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SEMIDISCRETE AND SINGLE STEP FULLY DISCRETE FINITE
ELEMENT APPROXIMATIONS FOR SECOND ORDER HYPERBOLIC
EQUATIONS WITH NONSMOOTH SOLUTIONS (*)

by L. A. BALES (})

Communicated by J BRAMBLE

Abstract — Finite element approximations are analyzed for initial boundary value problems
for second order hyperbolic equations with nonsmooth solutions For both semudiscrete and
fully discrete schemes, convergence estimates in negative norms are derived for problems with
L? 1mnal data, using L? projections of the vutial data as starting values

Résumé. — On analyse des approximations par éléments finis des solutions wrréguliéres des
problémes aux limites et aux conditions wnitiales pour les équations hyperboliques de second
ordre Pour des schémas de semudiscrétisation et de discrétisation totale, on obtient des
majorations de I'erreur par rapport a des normes d’ordre négatf Ces schémas utilisent la
projection L? de la valeur imitiale qui est dans L?

1. INTRODUCTION
1.1. Notation

We consider approximating the solution of the tollowing initiai boundary
value problem. Let 2 be a bounded domain in RY, with smooth boundary
942 and let 0 < t* < oo be fixed. A function u : (0, t*] » R! is sought which
satisfies

u, +Lu=0 m 0 x 0,r*],

u =0 on 32 x (0,1*], (1.1)
u®) =4 in 02,
u,(0) =u} in 02,

(*) Manuscript recerved, November 1991
AMS subject classificaton 65M15, 65M60
(1) Visiting Scholar, Department of Mathematics, Cornell Umversity, ITHACA, NY 14853.
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56 L. A. BALES

where ' and u! are given functions, and L denotes the second order elliptic
operator

N
Y a% (a,-j(x);;uj) + ag(x)u,

i,

~

with a;; =a; € C*(2), i,j=1,2,..,N; age C®(2) and a,=0 on
£2. L is assumed to satisfy the uniform ellipticity condition

N

N
Z a;(x) ¢ €= @ Zf,z, (1.2)
i=1

ij=1

for all x € £2 and for all (&, ..., £y) € RY, for some constant & > 0.

For s = 0, H°(£2) will denote the Sobolev space of order s, of real valued
functions on (2. The norm on H°(£2) we denote by | . [[4s,, The inner
product on L?(2) = H°(2) we denote by (., . ), and the associated norm
by || - I

We introduce certain subspaces of the Sobolev space H°({2), denoted by
H*(£2). In order to define H(Q ), we first note that there exists a sequence
{2 j}j _, in nondecreasing order of real positive eigenvalues of the operator

L, and a corresponding sequence of eigenfunctions {¢ f}j>l c C*(2),

satisfying
{Lq‘ﬁj:/\j ¢; in {2, (1.3)
i¢j =0 on afn )

The set {¢ j}jBl is complete in L?(£2), and may be chosen orthonormal.

Define for s = 0, the space
HS(_())={ |V” (Zl(v ¢)| ) <00}.
j=1

Then H°(2) = L*(2), and it may be shown, [7], that
H(2)={veHW):L/v=0 on a2, j<s2},

and that on H*({2), the norms | . s and || . || 5, are equivalent.

For s <O, 1-'13(_()) is defined as the dual of H °(£2) with respect to
L?(£2). The norm on H™*(£2) is given by

1/2
|vn_s—(z|<u¢>| ) =0,
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APPROXIMATION OF HYPERBOLIC EQUATIONS 57

The solution of (1.1) is formally given by

u(t) = z [P, @,) cos /\]'/zt + A 1n(u?, ¢,) sin /\Jmt] b,

7=1
for ¢t = 0, from which it follows that for 0 < ¢ < t*,

lu@|? + |z @) =||u°||f+||u?||f_1 forall s=0. (1.4)

s—1

The solution operator T: L*(2)— L?(£2) of the associated elliptic
boundary value problem is defined by

a(Tf, v)= (f,v), forall ve H' () forgiven felL*(2) (1.5)

where a(.,. ) denotes the bilinear form

N
a(W,V):J {Z a awa—y+a0wv}dx, for w, v e HY(22). (1.6)
0

1y o
5,)=1 ax] ax]
T has a discrete spectrum of real positive eigenvalues {u J}]>1, where
M, =A j‘l with A, given by (1.3). Let £ denote the operator on

L*(2) x L*(2)
o I
Z - ( ) .
—-L 0
In terms of the operator ., (1.1) is equivalent to

{%, - PU, t=0

1.7
UO) =u° &7

where ()~ {*® ) ang a0 ()

Let O<h=<1 be a parameter, and {7} o-ne; @ family of finite
dimensional operators approximating the operator 7. In particular, let
{Si( 2}, _,_, = H'(2) be a standard finite element space of piecewise

polynomial functions of degree r — 1, with the approximation property

inf  {[lw—xl|l +&w-x|} sChs"W”H’(n)’
X € 5,(2)

for all we H'(2)N H*(£), for some constant C independent of h,
1 <s=<r. The operators T, : L*(2) — §;(£2) are defined by

all,f, x)=(f, x), forall y e S;(2), forgivenf € L*(2). (1.8)
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58 L. A. BALES

The family {7,},_, _, has the following properties :

T, is symmetric, positive semidefinite on L 2(2) 1.9)
and positive definite on S, (£2) ’

T -1)1 | < CR || fll gs-2(0y - forall fe H*2(2), l<s=<r, (1.10)

for some constant C independent of A.
We also define the following forms on L2(2) x L(2):

(D, ¥))= (D), 1)+ TPy, ¥,), (1.11)
and
(D, ¥))= (D), )+ (T), Py, ¥3). (1.12)

In this work, we will use the following identity. Here, A and A, are two
operators with

(A2, ¥))= (P, A* ¥)) and (A4, D, ¥)) = (P, A7 V)
((A-Ay) @, V), =
= ((A®, ¥)), — (A, @, ¥)),

= (AP, W), — (AD, ¥+ (B, 4% V) = (B, AF P
= (T =TYAP ), ¥)+ (P, A* ¥)) - ((P,A* ¥)),
+ (@, A% ¥)), — (P, Af ¥)),
=((T-T)AP),, )+ (T-T,) P,, (A* ¥),)
+ (P, A*—AF) ¥)),. (1.13)

1.2. Summary of Results

In Section 2 we derive the following estimate for semidiscrete approxi-
mations.

sup ||u(t)—u,,(t)”_(Hl)sC(t*)h’(||u°||+||u?||). (1.14)

O=st=<t*

These estimates are obtained with L? projections of the initial data as starting
values.
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APPROXIMATION OF HYPERBOLIC EQUATIONS 59

In Section 3, we consider single step fully discrete approximations which
are based on rational approximations to e” °. The rational functions satisfy the
estimate

Ir,Gy)—e ¥ <C,ly|" ", |yl <o,
for constants C, <00, o0 =0 and v = 1. We prove the estimate

max “Wﬁ‘—u(nk)”_“ sC ") +)(|u’] + ||

where u =max {r+ 1, » + 1}, k denotes the discrete time step and

T, the approximation at time level z = nk. The fully discrete estimates are
also obtained using L? projections of the initial data as starting values.

In [4], Geveci proved energy and negative norm estimates for the solution
of (1.1). However, the results in [4] do not include the case when the initial
data u® and u? are in L? which is the case considered in this work.

In [2], discrete negative norm errors were computed for a two step fully
discrete approximation to the solution of (1.1). The computed results are
similar to the theoretical results for single step fully discrete approximations
derived in this work.

Fully discrete approximations to (1.1) when the initial data are nonsmooth
(e.g., when u® is discontinous) typically contain large oscillations. The
presence of oscillations suggests that a post-processing procedure such as
described in Bramble and Schatz [3] may be used to construct a better
approximation. Pre-processing and post-processing were used with finite
difference schemes for approximately solving hyperbolic equations in Lax
and Mock [6]. Also, in Johnson and Niavert [5] post-processing based on a
negative norm error estimate was applied to finite element approximations
for advection-diffusion problems. In future work, we will consider the
application of post-processing techniques to finite element approximations of
the solution of (1.1).

Throughout the paper, C will denote a general constant, not necessarily
the same in any two places.

2. SEMIDISCRETE APPROXIMATIONS

The semidiscrete approximation for the solution u of (1.1) is defined as the
mapping u” : [0, t*] - S}(£2) satisfying

T,ul+u"=0,0<t<t*,
W"(0) = Pu, (2.1)
ul0)=Pu?,
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60 L. A. BALES

where P denotes the L?(£2) projection operator onto S} ({2). We formulate
(2.1) as a first order system. Set

h

U'@t) = (”h(t)) , t=0.
up (t)

(2.1) is equivalent to

Ukt) = £, U

U"0) = PU° 2.2

0

where U° = (”o), L= ( OL é) and L, is the inverse of T, on
— Ly

U,

ST (2).

THEOREM 2.1 : Let u be the solution of (1.1) and let u" be the semidiscrete
approximation defined by (2.1) or (2.2). Suppose that u’e L*(2) and
ul € L*(02). Then there exists a constant C = C,(t*), such that

i sup |lu(t) — u"@)| S ChL|d®] + ||u?] - (2.3)
sr=t*

Proof : Note that (PP, ¥))=- (@, LVT)) for D,
Ve H(2)xL*(2) and (L, P, ¥)),=— (@, L, ¥)), for &,
¥ e S (2)x S,(2). It follows that ((e¥' &, ¥)) = (@, e~ <" ¥)) and
(e D, W)= (@,
ef,,t

PU° it follows from (1.13) that

P Lt 70
1’71‘));1_ | S PR e (1]

: 1 rrh s~
Since U{¢) = and U°(1) =

(W@ - U"@), #)) =

= (T, —TYu,(t), ¥3) + ((T—Th)u?, (e-f'('pl)) )
'P‘Z 2

+ (U (e —e “H Py wy,

- @, @ e (i a-to (e ( 1)) )
11,2 2

+ (U (e — e D Py wy)y,. (2.4)

From Theorem 2.1 of Baker and Bramble [1] and the fact that

- v
(e % — e y"'P)W: ((I) OI>(e$’—eg"tP)( qi ) , we have
- - ¥,

sup || (e %" — e_y”') 1I’||h <sCHh[|| %,

O=<t=<t*

+ | ‘I’2||,] 2.5)

r+1
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where || . ||, = ((.,.))y*. From (1.10) and (1.4) it follows that
_ v, ¥,
== () )| == ()
H g ¥,/ /2 ¥,/ /)2

sCH (|| _,+%:l,_). 26
Since [|U°]|, = C (|«°]| + ||]), it follows from (2.4), (2.5), (2.6) and the

sCH

=

r—-2-

v
Cauchy-Schwarz inequality that with ¥ = ( 01)

| @) —u"@), T <= Cr ] + ||u D] 1]

r+1°

(2.3) follows from this estimate because |u(t)— ut ()| Cesn=

)
sup [@® =N o Thomée (71, page 80). W

v eH () ||W1”r+1

3. SINGLE STEP FULLY DISCRETE APPROXIMATIONS

Let r be a complex valued rational function defined for the complex
variable z, satisfying

[rG@y)—-e | <Cly|"*', |yl=o, (3.1
for constants 0 <C < o0, 0 >0 and » =0, and
ir(ivil =1. forallrealywith |y| =a, 3.2)

where 0 < a < 0.

For k>0, the semidiscrete approximation U”(z) satisfies U"(z + k) =

& U"(¢). Thus, the fully discrete approximation to (1.1), denoted by
(W} _ o< Sh(£2) x S;(£2), is defined by

Wl =D Y (kPINGLIW", n=0,1, ..

3.3
wl =pPU° 3-3)

where r(z) = D" '(z)N(z) and D and N are minimal degree polynomials.

THEOREM 3.1 : Let u be the solution of (1.1) and let r(z) be a rational

function satisfying (3.1) and (3.2). Let {W"} _  be the sequence of
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approximations defined by (3.3). Then, there exists a constant
C =C(r, v, t*) such that

sup Wi —u@b)||_, <C @ + &)U + ] 3.4

O=<n=< [t¥k]

where p =max {r+1, v +1}.

Proof : Note that U"(nk) = eZnm

fore, it follows that

PU® and W" = (r(kZ ;)Y PU°. There-

— & nk

(U"(nk) — W", )), = (PU° (e — (kL )VPW)),. (3.5

From Theorem 3.1 of Baker and Bramble [1], we have that

[ ™ = c -k P, <

<C U, + 1Tl 1+ RT,,, + 19:0,)) G6)
since
(e E _ (- kZ)Y)PY¥ =

I 0 &Ly nk n Wl
= (O )(e — (rkZ)) )P(—W2>'

It follows from (3.5), (3.6)

| (Ut (k) — wm, w)),| <

<CIPUOI (KU, + 12l )+ R T, + 10,0} . G

r+1
. i\ . . . .
Choosing ¥ = ( 0 ) in (3.7) and using (2.3) gives (3.4) since

W (nk) — W1, ¥)
sup | b ¥l = ||u"(nk)—W{‘||_#

o el
¥, € H*(2)

where 4 =max {r+1,» +1}. R
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