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THE DISCONTINUOUS GALERKIN METHOD
FOR SEMILINEAR PARABOLIC PROBLEMS (*)

by D. E S T E P (L) and S. L A R S S O N (2)

Communicated by R, TEMAM

Abstract. — We prove a priori error estimâtes for a space-time finite element method for
semilinear parabolic problems. The finite element method has basis functions that are
continuous in space and discontinuous in time, and variable spatial meshes and time steps are
allowed. The effect of numerical quadrature is emphasized.

Résumé. — Nous montrons des estimations d'erreur a priori pour une méthode des éléments
finis en espace et en temps pour des problèmes paraboliques semi-linéaires. La méthode des
éléments finis considérée a des fonctions de base continues en espace et discontinues en temps,
et admet des maillages spatiaux et des pas de temps variables. L'effet de quadrature numérique
est accentué.

1. INTRODUCTION

In this paper we consider the numerical solution of the semilinear
parabolic équation

ut — Aw = ƒ (x, f, u) , in il x (0, t * ) ,
u = 0 , on a /3x(0 , f*), (1.1)

« ( . , 0) = u0 , in Q ,

by using a finite element method with basis functions that are continuous in
space and discontinuous in time, which we refer to as the discontinuous
Galerkin method. Hère Q is a bounded convex polygonal domain in
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36 D. ESTEP, S. LARSSON

R2, r* => 0, ut = du/dt, Au = d2uldx\ + d2u/dxl and f is a smooth function
satisfying

| /(x, t, s)\ + |3/(x, f, J ) / 3 J | ^ M Vxe /2, f >0 , s e R. (1.2)

The discontinuous Galerkin method for linear parabolic équations, i.e., the
case of (1.1) when ƒ = ƒ (JC, t\ has been analyzed by Eriksson, Johnson and
Thomee [3] and Eriksson and Johnson [2], There are two parts to the analysis
in [2] : an a posteriori error analysis, which is used to devise a global error
control for an adaptive finite element method, and an a priori error analysis,
which guarantees convergence. The a priori error bound is of a spécifie form
related to the a posteriori bound and is proved under conditions which allow
variable spatial meshes and time steps.

The purpose of the present work is to discuss some ways of handling the
nonlinear term in this context, and to prove a priori error bounds in the style
of [2], In particular, we want to allow the possibility that the spatial mesh
will change on each time level.

To avoid some technical difficulties we assume that such refinement (un-
refinement) is performed by the addition (removal) of nodes to the current
mesh. In fact, it is known that meshes that are changed in an uncontrolled
fashion may yield completely false results, see Dupont [1].

The discontinuous Galerkin method involves intégrais of the right-hand
side of (1.1) with respect to x and t, which we evaluate by numerical
quadrature. Our main resuit concerns the effect of such numerical intégration
on the a priori enor analysis. Eiiksson and Johnson do not consider this in
[2], since for linear problems this is less important.

We describe the pertinent results of [2] in Section 2. In Section 3 we
formulate our numerical method and state our main resuit, which is proved in
Section 4. We conclude in Section 5 by providing an example showing the
implementation of one of our algorithms.

2. THE LINEAR CASE

In this section we briefly review the notation and results of Eriksson and
Johnson [2], which we will use in our analysis. For the discretization of (1.1)
with respect to x = (xl9 x2) we let S be the class of all finite element
discretizations Sf = (Zz, 7\ S) satisfying the following conditions :

(1) Z i e C 1 ^ ) is a positive function satisfying

\Vh(x)\ «=/* VJCG O ;

(2) T = {K} is a partition of O into triangles K of diameter hK such that

cx ^ l ^ a r e a ( ^ ) VKeT,
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DISCONTINUOUS GALERKIN METHOD 37

and associated with the function h through the inequalities

c2hK^h(x)^kK VJC e Q , KeT;

(3) S is the set of all functions which are continuous on 12, linear on each
K e T and vanish on 9/2.

For a given domain /2 the positive constants cu c2 and /M characterize the
family X completely.

For the discretization with respect to t we introducé a partition
0 = f0 <*!<.. .<*„_!<=*„< ... of R+ into subintervals ƒ„ = (tn_l9 în) of
lengths kn = tn — tn_u and we associate with each /„ a finite element
discretization £fn = (hn, Tn9 Sn) e X. For q = 0 and 1 we define

The discontinuous Galerkin method for (1.1) with ƒ = ƒ(JC, t) consists in
Computing a function U such that t / l^ x /n e y * and

((£/„ X)+ (VU, VX))dt +([[ / ]„_, , X:_,) =

(f(.,t),X(t))dt VXef', (2.1)

for n = 1, 2, .... and t/J = M0, where [V]B = VJ - V~,
V* = lim V(ïn + 5) (V~ should be considered the «nodal value» of

V e ir^). Hère and below ( . , . ) dénotes the usual inner product in
L2 = L2(/2 ) and || . || is the corresponding norm. Hence, we are Computing a
finite element approximation to u on space-time « slabs » û x In. By virtue
of the discontinuity of U in time, we can alter the spatial mesh from one time
interval to the next.

It turns out that for q — 0 the scheme (2.1) reduces to the following
modification of the backward Euler method :

For q = 1 in the linear homogeneous case (ƒ = 0 ) the approximation agrées
at the nodal points tn with the subdiagonal third order accurate Padé
différence approximation. The approximation is second order accurate in the
interiors of the intervals In (see [3]),

We quote the following a priori error bound :

vol. 27, ne 1, 1993



38 D. ESTEP, S. LARSSON

THEOREM 2.1 (Eriksson and Johnson [2]) : Let u be the solution of (1.1)
with f = f(x, t) and U that <?ƒ (2.1). Suppose that JUL is sufficiently small and
assume that for each n one of the following assumptions hold :

or
/ \ 2
(max hn(x)\ ^ ykn ,

with y sufficiently small and that kn ^ ckn + , for all n. Then there exists a
constant C depending only on cx and c2 such that for q = 0,1 and
n = 1, 2, ...,

\U;-u(tn)\\ « C t „ max

with Ln = — /1 + log -^ and

Eif\u)= \\hJD2u\\L + min

u = ( £ |D£ u | 2

f/ie usual multi-index notation).
These error bounds imply that the scheme is of second order in

x, of order q + 1 uniformly in t, and of order 2 # + 1 at the nodes

3. THE SEMILINEAR CASE

In this section we discuss some ways of implementing the scheme (2.1) in
the semilinear case, Le., when ƒ = ƒ(*, t, u). (In the sequel we sometimes
write ƒ (u) instead of ƒ (JC, t, u(x, t)) for compactness of notation. We also
use the notation ul = u(.9 tt\ f(u)t = f ( . , th ut) and ƒ (V), =
ƒ ( . , th VJ ) for V e iTf).

In this case the right-hand side of (2.1) is an intégral of f(U)X over
O x In, which must be evaluated by numerical quadrature if the algorithm is
to be employed in a gênerai way. This is the question that we address here.
We désire that the completely discrete schemes should retain the order that
the discontinuous Galerkin schemes have on linear problems. In particular,
for q = 1, in order to retain the nominal third order accuracy of the
discretization of the left-hand side of (2.1), we employ a multistep formula
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DISCONTINUOUS GALERKIN METHOD 39

based on interpolation of ƒ (U) at the nodes tn, where we expect third order
accuracy for U.

For the intégral with respect to x we choose the following quadrature rule.
Let £f = (h, 7", S ) e S be a finite element discretization and define

1 i f
QK(/) = T a r e a (K) Y f(FK , ) ~ f(x)dx V ^ G I ,

3 , - 1 J*
where PK 3 are the vertices of the triangle K. We may then define
approximations of the inner product and norm of L2 by

(* .*)* = l Ö i f W ) , \\x\\s=(x,x)1s/2.
KeT

For the approximation of the intégral with respect to t we replace
ƒ(£ƒ) by an interpolant with respect to t and integrate the resulting
polynomials exactly. Two possibilities suggest themselves : one is to use
extrapolation of an interpolant computed over previous intervals Ih

l < n, and the other is to use an interpolant computed over the current and
previous intervals Ih l ^ n. The former process will yield a set of linear
équations for U (semi-implicit method), whereas the latter will produce a
nonlinear System (nonlinear implicit method).

We use an interpolant of order p = 0 when q = 0 and of order
p — 2 when q = 1. Of course, when p = 2 we cannot use this kind of
interpolant on the first one or two intervals, necessitating the construction of
special interpolants there.

Thus our scheme is of the form : find a function U such that
UQ = w0 and

«tf„x)+ (vtz, vx))dt + au]n_ux:_l) =

(nf(U)(t\x(t))dt vxeri o^tn*t*, p.i)•i
where (except possibly for n = 1 or 2) the integrand of the right-hand side is
given by

= "f 4>i(t)(f(. •, t„ UT ), X(O)s, us„ • (3-2)
ll = n-i-p

Here Tlp
n_l is the interpolation operator for polynomials of degree

p = 2q, computed with respect to the mesh points {^/}"~|I_ i_ and

vol. 27, n° 1, 1993



4 0 D. ESTEP, S. LARSSON

<j>t are the corresponding Lagrange basis functions. Note that i = 0 for the
nonlinear implicit scheme and / = 1 for the semi-implicit scheme.

In (3.2) we handle the possibility of variable meshes in the folio wing way :
we assume that all spatial meshes that occur are refinements of one common
coarse mesh, and that each triangulation Tn is obtained from its precursor
Tn _ i by adding some nodes and by removing some other nodes. In this way,
the union of the mesh points of two triangulations Tt and Tn form a
triangulation whose finite element space is equal to £/ U Sn. In this situation
we define

hln(x) = min {ht(x\ hn(x)} .

The discrete L2 inner product in (3.2) is thus computed over the totality of all
mesh points of Tl and Tn.

When q — 0 the équation (3.1) becomes

which is a variant of the backward Euler method. In Section 5 we give details
of the implementation of a scheme with q = 1.

It remains to devise a starting procedure for the case q = 1, p = 2, i.e., to

define the right-hand side | (IIf(U\ X) dt for 1 ̂  n ̂  1 + i. For the

nonlinear implicit scheme (i = 0) we simply take

(nf(u\x) = {n\f{u\x) on il9

i.e., we use a linear interpolant in (3.2). For the semi-implicit method
(i = 1 ) we similarly define

(I7f(U\X) = (nlf(UXX) on / 2 .

For n = 1 we use a prédiction-correction procedure in order to obtain the
correct accuracy. For the predicted value of U\ we define U n xI € *f~\such

that UQ = U0 and

1«Üt9X)+
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DISCONTINUOUS GALERKIN METHOD 41

that is,

((C/„ X) + (VU, VX))dt + ([Ü]o, XJ ) =

-I.
Then we compute C/| / 2x / i e y \ such that U$ = u0 and

((£ƒ„ X) + (Vt/f VX))^r + ([t/]0 , XJ ) =

= [ {n\f(Ü\x)dt VXeTf.

For the scheme described above we have the following a priori error
bound. We need all the assumptions of this and the previous sections and, in
addition, we assume that, for some c3, c4 > 0,

K

It is also convenient to define

m = max { / + / > - 1 , 0 } = IJ ' . ^ = ? ' (3.4)
11 + i, ir # = 1 ,

to distinguish between the gênerai case of (3.2) (tn 5= tm + ±) and the special
initialization procedure (0 <: tn ̂  tm) needed when q = 1.

THEOREM 3.1 : Létf M be the solution of (IA) and U be that of (3.1). Then
there are constants k and C depending on M, t* and ch l = 1, ..., 4, such
thaï, if kn ̂  k for 0 < rB ̂= « A,

m a x ^ ( Ï ) ( M ) + C max
1 ^ 7 ^ n

\\U- -u(tn)\\ ^CLn max EJ2"\u) + C max
1 ssj ^ « 1 «y « n

For the semi-implicit schemes (i = 1 ) r/ze condition kn^k is not needed.
Here Ln and E^(u) are as in Theorem 2.1 and

min

vol. 27, n° 1, 1993



42 D. ESTEP, S LARSSON

and for q = 1 we have, in addition, if i = 0,

)= £ {\\hlxD
2
xUl\\ + \\hl.Dl/(«);|| +

and, if i = 1,

min { | | | L a ) ( / i i t 2 ) }

+ max min {^ l \\Ds
t f (u)\\ } .

Remark : If one would settle for second order convergence (when
q — 1), then ITf(U) in (3.2) could be taken to be a linear interpolant, which
could even be computed at interior points of the interval In_L or
/„, with corresponding simplifications of the analysis and implementation.

4. PROOF OF THEOREM 3.1

For the proof of Theorem 3.1 we shall compare the solution U of (3.1) with
the solution V of the discrete linear problem (2.1) with /(x, t) replaced by
ƒ (x, t, u(x, O). That is, V | n xIn e 1T% 0 < tn =s= r* is defined by VQ = u0

and

| ( (V / ,X)+ (VV, VX))A+ ([V]n-uK-i) =

= j (ƒ(«), X)dt VXer*. (4.1)

Theorem 2.1 then shows that
max Ej**\u), 0<tn**t*, (4.2)
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DISCONTINUOUS GALERKIN METHOD 43

and the proof of Theorem 3.1 will be accomplished once we have shown that
for 6 = U — V we have

+ C max FJ2q)(u), ()<*,,*£**. (4.3)
1 ^j ^n

In order to prove this we shall show below that

|| O' || ̂  CLn max EJ2q)(u) + C max Ffq\u), 0 < frt ^ r* . (4.4)

It is convenient to begin by demonstrating that (4.3) follows from (4.4).

From (3.1) and (4.1) it follows that o\nxin
e ^% 0 < ? n ^ r * , satisfies

#o = 0 and

f

= f ({nf(U\X) -{f{u\X))dt VXef«. (4.5)

We split the integrand on the right-hand side into three terms,

(nf(U),x) -(ƒ(«), x)= (n[f(U) -ƒ(«)], x)
+ {{nf(u),X) -

/ ] / ( I I ) , X ) . (4.6)

These are estimated in the following three lemmas. The first term requires a
uniform Lipschitz condition on the nonünearity ƒ, which holds in view of
assumption (1.2).

LEMMA 4.1 : Let U\ûxl/e •ff for j - i - p =s / s ; - / and Xe VJ.

Then

i=j~l-p

Proof : Using the uniform boundedness of the Lagrangian basis functions,

| 0 / ( O | * C , telj, (4.7)

vol. 27, n° 1, 1993



44 D. ESTEP, S. LARSSON

under the assumption (3.3), and employing the Lipschitz condition for
ƒ, we have

- f(u))(t\ x(t))\ =

/ = j - t -

I • II5 us anc* II • II a r e uniformly equivalent norms on 5/ U SJ9 and
X(t) e Sj c s / u S;, so that | |X(0| |S / U 5 =s C ||X(r)||. Similarly, with
JS[US • C (f2) -• St U Sj the Lagrange interpolation operator, we have

since Uj e 5/ <= 5/ U 5y. In view of a well-known error bound for
/5/ u 5 t n i s proves the lemma. •

The second term on the right of (4.6) involves the error in spatial
quadrature.

LEMMA 4.2 : Let X e rTf. Then

; _ , ƒ (IOKO, X(t)) - , X(t))\

' f (\\hlj D2
X f (M),! + \\hljDx

Proof Using (4.7) we have

i = j - t - p

ï
where e; y ( . , . ) = (
we have

us ~ ( • > • ) is the quadrature error, for which

feH2(n), x e 5, US r
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DISCONTINUOUS GALERKIN METHOD 45

This follows by a simple modification of the proof of Lemma 2.3 of [4] or
Lemma 1 on p. 170 of [5]. Since X(t) E 5; c= S, U S, this" proves the
lemma. •

The third term in (4.6) involves the error in interpolation with respect to
t. The proof of the following lemma is well-known and we omit it. The
assumption (3.3) is used here again.

LEMMA 4.3 : Let m = max { /+ / ? - 1, 0} . We have

| | (V7/_,- /) /(M) | |L œ ( ,^C^max^ ^ {*?||Dff(u)\\L^ J .

We can now estimate \\&\\L {I L ) by applying a simple energy argument

to (4.5). We formulate this as a lemma.

LEMMA 4.4 : Let U e 't"? for j - i -p *zl *zj -i and assume that
0 e -VJ satisfies

, VX))dt+ , ;

= f {{nP_J{U\X) - (f(u\X))dt VXer*. (4.8)

Then with m = max {i +p — 1, 0} we have

' f (\\uj -u,\\ + 1^,0^,11) +

^ ƒ (M);|| + ||A^/?,ƒ(«),

^K/ || lJt J \U ) || L L ) .

Proof : Since 0 (0 is a polynomial in t of degree 0 or 1, we have

so it suffices to estimate the two terms on the right. Taking X = 0 in (4.8),
we have

f ((*„ 0)+(V0, Ve))dt+a&]j-i, «;_i) =

= f ((nf_,f(U),ê)-(f(u),0))dt,

vol. 27, n- 1, 1993



46 D. ESTEP, S. LARSSON

whence,

+ C

In view of Lemmas 4.1, 4.2 and 4.3, we have here

f
Jij

3, we have

f f
J/, '~' " ' J/y '"'

+ J {{nf^j{u\ e) - {nj_j{u\ 6))dt

»/ ƒ ,

where e > 0 and

R2= ' f
i = j - I - P

R3 = max min (*j||Df/(M)|| ) .

Hence, choosing e small enough we obtain the desired result. •
We are now in a position to finish the proof that (4.4) implies (4.3). We

have to distinguish between the gênerai case and the startup terms. In the
gênerai case, i.e., when n s* m + 1, where m is defined in (3.4), we have
11= Tllq_l in (4.5) and Lemma 4.4, (4.2) and (4.4) show

m a x

\\hl}Dxf{u\\\)

max £»«>(«) + C max
1 =sy ̂  n 1 «_/ ^ n
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DISCONTINUOUS GALERKIN METHOD 47

This is the desired result in the gênerai case.
If q = 1 we also have to consider the startup terms. If q = 1, i = 0, and

n = 1, then we have 77 = 77/ in (4.5) and Lemma 4.4 shows

*r|| + ||vr - « J + i
/ = o

+ \\hliDxf(u)l\\)

Cmin W I||

\u). (4.9)

If q = 1, i = 1, then we first apply Lemma 4.4 with O replaced by
O = Ü - V and with 77 = 77§. This gives

|| «O, 1 Ux

Next we apply the lemma with 0 = U - V and with n\f{Ü) - f (u) on the

right-hand side. This gives

\\èï\\ + IIv-r — «mII + i
/ n

+ Cmin {*TllDifi»)

Using the above bound for 6 = Ü - V we conclude

We then continue to the interval l2 and use Lemma 4.4 with 0 = £/
77 = 77/ :

K i l + ll^r -«i | | + Z (WiD2x
/ o

C max min {*?+ ' | |öj ƒ («)|| } -

vol. 27, n* 1, 1993



48 D. ESTEP, S. LARSSON

Assumption (3.3) was also employed here. This complètes the proof that
(4.4) implies (4.3).

We now proceed to prove (4.4). Following [2] we represent || B~ || by
duality. For this purpose we define i^q = ( V : V e f J , O < f f l ^ î * } . We
then note that, by summation of équation (4.5), we have

B(6,X)= £ f (nf(U\X)dt- ?" (f(u\X)dt VXeiT*, (4.10)
y = i Jij Jo

where

B(y, w) =

((Vt9 W)+ (VV, VW))dt + *£ ([V]j, W+)+ (VJ, W£) =
J = 1

(- (V, Wt) +

Next we consider the discrete analog of the « backward problem »

- z , - A z = 0 , 0 < f < / „ ; z{tn)=0~.

In view of the second form of B (. , , ) above, it is clear that the
corresponding discrete problem consists in finding Ztirq such that

B(X7Z)= (X-, 0') V X e f 9 . (4.11)

The following stability bound is proved in [3] :

l l Z Bi . ( [O . , . ] . i , )+ l |Z | | £ l ( [ a , j l H . ) -C | | « 1 r | . (4.12)

Taking X = 0 in (4.11) and using (4.10), we obtain

||fl-||2=B(«,Z)= ( £ + £ ) f (</7/(I/),Z> -<ƒ<«), Z))<fc,
\ j = 1 j=m+\ I Jij

where m is as in (3.4) and the first sum is empty if m = 0. Splitting the
integrand on the right as in (4.6) and using Lemmas 4.1, 4.2 and 4.3, we
obtain

* 1
j=m+i Jij

(<77/(C7), Z> - (f(u),Z))dt

y = m + 1 l = ] - i - 2 q
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DISCONTINUOUS GALERKIN METHOD 49

max

max C max
\

Here we have also used (4.12), (4.2) and the fact that 6Q = 0. The factor
1 - i in the first term on the right means that this term vanishes for the lagged
schemes (/ = 1 ).

If m = 1, Le., q = 1, i = 0, we have also the term

f {{n\f(U\Z) ~{f{u\Z))dt

j

Cmin W + 1 | | ^ / ( W ) | | L

^ (CL,E\2\U) + CF{2\U))\\e; II ,

where we have used the estimate of || óf || from (4.9).
If m = 2, i.e., q = 1, i = 1, we have the terms

IJ ({n\f(ü),z) -(f(u),z))dt + f ((n\f(u\z)-{f(u),z))dt

vol. 27, n° 1, 1993



50 D. ESTEP, S LARSSON

C max min
1 ss / ss 2 s*s2

E[2\u) -f C max F,(2

where we have used the already proven bounds for
Altogether we now have

and ||0f

max max F}2q)(u)

and (4.4) follows by Gronwall's Lemma. If i = 0 we first have to eliminate
the first term on the right by taking kn small. This complètes the proof of
Theorem 3.1.

5. EXAMPLE

We conclude this paper by providing an example showing the implemen-
tation of one of our algorithms in the case q = 1. We solve the équation
ut - Au = 10 (M - u3) with homogeneous Dirichlet boundary conditions and
a = (0, 1 ) x (0, 1 ). For the spatial discretization we use the piecewise
linear finite element method computed on the fixed mesh shown in figure 1
with mesh spacing h = l/m. We number the nodes as indicated so that there
are m = l/h nodes on a side and m2 nodes in total.

Figure 1. — Mesh for the sample compilation.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelhng and Numerical Analysis



DISCONTINUOUS GALERKIN METHOD 51

Associated with this mesh are the finite element space S, the mass matrix
A, AtJ = (<pn <Pj ) and stiffness matrix B, BtJ = (V«P(, V<p;), where {<Pt}f=l

is the Standard computational basis for S. We will also need the lumped mass
matrix Â, Ây = («P„ <p,)5, see [4] or [5],

We dérive the équations for the semi-implicit q — 1, / = 1 scheme, which
in some sense is the most complicated of our algorithms. We also have
expérience Computing with q = 0, i = 0, 1 and q = 1, i = 0, 1 in one and
two dimensions using fixed spatial meshes, and with q = 1, / = 0 in the fully
adaptive two dimensional code TRANSI.

Throughout the startup procedure and the rest of the steps the same
discrete system results from the left-hand side of (3.1). We let U G i^l be
given by

where U„_ j and U n now dénote vee tors of values at the spatial nodes, that
is, Ut = ((Ut)u (E/J>2. •••> (^«)m2)r» corresponding to the basis of
S. (3.1) yields the pair of équations

u--u:_x

BU"
J/,

{t-tn)(t-tn_x)
dt + AU+

n_ , =

and I,

BU- \ ^-dt = -A f

where f(U) = (ƒ((!/), ), /((C/)2) ƒ ((C/)m2»r. This is equivalent to

H = [ ° Aih+-2

- J Lo oj[f/-_1

1.
lA 77/ (f/) :

t - t n- 1
dt
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for n = 1, 2, ..., with U% ••= 0. We let

U„==
UZ

A + ±M

2 6 2 3

Then, in order of application, the équations are

A - I " 0 A

! U, = AU0 +

Bi IL - AUn +

o -2kx 0

B 2 U 2 = AU,

and finally, in gênerai,

_M_
6 jfe,

" l A 3k'A.

hlh + h
k x \ 6 2

k2 1 k2 kx

kn-2 (kn - 2 + ^n - :

kn kn _

K-lK-\ \ 1 2 + 6

_jf>(K *»_i * . - 2 \

2 + 2 /

Implementing these in code is now straightforward. There is one point that
should be discussed, namely how to solve the associated Systems of
équations. In particular, the q — 1 formulas yield nonsymmetric linear
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Systems which can be expensive to solve. (This difficulty is common in
Systems arising from implicit high-order Runge-Kutta sctfemes, which are
related to these formulas.) Both B and A have a « principal » tridiagonal band
as well as two other bands located O(l/h) above and below the diagonal.
Thus, for the q = 0 scheme (backward Euler), using just this band structure
without further rearrangement yields an opérations count of O(l/h4) for
solving the System once. In our case Brt has a block 2 x 2 band structure.
Solving this system directly however leads to an opérations count of
O(l/h6) (as if the matrix were full) because of fill-in. Rearranging the matrix
can alleviate this load. For example, it is straightforward to rearrange the
matrix to achieve an opérations count of O{l/h4) once again. First permute
the rows of Bn into the order 1, m2 + 1, 2, m2 + 2, ..., m2, 2 m2 and then do
the same by columns. The resulting matrix has a band of width 7 down the
diagonal and bands of width 5 located O (l/h) above and below the diagonal.

The foliowing computation was made on a 35 x 35 mesh with initial data

( 1 \ 2 / 1 \ 2 1
x ) + ( ? — ^ ) ^~ï a n c i eclual t o 0

outside. The solution eventually becomes all 0 at a fairly slow rate. See
figure 2.

T i m e = 0 . 0 T i m e = 2 . 2

( U )

(0,0)

(1 1)

(0,0)

T i m e = 2 0 . 8 T i m e = 4 3 . 3

0,1)

(0.0)

(1,1)

(0,0)

Figure 2. — The discontinuous Galerkin q — 1, i — 0 approximation for the équation
u( = Au = 10 (u - u3).
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