zo. =Y. — ¢ € Y. Then we get from (2.9) with Z = 7,

Va(EOe’ EO&) = <f+Bus’ _Z.0€> - Va($7 E.015)_b(‘7vs’ $’ Z()e)a
so with (2.14)

+Co| b, &, %)

llzo e“in(n))a =sC, “E()s (@)

Taking w in (1.2) such that C, 4 < 1/2 and using (2.16) we obtain

||E°€||?H‘<m)3 <Ci|%.| w@y t Caf|Zo.| @y TC2 M 1%« ?H‘(n)f ’
then
120l g ays =€+
therefore
13: < Il | iy * 170l gniary <Cs- (2.17)

Then we can extract subsequences and elements (i, y) € K x Y satisfying
Uy — U in U weakly ,
Yewy— ¥ in (H'(2))* weakly and (2.18)
Wegy— Yy in (H'(2))* weakly ,
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CONTROL PROBLEMS IN FLUID MECHANICS 231

with (k) —» 0. From these convergences and using the Rellich’s theorem,
we can pass to the limit in

Va@e(k), Z)+ b("—{}s(k)’ ye(k)’ Z)= <f + Bu, ¢y 3>
and obtain
va(3,2)+ b3, 5. 3)= (f +Bu, Z) VieY,. (2.19)

From (2.19) we deduce the existence of an element 7 € L?(£2) such that
(¥, w) and u satisfy (2.1), therefore (¥, u) is a feasible point for
(P1). On the other hand, since (¥, ;) is a solution of (P 1), we have

. - 1¢
JO, u)sJ(y,u)+§ Z

1
Iy/ _y0]|2dx+5 ”u_uO”?]s
1=1912

= llm ianS(k)(va(k), ue(k)) = J(S;O’ uo) = J(S;, u) s

k> o

which implies that y =3y, and u =u, Thus the whole family
{Wo, Vo us)}s , converges to (3, Yo, 4p) weakly in H'(2)) x
(H'(2))® x U. Now (2.13) is deduced in the following way

J Qo up) < lim infJ (W, u,) < lim supJ (W, u,) <J Qg Up) .
-0 e0

Finally (2.10) is proved

: 1 1
im o (525 [ 199, = v P o - ) =
n

e-0 =1

< lim sup [J,(W,, u,) —J (¥, u,)]

e—=0
< lim supJ,(W,, u,) — lim infJ(y,, u,)<O. O
-0 e—0

The following theorem states the optimality conditions for (P1,).

PROPOSITION 2.5: Let us suppose that (W, u.) is a solution of

(P1,), then there exist two elements y, €Y, with y, = J;F on Iy and
D. € Y, such that the following system is satisfied

va(y, 7) + b(w,, ¥ ) = (f + Bu,) VZieYy, (2.20)
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232 F. ABERGEL, E. CASAS
Va(ﬁsv _Z') - b(;{)s’ ﬁe’ E) - b(_Z', ﬁz’ 535) =

=J (Vx¥).(VxZ)dx+ Z Oy —Yo,)z,dx YZ €Yy, (2.21)
0

J=19v42

B*p,+Nu, +u, —up,u—u)y=0 Yuek. (2.22)

Proof : Let ¥, €Y be the solution of (2.20) and let us take p, € ¥,
satisfying

Va(ﬁe’ 2) - b(we? I—sey E) =

3
=J‘ (VX__);E).(VXZ)dX+Z (ye]—yOI)Zjdx'i’
n

j=198
1 -
+ = Z (Vygj Vw,)Vz, dx VZieY,. (2.23)
j =1

Now, given w € Y, and u € U we denote by Z; and 7, the elements of

Y, verifying
va(Z;, Z2)+ b(w,, 23 2) + bW, ¥, 2) =0 VZieY, (2.24)

and

va(z,, )+ bW, 7,,2) = (Bu, z) VZeY, (2.25)

respectively.

It is easy to verify that J, is of class C' and we obtain with (2.23)-(2.25) for
every (W, u)e Yo x U

oJ, ., o - -
_v(wg,ug).w=J (Vxy.).(Vxz;)dx
ow 0

+ = Z (Vysj —Vw,). (Vz;, — Vw, )dx + Z (yej Yo,) ziy, dx

I"l 1=1

Va(l_ie’ Ef{))_b(ﬂ)a, ﬁe’ )__ Z (Vygj—VWq)ij dx

j—l

= va(Zz, p.) + bW, Zy, P.) — — Z (Vyej Vw,,) Vw, dx
j=l

. S
bb, e ¥o) —;ZJ (Vy, — Vw,,) Vw, dx (2.26)
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CONTROL PROBLEMS IN FLUID MECHANICS 233

and

o, - -
v W, u,).u= J (Vxy,).(Vxz,)dx+N (u, u)y
0

1 3
+ = Z . (Vyg — Vw,;).Vz,; dx

=1

3
+ z J (ysj'—yoj)zujdx+(us-u07 u)U
i=1 Y8

=va@,, 2,) — bW, Py Z,) + N (U, u)y + (4, — ug, u)y

= va(Z, )b + W,, Z,, p.) + Nu, + u, — ug, u)y

= (Bu, p.) + Nu, +u, —ug, uly = B*P. + Nu, + u, — g, u)y .
(2.27)

Since (w,, u,) is a solution of (P1,) there holds

aJ,

—

ow

a,
W, u). w=0VweY, and a(we,us).(u—ug)zo Vuek.

These relations together with (2.26) and (2.27) allow us to obtain (2.22) and
3
by P F) == ¥ J (Vy, — Vw,) Vw dx Vibe¥,. (2.28)
£
j=19Y02

Finally (2.21) follows from (2.23) and (2.28). O
It is obvious that the optimality conditions (2.20)-(2.22) can be written in
the following way.

COROLLARY 2.6: If (W, u,) is a solution of (Pi,), then there exist
elements y,, p. € (H'(2))* and A,, =, € [*(2) such that
— VAV, + W, . V)Y, + V7, =F +Bu,in

- - - (2.29)
divy, =0 in2, y,=¢r onl,

~v AP, — W, V)P, + (V¥ P, + VA, =V x (VX J,)+ Y, — Yo in 2
divp,=0 in2, p.=0 onlI,
(2.30)

B*p,+Nu, +u, —ug,u—u,)y=0 Yuek. (2.31)

Remark 2 : The method described in this section provides an efficient
numerical scheme to solve Problem (Pl); obviously, the functional

vol. 27, n® 2, 1993



234 F. ABERGEL, E. CASAS

J, should be modilied by removing the last two terms. Proposition 2.4 may
then fail to be true, but, under the assumptions of Theorem 2.1, it is still
possible to prove that {u.} _ is a bounded sequence in U and every weak

limit point, when &€ — 0, is a solution of (P1l). In fact these subsequences
converge strongly in U if N > 0. Furthermore y, — y, weakly in (H'(£))?
and inf (P1,) - inf (P1).

2.2. Proof of Theorem 2.2

We are going to pass to the limit in the system (2.20)-(2.22) with the help
of Proposition 2.4. In this process the essential point is the boundedness of
{p.} ., in (H'(£2))’. First let us assume that {p.} ._o is bounded in
(L?*(£2))*. Choosing in (2.21) Z = p, and remembering the properties of the
trilinear form b we get

Va@m 55) + b(ﬁe’ y:v ﬁe) =

3
=J‘ (nys)'(vxie)dx+ Z (ysj_y()])psjdx’
n 2

y=1

therefore

2 W a4
(Hl(!)))3 = C l(lb(pz-:, yg’ ps)

1_55| + ”135”(”1(0»3)5

= C2I|ﬁ€||fL4(0))3 + Cl “ﬁe (2.32)

H'@)y
From the inequality (Temam [13, page 296})

18] ogarp = V21Bell (2 1Bl i (2.33)

and (2.32), we obtain

which proves the boundedness of {p,} o in A 1(2))*. Then we extract a
subsequence, denoted 1n the same way, and an element p, € (H!(£2))’ such
that p, — Py weakly in (H'(£2))>. Now it is easy to pass to the limit in (2.21),
using (2.10) and (2.12), and obtain for every Z € Y, :

-

32
Pe

H'(2)

p.

iHl(ﬂ))3$C3”ﬁ5“ )3+C1|

H (@)’

Va(ﬁo, Z)— b@o, ﬁo, _Z.)— b(f, i)’o, 3;0) = J (V X 3’.0)- (V X _Z.)dx.
0
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CONTROL PROBLEMS IN FLUID MECHANICS 235

From here follows the existence of A€ L?(£2) verifying (2.4) with @ = 1.

Analogously, we can pass to the limit in (2.20) and derive (2.3). Finally (2.5)
is easily deduced from (2.22).
If {;35}9 , is not bounded in (L*(2))® we set

1 —-0 when ¢- o

@,

”p€” 2@y
and again we denote @, p, by p,. Then (2.21) and (2.22) turn into
Va@e’ E) - b(v_{}w Z)e’ 2) - b(_Z., I_js’ 5;6) =

3
=a€J (VX}E).(fo)dx-f-agZ (Vg —Yo,)z,dx YZeX,,
n j=1v 12

and

B*p.+a.Nu,u—u)y=0 Yuek

respectively. Now repeating the previous argument, we derive (2.3)-(2.5)
with @ = 0. It remains to prove (2.2) or equivalently that p, # 0. From the

weak convergence p, — Py in (H'(£2))’ and Rellich’s theorem, follows the
strong convergence of {p,} ._o 0 Pin (L2(£2)), which proves, remember-

ing the redefinition of p,, that

Pe o

B0l 20y = shfz) 1Pl 2 ayy = 1

3. A BOUNDARY CONTROL PROBLEM

It is very important to consider the applicability of the method we present
here to more realistic problems. In this section, the issue of controlling the
turbulence caused by heat convection is considered. We study a boundary
control problem, and the state of the system solves the equations of

— v A+ G.V)Y+Var=f+Brin2,
—KAT+Y.Vr=ginf2,

divy =0in2, y=¢ronl,
r=honly, 8,r=uonl,,

(3.1)

where v, k = 0, f € (H ' (2)), B € L™(2)), g € LI5(R), h € H'>(I,),
uel ('), T=TyUrl, I'hyNI''=¢ and o(I'y), o(l,)>0. The
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reader is referred to [1] for an application of Problem (P2) to the case of a
fluid in a dirven cavity. Here y, 7 and f are the same things as in (2.1), 7is
the temperature inside the fluid and u is the heat flux through the boundary.
The control problem is formulated in the following way

Minimize J (y, u)

P2) ~ 1 3 - _
| O, u) € (H' (2)) x K and (y, u) satisfies (3.1) for some (=, 7),

with J : (H'(2))® x L}*(I";) > R being defined by
J@',u):lJ- |Vx§|2dx+jij |u|?do ,
2, 2 ),

N = 0 and K < L>(I";) nonempty, convex and closed. In this problem the role
of the control is to cool suitably the fluid from a part of the boundary in order
to minimize the turbulence inside the flow.

Let us remark that the hypothesis g € L9°(2 ) is made to give a sense to the
Neumann boundary condition of (3.1). Thanks to this assumption the term
3,7 is well defined and the usual variational formulation of this problem is
equivalent to (3.1) ; see Casas and Fernandez [3]. Now we will analyze the
state equation. We will state the existence of a solution of the coupled system
(3.1) without any restriction on the size of the viscosity » and the diffusion
coefficient « ; see for example Gaultier and Lezaun [S5]. However we can not
hope, in general, to have uniqueness, therefore we are dealing with a
multistate equation ; see Rabinowitz [12].

THEOREM 3.1 : Assuming the above conditions, the system (3.1) has at
least one solution (3, w, 7)€ (H'(2)) x L*(2) x H' (). Furthermore
there exist constants M, M, > 0 such that

|7 ”H'(n> + ¥l CRED

sM1<||f|] a oy T 19050y + ]|u||Lz(,1)) +M,, (3.2)

where M, depends on ¢  and h, being zero when these functions are zero.

Proof : Let us set

T={red@2):7|, =0}.

Together with the bilinear and trilinear forms a and b defined in Section 2.1,
here we will need ay: H'(2) x H'(2) - R and

by: (H'(2)) x H(2)x H' (2) - R
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given by
ag(r, )= [ V7 .V{ dx
v

and

r

bo (3, T,s”):J G.Vr) ¢ dx.
n

To prove the existence of a solution of (3.1) it is enough to state that there
exists an element (¥, 1) e Y x H L2) satisfying

y=¢ronT, T=honTl

va(3,3) +bG, 3, 2) = (F. %) +f G.Pyrdx Viev,,
n

Kao(",é")+bo(5”s7',{)=<ga§>+J uldo VY¢eT. (3.3)

rl
- . . — o . .
Since Y, is a separable space, there exists a sequence {wk} wh1ch 1s a

Hilbertian basis of Yo Let Y, be the space generated by the functions
{wl, e wm} and let ¢ € Y with trace equal to ¢1~ and verifying (1.2). For

each fixed integer m = 1 we will prove the existence of an approximate
solution (¥,,, 7,,) € ¥,, x T of (3.3)

m
+ Y & mWs éem€R, T,=h onl,

va G W) + DG T Wi) = (F2 W) +J B W) tndx, l<k=m,
(]

kag(7,, £)+ boGpms T £) = J' gl dx + J‘ uldo V¢eT. (3.4)
n r

1

Let us prove that (3.4) has at least one solution. First we define the
mapping F :¥,, » Y, in such a way that F (W) is the unique element

Z,, that, together with 7,, € H'(£) verifying 7,, = h on Iy, satisfies

-

Va($ + Zma wk)+ b(‘; +ﬁ}’ ¢ + Em, 1X)k) = <f’ Wk) + J‘ (E °®k) Tm dx,
N

Kay(T g)+b0(¢3 +W, T £) = J g dx + J ul do
] r,

V(eT and l=sk=sm. 3.5
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It is an immediate consequence of the Lax-Milgram theorem that this
problem has a unique solution (Z,,, 7,,) € ¥,, x H'(2), remark that we can

find firstly 7, and then z,€Y,. Let us take ¢ € A'(2) such that
¢ =hon I'yand 3,4 = 0 on I'}, for example ¢ could be the solution of

— Ay =0 in 2
¢y =h onl,
9,y =0 onl,.

Let now p, € D(R?) verifying

_ (1 if dx I')=<el2
pe(x) {o it dx, T)=¢.

Given & = 0, redefining ¢ as p, ¢ and taken ¢ small enough, we can suppose
that

]‘¢l‘L4(n)s é . (36)

Taking 6,, = 7, — ¢ € T and setting { = €, in the second equation of
(3.5), we deduce with the aid of (3.6) and the identities

by(¥, 8, 8)=0 Y6 e H'(2) and Vy € Y suchthat y.n=0 on I,
by, 8, {)=—bo(¥, {, ) VO, { e H'(2) and Vy e Y

such that y.n =0 on I,
that
kay(0,, 0,) =
= J ggmdx+J‘ uemda~Ka0(¢9 0m)_b0($+q}’ ‘/lr 0m)a
0 r,
therefore

I 0"1”}1‘(0) =C, ( ”g||L6’5(_()) + H“”LZ(rl) + v “111(:2) + 9 “¢ + WH (Hl(n))3) ’
and

" Tm”yl(n) = Cl ( "g"Lw(n) + ”u”LZ(rl) + 8 "‘; + 1'_"’” (Hl(n))3> +

+ (1 + CI)II'I/“HI(_(I)‘
Analogously from the first equation of (3.5) we get

va(Z,, z,) =
= <_.’ Em> + J' (E 'Em) deX— VaO($7 _z.m)_b($+ 1'_{)’ 5’ Em)
n
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From (1.2) and the estimates for 7,, we obtain
||Em|| H @)y = C2 ( ”f” H (02 + ||g“L6'5(!l) + ”u”Lz(Fl) +

+ (8 + m)|w| @@y T 141l 2oy + “d’ II (Hl(n))3) ’

then

19 | ity =C3+ Ca@ + )Wl g g5 5

where C; is independent of w.
Choosing 6 and u in such a way that

C,(6 +p)<1/2

and setting r = 2 C ; we deduce that F applies the bail B, (0) of Y,, inio itself,
moreover it is easy to verify that F is continuous. Then by applying the
Brouwer’s theorem we deduce the existence of a fixed-point of FZ,,, and an
associated temperature 7, ,, in such a way that (d_; + Zoms Tom) 1S Obviously a

solution of (3.4). Now we can pass to the limit in a similar way as in Teman
[13 Theorem 1.2] and deduce the convergence of a subsequence towards a
solution of (3.3).

In order to prove (3.2) we will write y = q; +Zyand 7 = ¢ + 6, where
é and y are defined as above and Zp€ Y, and 6,€ T. Now putting
Z =Zpand ¢ = 8 in (3.3) and using the properties of the trilinear forms b
and b, we obtain

100l < Ca(1g 55, + Nl zery + 19 Dargay + 816 + Zoll yagars )

and

-

l|20‘| H'(@)) =C; ( “fn

ey T g1l osay + Null gz, +

+ (8 + )| 7o way t 19 12y + "J;" (H‘(ﬂ))3> ’

(]

which allows us to conclude (3.2) by choosing § and u in such a way that
Cs(6+up)=<1/2. O

We can proceed as in Theorem 2.1, using the estimates (3.2), and deduce
the following theorem.

THEOREM 3.2 : If N > 0 or K is bounded in L*(I",), then (P2) has at least
one solution.

Next we state the optimality conditions of problem (P2).
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THEOREM 3.3 : Let (¥y, uy) be a solution of (P2), then there exist a
constant « =0 and elements p, € H'(2)), T qoeHl(.Q) and 1,
Ag € L*(2) such that

a + |90/l 0, = 0 (3.7)
— v Ao+ Go-VFo+ Vmg=f+Bry ind2,
— K ATO + 57’0 . V’To = g ln—.() 5 (3.8)
divy,=0 inQ2, y,=¢r onl,
To=h only, d,7g=uy onl,
— v APy — Fo- VI Po + (V¥o) Bo+ VAg = 79 Vgp + aV x (V x ¥) in £2,
— k Agg— Yo-Yq9 = Bpy inQ,
divpo=0 inf2, Py=0 onT, (3.9)
qgo=0 only, 9,90=0 onIl,,

f (qo + aNuy)(u —uy)do =0 VYuek. (3.10)
T

Similarly to Theorem 2.2 here we could formulate a statement analogous
to that of Corollary 2.3, which would allow to conclude (3.8)-(3.10) with
a = 1 if K had property C at (3, 4y). The proof of this theorem follows the

same steps as that of Theorem 2.2.
3.1. The problems (P2,)
Let (¥, ug) be a fixed solution of (P2) and for each & > 0 let us define the

functionals J, : {v_t'/e Y:W=éron F} x L*(I')) > R by

J W, u)=JOW, u), u) + J | vy, (%, u)—Vlede+
n

D

1
2 &
7

™ -

[l

1 1
+ = j ij—y0]|2dx+5j |u~u0|2da,
2, 0 r,

1

where y (W, 1) is the unique element of Y satisfying together with an element
e H'(2)

5;’=$r onI” and 7=h onl,,

va(y, z) + b, 3, 2) = (f, Z>+j (B.Z)7rdx VieY,,
2

KaO(T,{)—i-bo(lj.V, T, {)= {9, {>+J uldo Y{eT. (3.11)
Fl
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Now we formulate the approximate control problem as in Section 2.1
Minimise J ,(w, u)

(w,u)eYx K and »_{1=q.7;, onI .

P2,) {

The proof of Proposition 2.4, with the obvious modifications, can be
repeated to derive the following result.

PROPOSITION 3.4 : For every =0 there exists at least one solution
W, u.) of (P2,). Moreover, if we denote by (y,, 7.) the solution of (3.11)
corresponding to (W, u,), then we have

. . 1
lim [lu, = ugll 2 = hnt)—(E 5 3 [Vy, — Vw,,|>dx =0, (3.12)

] £ =1

W, >y, wheaklyinY, (3.13)

Y. — Yo weaklyinY, (3.14)

fim {7, = 7l 0, = 0. (3.15)
lim J,(w,, u.) = J Go, Up) - (3.16)
e—0

The next step consists in deriving the optimality conditions satisfied by
W, u,).

PROPOSITION 3.5: Let us suppose that (W, u,) is a solution of
(P2,), then there exist elementsy, € Y, 7. € H' (), p. € Yyand q, € T such
that the following system is verified

§E=$r onI' and v,=h onTl,,

va(G. 2) + b, Yo 7) = (f> Z) +J (B.Z)r,dx YieY,,
ko)

kag(7o &)+ by 700 £) = (g, ) +J u,{do YeeT, (3.17)
ry

Va@w 2)_ b(ﬂjev ﬁe’ _Z.)— b(;, ﬁe’ 3;5) = bo(_Z., qes Te) +

3 ”~

+J (Vx}s).(Vx_z')dx{LZJ () —¥o,) 2, dx VZeYq,
n N

J=1

KaO(Qs’ {)—bo(\j\;g, qsa {) = J (E 'ﬁs){dx v§ € T: (3~18)
0
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Q. +Nu, +u, —ug)u—u,)do=0 VYuek. (3.19)
F]

Proof : The proof follows the same steps as that of Proposition 2.5. First
we take p, € Y, and ¢, € T satisfying :

G D)= bGa e D= [ Vx50 Wx Dt
0
3 13
; + Z f Oe —Yo,) 2, dx + = ZJ. (Vyy —Vw,)Vz dx VZel,,
J =vJ12 81=1 N
Ka()(qea {)_ bO(v_{)e, 9e ;) = J (5 '1—55) {d‘x V{ eT. (3.20)
0

Now, given w € Yy and u € L*(I"}) we denote by (Z;, 6;) and (Z,, 8,) the
elements of Y, x T verifying
va(Zz, 2) + bW, Z5, 2) + bW, ¥, ) = J (B.Z)0;dx VZey,
o

kag(85, &)+ bo(W,, 05, {)+by(W, 7,,{)=0 V{eT, (3.21)

and
va(Z, z2)+ bW, z,, 2) = J (E .2)6,dx VZeY,
o)
kag(8,, £)+ by(w,, 0, {) = J u{do V{eT, (3.22)
r
respectively.
With the aid of (3.20) and (3.21) we get
aJ,

— (W, uE).v_{/=J (Vxy.,).(VxZz)dx
ow 2

1 3 3
+; Z o (qu _Vwej)° (szv] —VW])dX-{'- Z (yq _yOJ)zﬁ:j dx

J=1 Jj=1 [

Lo Lo 19
= Va(p£7 Z;{,)—b(WE, Pes Zﬁ))_; Z (Vysj - VWE])ijd‘x
2

=1

3
=va(Zz, p.) + b(W,, z;, p.) — i— y (Vy, — Vw,,) Vw, dx
1=19Y20
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= b("_")’ ﬁs’ 5; )+ KaO(qs’ 0') - b()("_")u qes 0»‘»)

- Z (Vyﬁj - Vw,,) Vw, dx

)~l

= b("_{}a l_;51 5;5) + Ka()(oﬁn qe) + bo(;"’z’ 0@’ qe)

ml»—-t

3
Y, J (Vy, — Vw,,) Vw, dx
SSde

= b( ye) + KaO(eﬁn qs) + b()("_{)e’ 0;{” qs)

Pe,
3
— Z (VyE]—Vw ) Vw, dx

w,
1
£,

3
= b(;{)9 _ﬁg’ is)+b0(f{1s qes Te)“é Z J. (Vys] —sz])ijd.x. (323)
j=19Y2

Using now (3.20) and (3.22) we obtain
aJ,

&

—J (V><§€).(VxEu)a'xﬁLNJ~ u,udo +
n r,

J (Vy, —Vw,,).Vz, dx
j—l

+ Z @e]_yO])zujdx+J (”a*uo)"da'

j=19v482 ry

=va@, z,)- bW, P, 2,) + N J

r

uEuda+J (u, —ug)udo
Ty

=va(Z, p.)+bW,, Z,, D) + Nu, +u, —up)udo
r]

= J B .p.)0,dx + J (Nu, + u, — up) u do
o r,
= kay(q,, 9,) — bo(W,, ., 0,) + f Nu, +u, —ug)udo
rl

= xay(8, q,) + bO(v_{zE, 6, q9,)+ J Nu, +u, — uy) udo
rl

= J (s + Nu, + u, — ug) udo . (3.24)
rl
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We finish the proof as in Proposition 2.5, taking into account this time the
relations (3.20), (3.23) and (3.24). O

COROLLARY 3.6: If (w,, u,) is a solution of (P2,), then there exist
elements y,, p. € (H'(2)), 7., q.€e H(2)and A, =, € L*(2) such that

— VAV, 4+ W, V)Y, + V7, =f+ BT, inQ,

—KATEﬁ‘—v_{/s.VTE:g in 2,

divy,=0 inQ, ¥,=¢, onl,

7.=h only, 3,7/, =u, onl,, (3.25)
~v AP, — W, V)P, + (V3 ) P+ VA, =
=7.V9, +Vx (VXY )+y.—Yy in2,

~ Kk Aq, —W,.Vq, = Bp, inQ2,

divp,=0 in2, p,=0 onlT, (3.26)

q.=0 only, 98,49,=0 onl,,

(q.+Nu, +u, —uy)u—u,)do=0 Vuek. 3.27)
rl
3.2 Proof of Theorem 3.3

In order to pass to the limit in the system (3.17)-(3.19) we will proceed as
in Section 2.2. First, from the last relation of (3.18) we obtain

De (3.28)

”qe”H‘(n)écll HY (@)

Now, from the first relation of (3.18) we derive with the aid of (3.28) that

iy < Ca([b@e Ber 3| + [bo@Bes 4o 7| + |

= Cs(|

-

P

3) =<

P.

H (2))

(3.29)

Pe iL“(n)f + “ﬁf”(t‘(mﬁmf @y T |5€ (H“‘(mﬁ)'

From (2.33), (3.28) and (3.29), we deduce that the boundedness of
P}, , in (L?(£2))’ implies the boundedness of {g.} _, and {p,} in

=0
the spaces H () and (H 1(2))» respectively. Therefore we can argue as in
the proof of Theorem 2.2 distinguishing two situations, according to whether
{p} , is bounded in (L*(£2))’ or not. In this way we can pass to the limit

and derive (3.8)-(3.10) with @« = 1 or @ = 0 and
”50” @y - 1
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In this second case, we deduce from (3.9) that g, can not be null, which
proves (3.7). O

APPENDIX

The aim of this appendix is to prove that for every ¢, e (H"2(I"))
satisfying (1.1) there exists at least one element J; € Y with trace equal to
¢ r and verifying (1.2). Here we will follow Temam [13 Lemma 1.8 and

Appendix I]. Whereas the proof of Temam assumes I of class C 2, here we
only will assume that I"is Lipschitz. However our proof uses the hypothesis
(1.1) in a essential way, which is not necessary in [13].

Before stating the main result we need to prove a lemma.

LEMMA A.l : There exists an element & € Y N H>(2 ) such that the trace
of p =curlgeYonis ¢r.

Proof : Since (HY?(I'))® is the trace space of (H'(£2))%, there exists an

element @, € (H'(£2))® such taht y (@,) = ¢ . From (1.1) and the formula
of integration by parts, Ne€as [11] we obtain

J div &, (x) dx = J D, (x).n(x)do(x)=0.
0 r
Then Lemma 2.4 of [13] proves the existence of a function 52 e (Hy(2))
such that div 952 = —div 51. Therefore 53 = 431 + 52 € Y and its trace is
ér.

Let B,(0) be a ball of R? such that 2 < B,(0) and take @, :B,(0) > R
defined by

- 153(x) if xe 2
D =
r&) { 0 if x¢ 2.
Then @, € (L2(£2)) and V¢ € D (B,(0)) we deduce from (1.1)

div(i;, =—(d .,V
< 4 '/'>D'(B,(0))D(B,(0)> < ” ¢'>D'<B,<0))D(B,(0)>

- J @ (x) Vi (x) dx
0

J div 53(x)«//(x)dx—J D,(x). n(x) ¥ (x)do(x) =0,
n

r
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which proves that div 95, = 0. Then Proposition 1.3 and Lemma 1.5 of
Appendix I of [13] allows us to deduce the existence of an element
@, € Y N H*>(2) such that @, = curl @,. Then the restriction @ of &, to 2
verifies the statement of lemma. [J

PROPOSITION A.2: For any u = 0 there exists an element qg € Y whose
trace is ¢ and that verifies (1.2).

Proof : Taking into account that p (x) = d(x, I") is a Lipschitz function in
{2, we can follow the approach of Lemma 1.9 of [1] to deduce the existence

of a function 8, € C%(£2) such that

6. = 1 in some neighbourhood of I",

0.,=0 if px)=26(e), b(e)=exp(—le),
&
9,6 = —— i = sj=n.
| x, L) e if px)<28(e), l=sj=n
Now we can take $ =curl (0, ¢), ¢ satisfying the conditions of
Lemma A.1. Thus we have

3
= Zl ||y] ¢] ” (Lz(n))3||2|l H (2)) Vi", Ze Y,
1=

3
Z yl axxzj ¢J dx

,y=1 0

and the proof can be continued as in Lemma 1.8 of [13]. O
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