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CONTROL/FICTITIOUS DOMAIN METHOD FOR SOLVING
OPTIMAL SHAPE DESIGN PROBLEMS (*)

by J. HASLINGER ("), K.-H. HOFFMANN (?) and M. KOCVARA (3)

Communicated by O. PIRONNEAU

Abstract. — Combining a fictitious domain and an optimal control approach, we present a
new method for the numerical realization of optimal shape design problems. This approach
enables us to perform all calculations on a fixed domain with a fixed grid. Finite element
approximation is studied.

Résumé. — On présente une méthode nouvelle pour la résolution numérique des problémes
de I'optimisation de la forme. Cette méthode est basée sur la combinaison d’une méthode des
domaines fictifs avec une méthode de contréle optimal. L’ avantage de cette approche est le fait
qu’on peut réaliser tous les calculs sur un domaine et un maillage fixe.

Shape optimization is a branch of the optimal control theory, in which the
control variable is connected with the geometry of the problem. Mathematical
analysis, including the approximation theory and the numerical realization,
has been widely discussed in [4, 7]. The numerical realization of optimal
shape design problems has specific features. One of them is the fact that the
state problem is solved many times on the domain, changing during the
computation. For domains with complicated shapes this requires the use of
mesh generators. Moreover, data, defining the finite dimensional approxi-
mation (stiffness matrix, etc.) have to be recomputed again and again. As a
result, the whole procedure is time consuming and hence expensive.

To overcome this difficulty, the control/fictitious domain method is
proposed. The method has been used in [1] for the numerical solution of the
Helmholtz equation. Nevertheless, the same approach can be used in the
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fram ot the shape optimizauon. Introducing the new control variable on the
right-hand side of the state problem, one can transform the original optimal
shape design problem into a new one, in which the state problem is
formulated and solved on a given, fixed domain 2 with the same differential
operators. The advantage of this approach is obvious : choosing the simple
shape of £, the construction of triangulation of {2 is elementary and what is
more important, all computations are realized with the same stiffness matrix
A. Using the factorization of A, one can solve very efficiently the
corresponding system of algebraic equations. An alternative approach, based
on the control on the boundary is suggested in [9].

The present paper deals with the mathematical analysis and the approxi-
mation of the control/fictitious method for the numerical solution of the
optimal shape design problems, with the state given by the homogeneous
Dirichlet problem in the first part. The second part of the paper deals with the
numerical realization of the method. For the sake of simplicity, numerical
experiments are performed for the state, given by an ordinary differential
equation. [he experiments tor partial ditterential equations, as well as the
mathematical analysis of the control/fictitious method for the state, given by
variational inequalities, will be presented in subsequent papers.

1. INTRODUCTION
Lei 2 {(a) c R? be a bounded domain, defined as follows :
(@)= {lx, ] €R*|0<x; < a(x), x, € 0, 1)},
a is a design variable, belonging to the set U,y, where

Uyg={aeCo([0, 1D|0<Co=alx)=<C,,
|a’(xy)| <=C,ae. in (0, 1), meas 2 (a) = C3} .

Cq .-., C3 are given positive constants such that U, # & . Let
02 = (0,2C,)x (0, 1). Note that 2 5 2(a)Va € U,,.

On any 2 (a), a € U,, we shall consider the following homogeneous
Dirichlet boundary value problem :

—Au(a)=f in £2(a)
{ u(a)=0 in 32 (a) a.D

or in the meak form

Findu=u(a)e V;(a) suchthat

(g(a)) {(Vu, V‘P)!Z(a): (f’(p)n(a) V(DGVI(Q).
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CONTROL/FICTITIOUS DOMAIN METHOD 159

Here V (a) = H)(2(a)), f € L*(£2) and (., . )2 (a) Stands for the usual
scalar product in L*(£2 (a)).

Let J: [a, y] > R!, @ € Uy, y € H'(2(a)), be a cost functional. The
optimal shape design problem is defined as follows :

Find a * € U4 such that

®) {J(a*,u(a*))s](a,u(a)) VaUy,

with u(a) € V,(a) being the solution of (2 (a)).

In order to guarantee the existence of a solution of (P), we make the
following assumption.

J is lower semicontinuous in the following sense :

a, = a (uniformly)in [0, 1], a,, a € U,y

. . — (1.2)
y,— Yy (weakly)inV,y,, yeV

= lim infJ (e, yn|n”)>J(a, y|ma)).

n - o

Here and in what follows V = H}(£2) and 2, = 2 (a ).

PrOPOSITION 1.1 : If (1.2) is satisfied, then there exists at least one
solution of (P) (see [4]).
2. METHOD OF FICTITIOUS DOMAINS USED FOR THE SOLUTION OF (P)

Let

E(a)

V,(a)

O\2(a),
{ye H'(E(a))|ly=00n 3= (a \I'(a)} .

where

Fa@)={x, x%]eR?|x; = a(x,), x,€ (0,1)}, aelUy.

Recall that V,(a) = H{(2 («)), V = H}(£2). Symboles -0y ay Tl

and |.||y stand for norms in V;(a), V,(a) and V, respectively. The

corresponding dual spaces are denoted by V{(a ), V3(a) and V'. The duality

pairings between Vj(a) and V,(a), V' and V are denoted by (., . s

(., ., respectively, and || ||, , stands for the dual norm of w € V;(a).
With any « € U, the following set will be associated :

Q(a)= {v = (v, vy)|v, € L*(2(a)), v, € Vi(a)}

vol. 27, n° 2, 1993
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and we write

0= Q)

ae Uy

Instead of (1 1), we shall consider the homogeneous Dirichlet boundary
value problem on 2

—Aa(w)=v m

a(w)=0 ondf, @D

where v € Q will play the role of the control variable

If we prove that for any a € U, there exists U, € V;(a) such that the
restriction on {2 (a) of the solution #(v) of (2 1) with v = (f, ;) solves
(2 (a)), the following 1dea arises 1nstead of the state problem (£ (a)),
whach 1s defined on the variable domain (2 (« ), we shall use (2 1) as the state
problem for a new optimal control problem We shall prove that solutions of
the original optimal shape design problem can be approached by solutions of
the new problem The advantage 1s obvious The state problem (2 1) 1s still
solved on the same domain This 1s of a great importance for the numerical
realization All calculations are performed on a given, fixed domain

Let us introduce some notations and results, which will be useful in what

follows If ve Q(a), v = (v, V,), a € Uy and ¢ € V, we denote

def
v, el, = (1, @)@y + (v, ‘P>a (22)

For the sake of simplicity of notations, we use the symbol ¢ on the right-hand
side of (2 2), mstead of ¢ | @) and ¢ | 2 (@) It 1s readily seen that the formula

e, el,, o€V, veQ(a)

detines the linear, continuous functional on V', 1¢e O(a)c V' Hence, 1f
veQP(a) a elU, we have

v, p)=[v, ¢l, Ve eV

Letv e O, 1 e, there exists @ € U,y such thatv € Q (a) We shall consider
the weak form of (2 1)

Find i2(v) € V such that

(Z(a,v)) (Vit@), Ve ) = [v, 1, V(PEV

M2 AN Modelisation mathematique et Analyse numerique
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CONTROL/FICTITIOUS DOMAIN METHOD 161

In what follows, we establish the continuous dependence of & with respect
to variations of v € Q, a € U, To this end we need :

PROPOSITION 2.1: Let a,, a € U,y be such that a, = a in [0, 1] and let
v, = (L, Upy) € Q(a,) be such that :

the sequence {” vall } is bounded ; 2.3)

v,—v inV'. (2.4)

Then ve Q(a)and v, ¢], = lim [v,, "’]a,. Yo € V.

n-— oo

Proof : Let ¢ € 2 (2 (a)) be given. Then ¢ € Z(£2,) for n sufficiently
large and

<vn7 (P> = [vns (p]an = (vn17 (p)ﬂn = (Enl’ (P)D(a)_' <v, ¢> . (2'5)

The symbol " denotes the extension of the corresponding function by zero

from its domain of definition on 2. From (2.5) it follows that there exists
v, € L?(2 (a)) such that

(v, @) = (1, @lp@) Vo € 2 (2(a)). (2.6)
Now, let ¢ € V be given. Then
(Vps 0) = (O, ®)o, + (Vs ‘P>an—’ v, o).
Taking into account (2.5) and (2.6), we see that

lim <Uy!2, ‘P>a = <v- ‘P> — (v, @)

o) o
A4y
n

n— o

i.e., the limit is finite. Hence, the formula

¥ |E(a)'_) lim (v, ‘P>an

n-— o

defines the linear functional v, on V,(«a ). Let us show that v, € V;(a), i.e.,
v, is continuous. Let us assume that we have already proved that the
sequence {|]v,,2||* . } is bounded. As v, € V4(a,), then

| e @), | < Il , Nl my=clelly @, O @.7

(") In what follows, the symbol ¢ denotes a generic positive constant.

vol. 27, n® 2, 1993



162 J. HASLINGER, K.-H. HOFFMANN, M. KOCVARA

Passing to the limit with # — o0 in (2.7), we see that

him (v, @), [ <clelly,w -
n — oo

Let us prove that the norms ||v,,|, A remain bounded. As the family
{E (a), a € Uy} possesses the uniform extension property, there exists an
extension mapping 7 : V,(@) — V, the norm of which does not depend on

a € U, ie., if ¢ € Vy(a), the mp € V and

{ T =¢ inZ(a) (2.8)
I7elly <clielly,m:

with a constant ¢ > 0 independent on « € U,,. Let ¢ € V,(a,). Then there
exists a constant ¢ > 0, which does not depend on n and

|<vn2’ ¢>“’n| = I(vm Tl'(p) - (vnlv W‘P)!)J sc“‘p I|V2("‘n)

making use of (2.3), (2.4) and (2.8),. O
PROPOSITION 2.2 : Let a,, @ € Uy, v, € Q(a,), v € Q(a) be such that

a,=a inl0,1],

n V!

1) 7
it ¥ ’

and (2.3) be satisfied. Let i1, € V be solutions of (2 (a,, v,)). Then there
exists a subsequence {it,} of {i,} such that

”
v

Uy —u inV

and i solves (Z(a, v)).

Proof : The sequence {ii,} is bounded in V. One can find its subsequence,

satisfying (2.9). The fact that & solves (97 (a, v)) is obvious, taking into
account Proposition 2.1. a
We introduce further notations :

Q/(a) = {v= (v, v) € Q(a)|v; = fin 2 (a)},

o/ =) Qla),
Qla(a) = {v = (@, 1) e O/ ()| |0a. ,=<C},

Ol =) Ql(a).

a €Uy

M2 AN Modélisation mathématique et Analyse numérique
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Here C denotes the positive constant, which does not depend on a € U,,.
Let/: [a,y] > R!, a € Uy, y € H' (2 (a)) be a cost functional, satisfy-
ing (1.2).
For any ¢ > 0 we define :

1
E (@, v)=J (@, i) ) + 1J @) dx; ,
0

where u(v) e V is the solution of (?7 (a,v)) with v e Q{d(a ). The last
integral is defined as follows :

1 1
J’ (@@)y dx, = f () (@ (xy), x3)) dx, .
0 0

In what follows, we analyze the problem

Find (a#, v}) € Uy x Qfy(a ¥) such that

(). E(a¥, v¥)<E (a,v) V(a,v)e Uyx QLi(a).

We shall prove :

(j) the existence of at least one solution (af, v}) of (IA’)‘E ;

(j) the mutual relation between (P) and (P), if & — 0*.

PROPOSITION 2.3: For any & =0 there exists at least one solution
(a ¥, v¥) of (P)..

Proof : Let (a,, v,) € Uy x Qf;(a,) be a minimizing sequence of the
problem :

E,(a, v,)>q= inf E.a,v). (2.10)

U0l

“<au

Taking into account the definition of U,y and Qf;, we may assume that

a,=a in [0, 1]

v,—0v inV'.

Clearly @ € U,3and ¥ = (¥4, U,) € Q (&) (see Proposition 2.1). The fact that
,=fin 2(&) and ||v,||, , <C is obvious. Hence 7 € Qfy(@). Let us
show that (&, ¥) is a solution of (P),.. Denoting by #,, i solutions of
(.@(an, v,)), (@(&, v)), respectively, we have a subsequence of {12,,}
(denoted by the same symbol) such that

i, — i inV.

vol 27, n® 2, 1993
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This, (2.11) and (1.2) yield :

lim inf J(a,, i,|, )= J(@, i] 5 - (2.12)

n-— O

Using the similar approach as in [4], Lemma 1.1, one can prove
1 1
J (it,) dxzaj (@) dx, .
0 0

This and (2.12) give the assertion of Proposition. O
In Appendix we prove that for any & € U,, there exists b € Q/ (&) such

that the solution u(v) of (2 (a, ¥)) restricted on £2(&) solves (2 (a)).
Moreover, ¥ lies in a ball, radius of which depends solely on |[f| 24, (see

Appendix, (A.4)). Next, the constant C appearing in the definition of
Q! will be greater or equal to the number on the right-hand side of (A.4).
Hence, U with the above mentioned property is the element of QZ;(&).

Next, we analyze the relation between (P) and (f’ ). if € - 0*. To this end,
let {¢} be a sequence of the penalty parameters tending to zero. By
(lk)),c we denote the problem (I")s with ¢ = &,. We show that these problems
are closed in some sense.

PROPOSITION 2.4: Let (aj, vF)e Uy x Qli(af) be a solution of
(P Y and i}t € V the solution of (P (aj¥, v{¥)). Then there exist subsequences
{a,;’l‘}, {v,;;‘}, {LZ,;;‘} and elements a* € Uy, v* € Ql(a*) and t* e V
satisfying :

ak"l‘:>a* in [0, 1],
vF—v* in V', (2.13)
o ¥

u‘j——zi* inV.

Moreover, a™* is a solution of (P) and ﬂ*lﬂ(a*) solves (P (a™)).

Proof : Let {ak’:‘}, {v,;f} and {L‘t,gf} be sequences, satisfying (2.13) (their
construction is obvious). On the basis of Proposition 2.2 we know that
i* solves (2 (a*, v*)). The definition of (f’)k yields : (.(2,9 = (a,;‘))

* 0 = F) =
J(akl, ”"Tlnk]) <E, (@}, o)<
<E, (a,v) V(a,0)€ UpyxQs(a). (2.14)

M2 AN Modélisation mathématique et Analyse numérique
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Let us fix @ € U,. According to Proposition A.1 (see Appendix), there
exists U € Qﬁd(o?) such that ﬁ(ﬁ)|g(a) solves (£ (a)) and especially
u(@®)=0 on 32 (a) (let us recall that z(v) with v € Q,4(a) denotes the
unique solution of (P(a,v ))). Substituting (&, ¥) into the right-hand side of
(2.14), we have

EEkj(a,z']‘, vk’f)sE (a,v) =J(a, u(v)ln()

Hence

0<J @) dy = e, (J(a,u(v)|ﬂ() J(a,;‘,ﬁ,ﬂn'))—»O. (2.15)

k

At the same time
1 1
J (12;7)2 dxy — f @*)* dx, .
0 0

Comparing this with (2.15) we see that &* = 0 on I'(a *), i.e., i*|
solves (2 (a *)).

Let @ € U,y be arbitrary and u(&@) € V(&) be the solution of (2 (&)).
Then there exists ¥ € Q/;(&) such that & (D )| = u(a&) (see Appendix,

2(a*)

Remark A.1). Substituting &, ¥ and u(a )| 1nto the right-hand side of
(2.14), we obtain

J<a,:';, zz,:;|nk> <J(@, (@)
7

J(a*, ﬂ*lma*)) <J(@, u(@))

making use of (1.2). As ﬁ*]o(a*) solves (Z(a*)), a*e U, and

& € U,y is arbitrary, we arrive at the assertion of Proposition. O

Remark 2.1 : We may use an alternative approach. Up to now, we have
considered thatv = (v, v,) € Qf;. This means, among others, that v, = f on
2 (a) for some a € U,y We may regard the previous equality to be the
constraint, which can be treated by a penalty method again.

Let

Qu(e) = {v = @1, ) € Q@) o]l gy = T 22l < Cs}

vol. 27, n® 2, 1993



166 J. HASLINGER, K.-H. HOFFMANN, M KOCVARA

where C,, C, are given positive constants independent on a € U, and where
Il - l o, stands for the L?(£2(a))-norm Let us define

. 1 1t .
?E(CV, U)EJ(Q, u(v)lﬂ(a))_'_;Ilvl_f||_2(2(a)+zj (u(v))zde,
0

where (a,v)e Uy x Q,4(e) and @(v) 1s the solution of (P (a, v)).
We shall consider the following problem .

®) {Fmd (aX, v¥)e Uy x Quq(aF)such that

F. (a¥,v)=sF  (a,v) V(a,v)e Uyx Qy(a).
PROPOSITION 2.5: For any & =0 there exists at least one solution
(af, vF) of R)..

Proof 1s almost 1dentical to that of Proposition 2.3. We only have to show
that

{an=>a n [0, 1] 2 16)
v,—v MV, v,= U, 0,)€0(a,), v= (v, 0)eQ(a)
imply
im 1nf ||v,, _f||§)n; loy=£1%., - (2.17)
n—
Indeed, from (2.16), 1t follows that
U0, m L*(2(a)), (2.18)

where 7,; denotes the function v,; extended by zero outside of £, Let

Xn» X be the charactenistic functions of £2,, 2 (a), respectively. As a
consequence of (2.16); we have

X.—x mL*(2). (2.19)

Now
”vnl _f”in = ”Xn(r]nl _f)”iz
= ” (Xn_X)(ﬁnl _f)“il + ”ijnl _f”il(a)
Hence
Iim 1nf ||v,; —fllizna |v, “f“iz(a)
n - oo

taking into account (2.18) and (2.19) O

M2 AN Modélisation mathematique et Analyse numerique
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Also, the result parallel to Proposition 2.4 can be established. To this end it
is necessary to choose the constant C,, appearing in the definition of
Q.q(@) greater or equal to || f|l 2.,

3. APPROXIMATION OF (P),

The aim of the present section is to define and to analyze the discretization
(P),, of the problem (P), with & >0 fixed. As the next step, the relation
between (I")s and (f’ )ex for & — 0* will be established. Let us note that we are

not able to analyze the simultaneous limit procedure for ¢, 2 — 0*.

We shall start with notations and definitions of finite dimensional
approximations of sets, introduced in the previous section.

Let {Dy}y, H-0" be a family of partitions of [0, 1]
Dy:0=ag<a;<..<ayg =1, such that H < By H,,,, where B,=0
does not depend on

H= max |e,,—-a|, Hya= min |a,,,—aqa,].
1=0, ,N-1 1=0, ,N-1

With any Dy, the following set will be associated :

Ul = {ay e C(D, IDleyl,, €Pi@a . 1)i=0.,N- 1} NU,

i.e., U contains all functions from U,; which are piecewise linear on
Dy,.

By {G,}, h— 0" we denote a regular family of triangulations of

D

2, With any T, the set of continuous, piecewige linear functions on
{2 and vanishing on 32 will be associated :

Vv, = {yhe C@D)|ysl, € P1(T,) VT, € B, 3, = O on a{)} .

Ut, V, are the finite dimensional approximations of Uy, V, respectively.

Mesh sizes # and H are independent each other, however, we shall assume
that there exist positive constants 7, 7, such that 7, < #/H < 7,. This means
that discrete models can be characterized by one parameter, say A.

Let us recall that

2(ay) = {[Xl, x] € R2|0<xl<aH(x2), x, € (0, 1)} , aye UL,

By 2,(ay) we denote the set £2 (ay), the partition of which is done by the

vol 27, n® 2, 1993



168 J. HASLINGER, K.-H. HOFFMANN, M. KOCVARA
restriction of G, on £2 (ay), i.e., 2,(ay) = int (U T N0 (a,,)). Simi-

larly, E,(ay) = int (U T N E'(aH)>.
Further, let

Ly(ap) = {v, € L*(E,(ap)|v,|, € Po(T,) VT,
suchthat T, N E ,(ay)« J },

i.e., L,(ay) contains all piecewise constant functions on G,, restricted on
Z,(ay) and set

Onlay) = {1y = U, Wi, Wy, wip)|v € LX(2 (ay)),
Who» Whts Wip) € (Ly(ap))’} .
If ¢ €V and ), € Q,(ay), we define
2 3g
[ @ay= 0 @)y + Whos @)z + 3, (wl,,, e ) ~ .
J=1 7 ) Enlay)

Remark 3.1 : Q,(ay) can be viewed to be the approximation of
Q(a). To see that, let us recall that v = (v, v,) € Q(a) if and only if
v, € L*(2 (a))and v, € V,(a). The following representation of v, is known
(see [S]) : there exist functions fy, f,, f, € L*(Z(a)) such that

E(a)

(vss (P)a = (fo» ?)z(a) +,i (fp 2—; ) Ve e Vy(a) (3.1
and
| Fo f1s F CE@)P l|v | o (3.2)
In other words, the functions f,, f;, f, characterizing v, € V,;(a ) through
(3.1) are approximated by means of piecewise constant functions.
Finally, let
Of(ay) = {#h = (U, Wy, Wy, Wyp) € Qh(aH)|U = fin 2 (0’11)}
and
QLo nlay) = {my = (f, Wi was, i) € Qf(ap)]
[ 0¥100 wio wio)| EIERCIY C} ’
where C = 0 is the constant appearing in the definition of Qf;(a).
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Mathematical Modelling and Numerncal Analysis



CONTROL/FICTITIOUS DOMAIN METHOD 169

Instead of the state problem (£ («, v)), a € U, v € Q%;(a), we consider
its finite dimensional approximation :

Find #,(x,) € V, such that

(P (ay, #4)) . -
TR (Vi Vo)a = (kg Opla, VereV,,

where ay e U, u, € Q{:d,,,(a,,). For any & = 0 we define
Euam mn) =T am il , o )+ 2 [ )P dx
€ H> h/ = Hs Yh h 2,0’ T & 0 h h 2

where i, (u,) € V,, solves (2 (ay, ;)

By the approximation of (P),, & =0 fixed, we mean the problem

@) Find (a %, n %) € U x QL ,(a %) such that
P),
" \E(ak n5)<E(ay, p,) Y(ag m,) e Ul x 0l (ap).

Concerning the solution of (P),, we have

PROPOSITION 3.1: If (1.2) is satisfied, (P),, has at least one solution
(aly 1)

Proof is parallel to the proof of Proposition 2.3. O

Next, we analyze the mutual relation between (P), and (P),,, assuming

h — 07 . We shall show that under additional assumptions on J, the problems
are closed each other. Before doing that, let us summarize some basic results
needed in what follows.

PROPOSITION 3.2: For any a € Uy there exists a sequence {ay),
ay € U such that
ay=a, H-0" in|0,1]. (3.4)

Proof : See [2].
PROPOSITION 3.3: For any y€V there exists a sequence {y,},

Yy € Vh such that
Yo=Yy, h-0" inV. (3.5)

PROPOSITION 3.4: Let ay=a in [0,1], ayeUY, aeU,,
€ QL (ay) be such that

My — M IR V.
Then p € QLy(a).
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Proof : Let w), = (f, Wio» Wi Wiy) € QL 4(ay) and ¢ € V. Then

(s @)y, = Fs @)a(ay + Wios ® )z T (3.6)
2
e
+ Wy — » .
S (w52 ) = e

Let the symbol ~ denote the extension by zero of the corresponding function
outside of its domain of definition. From the definition of di’h(a g it
follows that there exist subsequences of (W}, {Wu} and {W,} that
converge weakly in L?(£2) to functions Wy, w, and W,. It is easy to see that

Wo=w; =w,=0 on 2(a). Letw, =w

Jls(a)’ Jj =0, 1, 2. One can easily

verify that

, ‘P)n(a,,)—’ f, ‘P)n(a)

Who» @)z,a) = Wo, ©)z(a)> ©tC.
Hence,

) = [,LL, ¢]a .
E(a)

2
o9
<M’ (P> = (_f’ ¢)ﬂ(a)+ (Wo, (P)E(a)+ Z <W], ax
J=1 ]

As || (wo, wi, wy)|| C, peQla)

=
CHE (@)

My € Q{:d, »(ay) be such that

OSITION 3.5: ILet oy— Ul o ecU,,

~ ad» L4

R
3
=
L
y—
e
R
B
m

my—p nV'.

If i, denotes the solution of (P (ay, w,)) then there exist a subsequence
{llh} = {it,,} such that

Wy —1u inV 3.7)
and €V solves (P(a, “)).

Proof : The construction of a subsequence, satisfying (3.7) is obvious. It
remains to prove that i solves (97’ (a, @)). But this is a direct consequence of
Propositions 3.3 and 3.4.

PROPOSITION 3.6 : Let a € Uy, n € Q;(a) be given. Then there exist
aye Ul and p, e Q{d,h(a,,) such that :

ay=>a, H-0* in[0,1]; 3.8)

wy — u (strongly) inV'. 3.9)
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Proof : According to Proposition 3.2, there exists a, € ULy satistying

(3.8). Let u € Qf,(a) be given,

2
d¢
s a — > a+wa Ea+ W, — s
(t, el = (f, @)aw) + Wo, @)z ,; ( : 6xj>5(a)

with f € L*(2(a)), w, € L*(E(a)), j =0, 1, 2. Recall that the symbol
~ stands for the extension of functions by zero from the domain of their
definition on 2. Let gy = Pw, j =0, 1, 2, where P is the orthogonal

projection of functions from L2(£2) on
L,(2)= {(p eL’(2)|¢|, € Po(T)VT € “Gh} )

Then the quadruple

My = (f‘n(aH)’ Whos Whis Wia) »

where wy, = g, | 2 (ay SAisfies (3.9). Indeed :

Hm))—m)uﬁ_’o’ H-0%*,

U%-W}“ﬁ—’(’, h-0", j=0,1,2.

The fact that 4, € Qf; ,(ay) is obvious.
In order to establish the mutual relation between (f’)g and (1")6,l for

h - 0%, we shall need, besides of (1.2), the following assumption,
concerning the continuity of J :

ifay=ain [0,1], aye UL, a € Uy
and =

if y, - y (strongly) in v, Yy € \7,,, y € 1%

= 1im J(ap Wil g ) = 7@ Yy - (3.10)
h-0*

The main result of this section is

PROPOSITION 3.7 : Let (3.10) be satisfied. If (a}y, 1Y) is a solution of
(f’)sh and uj, e V, is the corresponding solution of (2 (a s X)), there
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exist subsequences {aX;} < {ak}, {u}k} < {u}}, {ud} < {uk} and
elements a* € Uy, p¥* e Ql(aX), u* € V such that

a¥,=>a*, H 50", in[0,1];

ph —u¥*, h 50, inV'; (3.11)

ub, —ukr inV

and (a X, n k) solves (f’)a and ur is the solution of (@(a X, mEN.

Proof : The existence of subsequences satisfying (3.11) is obvious as well
as the fact that a* e U,, u*e Ol (a¥) and uX solves (P (a¥*, u*)).
Taking into account (1.2), we see that

E.(a* pw*)< liminfE (aX, p*%). (3.12)
& & H
h' 0"

Let (&, it) € U,y x Q4(&) be given. According to Proposition 3.6, there
exist @y € UL, ), € Ol ,(a@y) such that

@y=a&, H-0 in [0, 1] 3.13)

\Z, >, h=0" V',

If u, denotes the solution of (?(& > ) from Proposition 3.5 and (3.13),
we obtain

u, — u (strongly) in v,

with # being the solution of (?/3 (&, £)). Now, the definition of (f’)eh and
(3.10) yield :

liminf E,(a %, p %) <liminf E (&g, &,) =E. (&, @). (3.14)
B 0% B - 0*

As (&, £) e Uy x Qf;(a) is an arbitrary element, (3.12) and (3.14) yield
the assertion of Proposition. O

Remark 3.3 : The numerical realization of (P )e» has two great advantages :

1) the state problem is still solved on the fixed domain 0 with the fixed
triangulation G, ;
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2) the stiffness matrix of the state problem (2 (ay;, u W), does not change

during the calculations. The right-hand side of the corresponding linear
system is changed, only. This is of a great importance. Using the method of
factorization, one can solve very efficiently the discrete state problem.

4. SENSITIVITY ANALYSIS AND NUMERICAL REALIZATION OF (P),,

Let 4 = 0 and H = 0 be fixed. The state problem (2 (a o> M), expressed
in the matrix form reads as follows :
Au(a, p) = F (o, p), 4.1

where A is a symmetric, positive definite matrix (stiffness matrix) and
F (a, ) is a right-hand side vector given by

Fla,p)=Fi(a) + Fy(e, 1),

(Fl(a)),=J fe, dx,

2,(ay)

(F (e, m), = J_

dp, de,
Who(P,+Wh1_+Wh2— dx,

dax ax.

wlay) 1 2

i=1,..dmV,,

with ¢, being the (Courant) basis functions of Vh. Hence, the vector F

depends and the matrix A does not depend on the vector of discrete design
. N+3N +4
variables (o, p)€e R

2
a=(ag ay, ..., ay), a,=ay(a), i=0,1,..,N, 4.2)
B = (Woo, Wois -+ Won, W10 Wits --os WiNp» W20s Wols oo WiN,)
Wo, = whOl;-‘ v Wi = Whllrl » Wy, = Wh2|Tl ’
Ny
T.€¢6,, i=1,..,N,, =UT,,
t=1

H
for (ay, w)) € Usa x Qly w(ap), my= (f, Wi, Wips Wio).
Now it is important to notice that the mapping

a—u(e,p) 4.3)

is not continuously differentiable, in general. This is readily seen from the
following simple example.
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Example 4 1 Consider a one-dimensional boundary-value problem

Find a(v) € V = H)((0, 1)) such that

1 a 1 R
f ﬁ(v)’:p’dx:J f(pdx+J vedx VeeV
0

0 a

44

where a € (0, 1), f, v € L2((0, 1)), ffixed and v vanable Further, consider
a partition of [0, 1] The discretization of (4 4) by piecewise linear elements
leads to an algebraic system

Au(a, w) = F (a, w),

where A 1s the well-known three-diagonal stiffness matrix and

1

(F (a, w)), = J Fo,dx + j we, dx
0

a

It 1s obvious that if w 1s a piecewise constant approximation of v on (0, 1),
then the function

1
aHJ- we, dx
a

1s not continuously differentiable at points of discontinuity of w but only
directionally differentiable Thus one can not expect the differentiability of
the mapping (4 3) O

Analogously, the mapping o — F (o, p) 1s not differentiable i two-
dimensional situation (and neither the mapping (4 3)), in general However,
the mapping & — F (e, p) 1s locally Lipschitz continuous and we are able to
employ methods of nondifferentiable optimization

Remark 4 1 The nondifferentiably of (4 3) 1s caused by the type of finite
elements used When we use C! elements for discretization of (2 (a, v))

and C° elements for approximation of functions from Q(a ), the problem
remains differentiable but becomes very complicated and very large O

Now let us assume that the objective functional J 1s quadratic, for
example Therefore, its discretization 1s given by a quadratic function,
determined by a symmetric, positive definite matrix Ay = Ay(a) (for the sake
of simplicity, we assume that the linear and absolute term are equal to zero)
Again, the mappmg o> A (a) 15 generally nondifferentiable Let
M = M (« ) be a matrix realizing the penalty integral (the exact defimtion will
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be given below). The matrix form E, (a, p) of the functional E,(ay, w1 ,,) is
given by

Ee(a,u)=%(u,A0u)+%(u, Mu), 4.5)

where u solves (4.1), the symbol (,) stands for the scalar product in
corresponding vector spaces and the problem (P),, reads now as follows :

{Find (a*, p*) e U x Q(a*)such that

E(a*, p*)<E, (o, p) V(a,pn)eUxQ(a), (4.6)

where U x Q(a) is a subset of RY *3Mi+e

de X Qﬁd, w(ay) by (4.2).

The mapping (&, p)+— F (e, p) is locally Lipschitz continuous over
U x Q(a) and directionally differentiable, in general. Therefore, there is a
chance for a successfull implementation of some nondifferentiable optimi-
zation (NDO) method for the solution of (4.6). Such methods require
computation of at least one vector (subgradient) ¢ € dE, (e, p) of the
generalized gradient of E,, at any point (e, o). Here and in what follows,
0G (xy) denotes the generalized gradient of G at x; (see e.g. [3]) and
VG (xy) denotes the gradient of G at x;. As usual, V, G(xy, ..., x,) means the
gradient of G with respect to x,-variable.

In our case, the subgradient ¢ can be computed by Proposition 1.3 from
[6] : If E, is continuously differentiable as a function of u, A is a regular
matrix and the mapping (e, p) —> F (o, p) is locally lipschitz continuous (all
these assumptions are fulfilled) then E, is locally Lipschitz continuous as the
implicit function of (e, p) and

, isometrically isomorphic with

(F (@ 1), P) + 5 (U Ag(@) W) + 1 (3,F (@ w) @) +

+ é (u, V.M (a)u)c 9 E (e, p). (4.7)

1
(Vp,F (“’ "’)’ p) + : (Vp.F (a’ "')’ q) € ap.Ee(a’ "’) s (4'8)
where p, q solve the adjoint equations
Ap =Aju, Aq=Mu. 4.9)

If we assume that A, does not depend on e (as in [9]), the formula (4.7)
becomes more simple :

(@F (@ 1), P) + = (3.F (2 1), q) +
+ % u, VoM(@)u)cd E, (o, ), (4.7a)
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Thus, computing of a subgradient ¢ € 9E, requires

(1) solving of the adjoint equations (4 9) with the matrix A which 1s
independent of (a, p) and which has been factorized at the beginning of the
computation once for all,

(1) computation of a subgradient from 9,F (e, p) and the gradients
V,F(a,p) and V M ()

The latter will be the subject of the rest of this section
To this end, let us assume that the triangulation G 1s constructed as

follows first we divide 2 1nto rectangles
R, =[th, G + 1)h] x [k, G+ 1)k], h, k=0

and then each R,, will be divided nto two triangles We shall also assume
that nodes of the partition Dy are given by a = jk, 7 =0, , N,1e, nodes
of B and vertices of ay e U lie on the same lines, parallel with
x;-axe The triangulation G can be splitted into two parts

(1) Gy containing triangles T, c 2(ay) and T, ¢ & (ay),

(u) G,, contamming triangles «cutted » by @y, 1e, lymg partly mn
2 (ay) and partly in Z'(a,)

INCANAN/AN

Figure 41

Some examples of triangles from G,  are depicted on figure 4 1

For a particular triangle 7, € G,,, see figure 4 2, we shall show how one
can compute the element night-hand side vector F', the element matnx
M' and corresponding gradients

The element right-hand side vector 1s given as the sum of integrals of the
type

J we, dx , (4 10)
¢
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T2
3
5
T,
T}
1 4 2
2h b by (7+1kh 3
Figure 4.2.
or
a(p]
w—dx, k=1,2, ;j=1,2,3, 1=1,2, (4.10)’
T+ ax;
where

T'=T,N Q2(ay), T*=T,N E(ay)

and ¢ , are the (linear) basis functions corresponding to nodes 1, 2, 3 (or their
derivatives — this case is trivial). Suppose that w is constant on
T,. Then for ¢ = ¢, j fixed, the integral (4.10) can be computed either as

1 3 4 5
)¢+‘P+¢+¢ fork =1

Tl
w, meas (T, 7

or as

2, 4, s

w, meas (T?) ¢—+—§T—¢ fork =2,

where ¢/ are values of ¢ at points 1, 2, 3, 4, 5, the cartesian coordinates of
which are (x{’, x§’). The values ¢’, vol (T¥) depend on b,, b,, e.g.

mea (TZ)_l((i+1)h~~b1)2h
U =3 (b, — b, + h)
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(here we suppose that & = k, for simplicity) ; other formulae are similar.
Once one has these formulae, the computation of corresponding gradients
will be obvious.

The element matrix M' is defined as a mass matrix of the segment
P, x$7, ie.,

N EE I
N 6 1 2/

the « element » penalty part of E, as
(uy, us) M' (uy, us)T . “4.11

As u,, us depends on u;, u,, u; and b,, b, and x§”, x§> depends on
by, b, (4.10) can be written as

4 T
(u17 Uy, u3)M, (ul’ M2, u3)

with M* depending on b,, b,. Once we have the formulae for the elements of

M, we shall be able to compute the corresponding gradients easily.

5. NUMERICAL EXAMPLE

In this section we shall demonstrate the capability of the presented method
on a simple one-dimensional model example introduced in Example 4.1. For
the sake of simplicity, we shall use linear, nondifferentiable cost functional
and penalty term. In fact, this approach is not quite correct from the
theoretical point of wiev, because the inclusion (4.7) no longer hold.
Nevertheless, in this simple example, the method as well as the used NDO
algorithm work very satisfactorily.

Example 5.1 : Let the state problem be given as in Example 4.1 with
f =0.1. Its solution u(v) is approximated by means of piecewise linear
functions over an equidistant partition D, of [0, 1] and the variable right-
hand side by piecewise constant functions over the same partition
D). Let U= [0.550.75], Q= {weR"| -1<w,<1}, N = 1/h. The
discretized cost functional reads as

E= Iuc_‘/’CI + I”al ’

where ¢ = — 0.05 (x — 0.31)? + 0.004805 is the exact solution of (4.4) for
V= H},((O, 0.62)), u, is the c-th component of the vector u, i.e., the value of
the approximate solution of (4.4) at a node x’ e D,, lying in interval
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Figure 5.1.

[0, 0.62], ¢, = ¢ (x'”) and u,, is obtained by linear interpolation of u from
the nodes neighbouring to a. Thus we can expect the optimal value of « to be
@4y = 0.62 and the optimal value of E to be E,,, = 0. We have computed this
example for two values of the discretization parameter A = 1/10 and
h = 1/100 by the NDO code BT [8]. The values of «,, E,, are given in
Table 1. Figures 5.1 and 5.2 show the final values of the design variables «,
the « additional » right-hand side w, as well as the solutions of the state
problems.

Figure 5.2.
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Table 1
h 1
h c @ o Eopt
1/10 4 0619836 04 x10-°
1/100 31 0 619952 01x10°

APPENDIX

Notation will be the same as before Let (a,v)e Uy xQ(a) In
Section 2 we have introduced the following problem
Find & = &2(v) € V such that

(& (e, v) Vi, Vo)g = [v, ¢, VeeV

The aim of this Appendix 1s to prove

PROPOSITION A1 For any a € Uy, there exists v € Q(a) such that
ﬁ(5)|n(a) 1s the solution of (Z(a)), 1¢e, the solution of the homogeneous
Dirichlet boundary value problem on 2 (a)

Proof Let u; € V(a) be the solution of (£ (a))

(Vuy, V‘P)!)(a)Z (.f9‘P).(Z(a) Ve e Vi(a) (Al

ou
As f € L*(2 (a)), the normal derivative a—l € H™"2(I' (@)) and the follow-
n

g Green’s formula holds
u,
Vuy, Ve oy = (s )o@y + [ o <P}

forany ¢ € V(a) = {y e H'(2(a))|y = 0on 32 (a )\I'(«)} The symbol

ou
[, ] stands for the corresponding duality pairing Let g = —a—l on
n

I'(a), 1¢e,

g, 1= (/. ©)o@)— VU, Ve )pny Ve e Viia) (A 2)

Let u, € H{(Z (a)) be fixed and ¢ € V,(a) The family {Z (@), a € U}
has a uniform extension property, 1 e, there exists a continuous extension
mapping 7 from E (a) on {2 (a), the norm of which does not depend on
a € U,y It 1s easy to see that the formula

¢ > (Vup, Velz@e)y— 19, mel, ¢ €Vy(a)
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defines the linear, continuous functional on V,(a), i.e., there exists
U, € V,5(a ) such that

(Po @), = (Vup, Vo)z oy — [g, 70 ]. (A.3)

Moreover,

72

<cally o+ 1710 Afla=1Fl2g) (A4

*
, @

with a constant ¢ = 0, which does not depend on «. From (A.2) and (A.3) we
see that

(Vuy, V(719 ))g @y + (Vu,, Vo )E(a) = . TP )o@y + <52, €0>a (A.5)

holds forany ¢ € V,(a). As [g, ¢ ] = O forany ¢ € H)(2(a)), (A.5) holds
for any ¢ € V. Let

. {ul on {2 (a)
u= —_
u, onZE(a).

Then (A.S) is equivalent to

(Vii, Vo)g = [0, 01, Ve eV, (A.6)

where

[1_’,‘P]a=(f,¢)n(a)+<52,¢>a, peV. O

Remark A.1 : In fact, we proved more, namely : for any u € V,(a ) being
the solution of (£ (a)), there exists U € Q(a) such that the solution

a(@) of (Z(e, v)) colucides with & on 2{a).
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