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APPROXIMATION OF THE THREE-FIELD STOKES SYSTEM
VIA OPTIMIZED QUADRILATERAL FINITE ELEMENTS (*)

by V. RUAS (*), J. H. CARNEIRO DE ARAÜJO (2)

and M. A. M. SiLVA RAMOS (3)

Communicated by E. SANCHEZ-PALENCIA

Abstract. — In a recent paper the first two authors showed that a convenient choice of
« bubble tensors » leads to a significant réduction of the number of degrees offreedom needed
to definefinite element spaces for the extra stresses, suitablefor the solution of viscoelastic flow
problems. In this context specialists' usual guiding criterion is a stable and accurate
approximation of the underlying linear problem : the three-field Stokes system. Keeping this in
view, a new element for the approximation of this problem following the same ideas is
presented. Some computer tests illustrate the potentialities of the new methods.

Résumé.—Dans un article récent, les deux premiers auteurs ont démontré qu'un choix
convenable de « tenseurs bulle » permet une réduction très importante du nombre de degrés de
liberté nécessaire pour définir des espaces d'approximation de type éléments finis, du tenseur
d'extracontraintes, en vue de la simulation d'écoulements de fluides viscoêlastiques. Dans ce
cadre, il est généralement admis qu'une méthode stable et précise pour l'approximation du
problème linéaire sous-jacent est aussi efficace pour les systèmes non linéaires dont il est
question. Ainsi on présente et on étudie ici une nouvelle méthode construite selon des principes
semblables, pour le cas linéaire, à savoir, le système de Stokes à trois champs. De plus, on met
en évidence le potentiel des nouvelles méthodes au travers de quelques exemples numériques.

1. INTRODUCTION

The Stokes system expressed in ternis of three fields, namely, velocity,
pressure and extra stress tensor, is generally acknowledged as a basic
problem associated with the system describing the motion of a viscoelastic
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108 V. RUAS, J. H. CARNEIRO DE ARAÜJO, M. A. M. SILVA RAMOS

liquid. In particular, in the framework of a finite element simulation of this
kind of flows, many specialists so far searched for classes of methods that are
able to produce fine approximations of the three variables in the case of the
Stokes System. In so doing they either hoped or showed experimentally that
this is still so in the case of true viscoelastic models such as Maxwell's or
Oldroyd's (see e.g. [2]).

Incidentally, at least for the latter case Baranger & Sandri [3] proved that
second order convergent finite element methods for the solution of the three -
field Stokes system are convergent as well, when applied to the solution of
the corresponding viscoelasticity system.

As a significant example of efficient finite element methods for this kind of
problem derived in the past few years we should quote the so-called
Marchai & Crochet element [9]. Indeed, this second order quadrilatéral
element allowed a considérable advance in the numerical simulation of
viscoelastic flow. In particular they showed thrcmgh many examples given in
[9] and in other papers that followed, that flows involving a rather high
degree of elasticity could be represented satisfactorily by a computer solution
using such a method.

A little later Fortin & Pierre [8] rigorously justified the performance
antzcipated by computations, by proving that the Marchai & Crochet method
was optimally convergent, precisely in the limiting case of the three-field
stationary Stokes system.

In a recent paper, the first two authors presented a method for solving this
system, having comparable convergence properties, though at a considerably
lower cost. They are based on the same veiocity interpolation as that of
Marchai & Crochet's, whereas the pressure interpolation is the discontinu ou s
piecewise linear one used by Fortin & Fortin [7]. The main différence with
respect to previous work lies in the new type of extra stress interpolation
using a well-chosen set of twelve bubble tensors, which enrich the Standard
continu ou s finite element space, thereby ensuring the necessary stability.

In this paper we introducé another element based on the same ideas.
However in order to allow the use of other types of pressure interpolation,
such as the popular continuous bilinear one, we modify the set of bubble
tensors, whose number is increased by three.

Notice that in the case of the first element this technique is equivalent to
adding four node s in the interior of the quadrilatéral s to the standard bilinear
element, while in the case of the new element it corresponds to adding five
inner nodes.

After having reviewed in Section 2 the functional background for the
three-field Stokes system proposed in [10], we briefly recall in Section 3 its
application to the study of one of the éléments introduced by the first two
authors in [12]. In Section 4 we give a similar analysis adapted to the case of
the new method. Incidentally we should mention that the latter method was

M2 AN Modélisation mathématique et Analyse numérique
Mathematica! Modelling and Numerical Analysis



APPROXIMATION OF THE THREE-FIELD STOKES SYSTEM 109

briefly studied in [5], where a detailed computer study using both éléments is
given. As we should also add, the convergence results derived in this work
are restricted to the case of rectangular éléments. However an analysis
recently performed by the first author [11] showed that such convergence
properties remain valid, at least in the case where the quadrilaterals are not
too distorted.

Computer tests for the three-field Stokes System, described in Section 5,
using both methods and a classical biquadratic interpolation of both velocity
and extra stresses (1), allow a fair comparison of their performances. It is
found out in particular that they seem to be superior to the Marchai &
Crochet element, from the accuracy point of view too, at least in the case of
rectangular meshes.

Before entering into the subject, let us first recall the three-field Stokes
System, assuming for simplicity that the velocity vanishes on the boundary F
of the bounded flow domain of M1 represented by O :

— div o- + grad p = f , Ï
er = 2i?e(5), 1 in Ü , (1)

div u = 0 J

where o* is the extra stress tensor, ü is the velocity field, p is the pressure,
ƒ is a given body forces, i) is the viscosity of the fluid and e (u) is the strain
rate tensor given by

e(w) = r- [grad ü + (grad ü)T] .

2. SUMMARY OF THE FUNCTIONAL BACKGROUND

The naiurai variational formulation of system (1) is

Find (w, /?, a ) e V x Q x S such that

- er : e (v ) dx + p div v dx = - ƒ .v dx , V0 G V ,
Jn Jn Jn

— f a:Tdx- f e(ü):rdx = 0 , Vrei,
2 V Jn Jn

q div udx = 0 , V# E Q ,L
(2)

O While keeping the pressure discontinuous linear in all the cases.

vol. 27, n° 1, 1993



110 V. RUAS, J. H. CARNEIRO DE ARAÜJO, M. A. M. SILVA RAMOS

where referring to [1] for example, for the notation, we set :

v = {Hl{n)f,
normed by

normed by

kllo.ii =

2= {T I T e (L2(n ))2 x2 , Ty = TJlt 1 « i, y « 2} ,

normed by

( 2 \ 1/2

V II I I 2 \

Now if we are given a quadrilatéral family {"6̂ } h of finite element meshes
of fl, respecting the usual compatibility and regularity rules, where the
parameter h dénotes the maximum diameter of the éléments of %h, we
associate with TS* three subspaces Vh, Qh and Xh of V, Q and X, respectively.
The corresponding séquence of approximate probiems is thus defined by :

Find (uh, ph9 ah) e Vh x Qh x Xh such that

<rh:s(y)dx+ pk div v dx = - f .v dx , VveVh,
Jn Jn Jn

-— €rh:rdx- \ e (uh) : T dx = 0 , 6 Sh,

L div uh dx = 0 , Vq e Qh .

(3)

We will work with spaces V h and Qh that satisfy the well-known stability
condition, necessary for well-posedness of problem (3), namely,

q div v dx

3)8 ! > 0 such that inf sup — ^ f3 x (4)

we assume in addition that /3X is independent of h.
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APPROXIMATION OF THE THREE-FIELD STOKES SYSTEM 111

According to [10], the error bound

inf 1 2 - 5 1 ^ + inf | |p-*| |g> o + inf ||<r - T||2 \ (5)
üEVk qzQh ieXh f

holds for a constant C independent of h, if the following compatibility
condition between spaces Vh and 2h is fulfilled :

T : e (v ) dx

B/?2>0 suchthat inf sup — ^/32 (6)
X HJMI

and that in addition /32 is independent of h, where Uh is any space containing
Uh defined by,

Uh= lv\vsVh, j q div v dx = 0, V<? G Q\ .

Likewise in [10], we will use the following result adapted from Fortin's
quoted in [8], namely :

PROPOSITION 1 : If, for each r e 2, there exists a The 2h such that

frh:e(v)dx= T.e(v)dx, VveUh9 (7)
n Ja

and T;t sativfiev the inequality

for a constant C independent of h, then (6) is fulfilled.

3. EXTRA STRESSES FOR RECTANGLES WITH A DISCONTINUOUS PRESSURE

Let TSA consist of rectangles. Let also a and b dénote the lengths of the two
edges defining a rectangle R e TŜ , assumed to be parallel to the two cartesian
axes, say Oxx and Ox2, respectively. Set r = a/b and let !FK be the invertible
affine mapping from the référence square R = [- 1, + 1 ] x [- 1, + 1 ] of the
plane Ôxx x2 onto R.

vol. 27, n' 1, 1993



112 V. RUAS, J. H. CARNEIRO DE ARAÜJO, M. A. M. SILVA RAMOS

We recall that Q2 dénotes the space of polynomials, of degree less than or
equal to two in each variable xh i = 1, 2, over R. In so doing, we introducé
the following auxiliary space :

Wh = {v = (vlfv2)\ ï\R = Vo3?xl with ve (Q2)\ V# E <

Like in [9], we will take Vh = Wh n (C°(/2))2 n {H\{n)f. However in
order to enable the best possible improvement of the space for the extra stress
tensor will work with the space

where

Qh= {q\q\RePu VRel5h} ,

P x being the space of affine functions over R. Such a pair (V^ Qh) is known
to satisfy condition (4) (see e.g. [7]).

We will define space Xh to be the direct sum of the space X\, of continuous
symmetrie tensors whose restriction to each element of *Ç>h belongs to
(Ôi)2 x 2 (that is, linear with respect to xL and x2 separately), with another
space 2h of symmetrie tensors that vanish on the boundary of every element
R e TSA, to be specified hereafter.

Next we define our space Uh to be :

r i
q div v dx - 0, VqePl9 VRGSA

JR J

f r
Uh = \v I v G Wk and q div v dx - 0, VqePl9

The inclusion Uh <= Uh follows directly from the fact that Vh is a subspace
oîWh.

Following again [8], we note that in order to satisfy (7) and (8) it suffices
to be able to define a tensor rh belonging to space 2k, such that for every
tensor T G J£9 we have

f Th:s(v)dx= f r:s(6)dx,
JR JR
f eÛh, V/? G 15h (9)

JR JR

and

where C is a constant independent of h.
By changing variables in the above intégrais, (9) is seen to be equivalent to

stating that with every symmetrie tensor T, whose components belong to
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APPROXIMATION OF THE THREE-FIELD STOKES SYSTEM 113

L2(R), it is possible to associate another tensor rh belonging to a certain
space X of tensors defined in the référence square, and that vanish on the
boundary of R, such that

\ r h : è d x = \ r : è d x , V e e Ê , (11)
JR JE

where E is the space spanned by the tensors of the form e (v ) o ̂ ^ 1 for

Moreover using the same arguments as in [10] the f act that (11) has a
unique solution implies that (9) holds, provided the determinant of the matrix
associated with the corresponding system is independent of h.

In the case under study, using the monomials

II TT V V V V 2 V 2 V 2 V V V 2 V 2 T 2 \

spanning the space Q2 (i.e., the space analogous to Q2 for the variables
xl9 i = 1, 2) È is found to be spanned by the following set of twelve linearly
independent tensors (see [5]) :

ê5 =

e7 = ] ;
\ \l2 0 / \ 2 k 2(Jf - 1/3)

\
I ;
/

e = [% ° \ • ê = / ° - 3 ij Jcl/2 \
\0 [^(l-xf)-l]/3/ ' 6 l 2 ~ \-3^x^/2 r(x2-3xix2)l

Just to clarify the calculations leading to the above resuit, observe the
following. Whenever v e (Q2)

2, for a given rectangle R, e.(v) o &R may be
viewed as a linear combination of the fifteen tensors, {£,}, given in the next
section. However, if the projection of div ï; onto the space of linear functions
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in the rectangle R vanishes, the corresponding set of tensors is reduced to the
twelve tensors above. This is because three relations among the fifteen
original tensors resuit from this projection condition. Note that this is the
reason why we may work with twelve bubble tensors instead of fifteen,
whenever the pressure space consists of discontinuous piecewise linear
functions.

Let now <p dénote the « bubble function » of R, that is,

We define X to be the space spanned by the twelve following tensors :

/ $ 0 \
= I ;

\ o - * /
(o <p\ .

ffa"\o - X l * ) ' 3

/ 0 x1 <p\
&5 = I - - n r CT6

ï j x2 ^ 0 \ ^ / 0 Xj x2 <p \

o o ] ' Œ 8 = yjc!JC2^ o / ' °9"

, 0 5cx x2 <p f \ 0 — x\ <p ]

The construction of T^ € I satisfying (11) reduces to the solution of a
linear System,

Alh = l

w h e r e 7k is the vec tor of M n consist ing of the components of vh wi th respect

to the bas is {cr,} 12_ 7 is the vector of M12 whose Z-th componen t is given by

T : ê(- dxy and A = atj is the 12 x 12 matr ix given by a^ = ö-y : ê(. dix.
J^ JR

x2 <p

0

0

x2 <P

X,<P

0

x 2 ^

0

0

- x2 <P

X*, <P 1

Since

^(l-^)dx,. =L
if m is odd, i = 1 ou 2, matrix A is sparse. Actually the only non zero entries
of A are found to be

8 8
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APPROXIMATION OF THE THREE-FIELD STOKES SYSTEM 115

«7,4

8 ( r 2 - l ) t

135 '

8

«3,3

Q>éf 4

«5 5

a66

Ar
" 4 5 ;

«8,8

8
' 4 5 '

8 .

_ 8 .

8 .

8

«7,7 =

16 r
225 '

~ 4 r

8
225 '

«8,11

8(1 -r2)
945

8

8 r

8 ( 4 - r 2 ) _ 8 ( r 2 - 8 )
135 ; ülh n ~ 945 ;

8r - 4 8 r
; ö ; a

After performing some simple Gaussian éliminations, we obtain

det A = oà
 2

 |fi r3(r2 + 1),
324 x 516 x 7

thus A is an invertible matrix for every r =£ 0. This impiies not only that
system (11) has a unique solution, but that this is also the case of System (9),
provided % is the space of symmetrie tensors, whose restriction to every
R e *Üh belongs to the space spanned by {<*ƒ}. where <r* — âj ° ^R1.

Like in [8], we choose T = T — TT\ T, where T E S is any tensor that
satisfies an inequality obtained from (6), by replacing Xh with X, and
irl T is the L2-projection of T onto X\. In so doing, using the same kind of
arguments as in [10], the fact that the determinant of A is bounded below by a
constant independent of h for every R e ^k, implies that both (7) and (8) hold
as well with rh = 7r\ T + TA, where T J is the solution of (9), V/? e T5A.

Finally, according to Proposition 1 and taking into account that the best
approximations of ü, p and o- in Vh, Qh and Xh are bounded above by
(9(h2) terms if u e (i/3(/3))2 and p s H2{O\ recalling (5) we have :

vol. 27, n° 1, 1993
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THEOREM 1 : /ƒ M e (//3<72))2, p e H2{f2\ 2h = 2h ® 2\ and {
uniformly regular in the usual sensé, then ûky ph, <rk converge to
u, p9 <r respectively in the corr esp onding spaces as h go e s to zero, at the
same rate as a term Ch2 converges to zero.

4. A VARIANT FOR THE CASE OF A CONTINUOUS PRESSURE

In this Section we consider an alternative choice of extra stress interpo-
lation similar to the one associated with space 2. Our aim is to define a three-
field mixed element based on biquadratic velocity fields and pressure
interpolations other than discontinuous piecewise linear. In particular this is
the case of the classical space of continuous piecewise isoparametric bilinear
functions, which together with the above mentioned velocity space, satisfies
the inf-sup condition (4) according to [4].

Let then 2' be the space spanned by the ordered basis {|i j where :

0 0 \ P _ (0 <p\

o O

0

- (

/

~ \

= 1

4> 0
0 0

* 1 <p

0

(V
iio

) • •

0
0

0
0

1

= (

V ê

i 0

; =

0
0 0 o

We will let space ï1' play here the same role as space 2 played in the
previous Section. In so doing we will prove that a condition analogous to (6)
is satisfied for the modified fini te element method associated with

Such a condition is r
T:e(v)dx

3/33>Q such that inf sup —?• 5= P3, (12)
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APPROXIMATION OF THE THREE-FIELD STOKES SYSTEM 117

and that in addition fi3 is independent of h, where X'h is the space given by

Z'h = Zl® X'h

with

{ | T | J Ï = T O ^ 1 , T Ê I ' , VRel

The main différence between condition (12) and condition (6) is the f act
that in the former the discrete divergence free condition for fields
v is not used. For this reason (12) is more restrictive and therefore space
X'h should be richer than Xh in principle. This explains the choice of f if teen
tensors to define S' instead of twelve.

Now we have the following results :

PROPOSITION 2 : Let ÊRi R e TSA be the space of second order tensors
defined by £(0))^ o <P' R<i v e VA, V/? e TSA. ÊR is a subspace of the space

spanned by set {£,-} of linearly independent tensors given by

< H S ")•

Proof : The proposition is established by means of a straightforward
calculation given in [5]. •

vol. 27, n° 1, 1993
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PROPOSITION 3 : Given a tensor T whose components belong to
L2(R) there exists a unique &h s X' of the form

15
&h = I c , I >

y = 1

where the Cj's are constants for which

^ e ^ . (13)\ &h:$hdx = f r:
JR JR

Moreover, ùh satisfies

l l**llo.** e l l*llo,/ i '
where C is a constant independent of T and || . || 0 ^ dénotes the standard

norm of L2(R).

Proof : Given R e *&h and T with rl} E L2(R) let s be the vector of
M15 defined by

st = T : Ç( dx , 1 *£ i «s 15
JR

and A' be the 15 x 15 matrix a'tJ where

a'tJ = \ %:tsdx9 l * i j * 1 5 .
JR

The System of équations defined by (13) may be written as

A'sh = s

where sh is the vector whose components are the c/s. After straightforward
calculations the only non zero éléments of A ' are found to be,

«1,1

«2,2

«3,3

«4,4

«5,5

~ 9 '
4 .

~ 9'
8

~ 9 '
4

~ 4 5 ;

4 .
~ 45 '
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«6,

ƒ

9,9

/
«10,3

• 6 " 4 5 ;

f
al,l

«8,8

8
" 4 5 '

Ar t

~ 45 ;

4

fl6f15

4 .
" 45 '

4
" 4 5 ;

9,12

«10, 10

225 '

8
~ 225'

8
225 '

32
45 ' "n- " " 1 575 '

8 8 r , _ 8 r
«12,4 = 225 ; a i 2 ' 9 " 2 2 5 : û l 2 ' 1 2 " 5 2 5

4 , 8 r
«13,3 = 4 5 ; «13,13 = 2 2 5 !

Ar , 32 r
«14,2 = 45- ! «14,14 = j-575 ;

, _ 8 _ 8 r . , _ 4
« 1 5 , 6 - 2 2 5 . ö l 5 - 8 ~ 2 2 5 ' ö l 5 ' 1 5 ~ 5 2 5

Next by performing a couple of simple Gaussian éliminations we obtain :

Thus A ' is an invertible matrix for every r ^ 0 and the result follows from
the fact that det A' is bounded below by a constant independent of R if
V&k} h

 IS a regular family of partitions of il (see [10J). •

PROPOSITION 4 : The result of Proposition 1 holds if £h is replacée with
X'h and Üh is replaced with Uh.

Proof : This result follows directly from Proposition 3. •

Finally, let Q'h be any space, that together with space Vh associated with
piecewise biquadratic functions, satisfies the compatibility condition

q div v dx

2 4 > 0 such that inf sup 3= /34 ,
Q k e v h \ \ q \ \ Q n \ v \ x a

where /34 is a constant independent of h. Then, we have :
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120 V. RUAS, J. H. CARNEIRO DE ARAÜJO, M. A. M. SILVA RAMOS

THEOREM 2 : Let (uh, ph, €r'h) E Vh x Q'h x X'h be the solution of a problem
analogous to (3) obtained by replacing Qh with Q'h and Xh with X'h. If
V^h} L Z5 a regular family of partitions o f O into rectangles, there exists a
constant C ' independent of h such that

\\&9p9 a)-(2A,pA, ^)| |Z^CA2( | |2| |^+ \\p\\lnf2,

assuming that u e (H3(I2))2 and p e H2(I2\ where \\ . ||m n dénotes the
standard norms of Sobolev space Hm{O) and

\\{u,p,a)\\2
z= \u\ln+\\P\\l,n+\M\ln-

Proof : As it has been established in previous work (see e.g. [10] and [5]
and références therein) such convergence resuit is a direct conséquence of
the fact that condition (12) holds. This in turn is immediately derived from
Proposition 3. •

5. NUMERICAL EXPERIMENTS

The aim of this Section is to verify experimentally the convergence results
derived in the two previous Sections, and to check the performance of the
corresponding methods when solving the classical stick-slip test problem
described in terms of a three-field Stokes System.

We showed that whenever the hypotheses of Theorems 1 and 2 are
satisfied, there exists a constant C independent of h and depending on the
solution (u, p, <T) of System (1) such that

\\(u,p, * F ) - (uh,pk9 <rh)\\z^Ch2

where (uh, <rA, ph) E Vh x Xh x Qh is the solution of the associated discrete

problem where Xh is either Xh or X*h.
In order to verify experimentally the above convergence resuit, we will

make use of the classical log || (w, p, tr) - (uh, ph, <rA)|| x log h plot ob-
tained from the solution of a test problem proposed in [6].

This test problem governed by the Stokes System, deals with the stationary
flow of a fluid confined in the square cavity f2 with unit edge length, and
subjected to the action of body forces ƒ = (fx9 fy) where

(x>y) = 9(x9y) + y - - ,

fy(x9y)= -fif(y, x) + x - - 9
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Mathematical Modelling and Numerical Analysis



APPROXIMATION OF THE THREE-FIELD STOKES SYSTEM 121

with

9(x,y) =
- l)2 (2y- l) + y(y- - l ) ( 1 2 x 2 - 1 2 * + 2 ) ] .

The solution of this problem, which satisfies homogeneous Dirichlet
boundary conditions, is given by

ux(x,y)= -256x2(x-D2y(y-l)(2y-l),
Uy{x, y) = - ux(y, x);

O" = 2 7) S (Ü ) .

We solved this test problem with the element considered in Section 3 only.
All the numerical quadrature were performed with the ninth order Gauss-
Legendre formula, while the resulting linear system was solved by the frontal
method without pivoting.

In figure 1 we display the results obtained with four uniform meshes of f2,
namely those obtained by subdividing the edges into 4, 5, 6 and 7 equal
segments, respectively. Quadratic convergence is clearly observed as
expected.

Let us now switch to the stick-slip problem. This test case has been
considered by many authors in order to check the performance of mixed

0 10 -

- 0 90 - 0 80 - 0 70 - 0 60 - 0 50

Figure 1. — Log-Log plot of the error for a test problem proposed in [6].
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122 V. RUAS, J. H. CARNEIRO DE ARAÜJO, M. A. M. SILVA RAMOS

methods for the three-field Stokes system. This is because, whenever an
element does not satisfy the extra stress-velocity compatibility condition,
severe non physical oscillations of extra stress components appear in the
zone where high stress gradients occurs. As it should be noted, in the case of
viscoelastic flow those spurious oscillations are amplified, which may spoil
completely the accuracy of a finite element simulation of the flow (see e.g.
[9]).

Let us recall the problem under considération referring to figure 2, where
the flow domain O is illustrated, together with the boundary conditions.
Notice that in this problem the most interesting zone is the neighborhood of
point (Ll9 D) since high stress gradients develop there.

We have further assumed that L2 is sufficiently large so that we may
consider that uy = 0 at x — L2, and that the flow is symmetrie with respect to
the axis Ox. Moreover we take ƒ = 0.

In all the cases we used space Vh defined in Section 3 with the usual
modification, in order to accommodate non homogeneous velocity boundary
conditions. As pointed out bef ore only discontinuous linear pressure fields
were used in these computations. On the other hand besides the two extra-
stress finite element spaces 2h and 2'h considered in Sections 3 and 4
respectively, we used the space Sh = (2°)sym

2> where

'teQ2

and Q2 is the space of biquadratic f une tiens defined in the référence rectangle
R.

Notice that, though capable of producing reasonable results, this element
has not been proved to satisfy the required compatibility condition involving
velocity and extra stresses.

We dénote in this Section the mixed method associated with extra stress
spaces 2h9 2f

h and Eh and the fixed velocity-pressure space specified above
by Tn, Tl5 and Q2 respectively.

ttv = 0; axy = 0

Figure 2. — Geonietry and boundary conditions for the stick-slip problem.
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The computer results given below were obtained by using the following
numerical values of the geometry and équation parameter :

V = 1.00 = 1.00, - 20.00 , L2 = 50.00

Marchai and Crochet gave in [9] results for the Newtonian stick-slip
problem in a geometry identical to the one used in this work. They used two
different methods : the so-called Marchai and Crochet method denoted by
MCU and a method identical to Q2, except for the pressure space that
consists of isoparametric continuous bilinear functions. We dénote the latter
mixed method by MC2, which is not known to satisfy the compatibility
condition of type (6) or (12) either.

In [9] the domain for the stick-slip problem was discretized into 160
rectangles. We did the same but since in that work the value of 17 is not given
and the quadrature formula that has been used is not specified, we could only
perform a qualitative comparison with their results.

In figure 3 we illustrate a zoom on the mesh in the neighborhood of point

The corresponding number of degrees of freedom are as follows : 1 430 for
the velocity field, 480 for the pressure, 2 145, 2 514 and 2 994 for the extra
stresses in the cases of éléments Q2, Tn and T15 respectively.

We display in figure 4 the graphs ux x x along the line y = D in the
neighborhood of point (Lx, D) for éléments Q2i Tl2 and Tl5 as indicated.

Notice that the three curves look basically the same. Moreover by
comparing the result obtained with Q2 to the one presented in [9] for
MC 2, one observes that our velocity component ux does not show the
oscillations found by those authors. This seems to indicate that the choice of
discontinuous piecewise linear pressures stabilize a little the biquadratic
element for extra stresses, which is quite plausible.

Now we illustrate the behavior of the extra stress components a^
o-xy and ayy along the same line in figures 5, 6 and 7, respectively,
represented by éléments Q2, T12 and Txy Notice that results given by
Q2 show several non physical oscillations near point (Lx, D). This had also
been observed for MC2 [9]. On the other hand when we compare the curves
o-ja x x for Tn and Tl5 with those given in [9] for MCX, we observe that they
are qualitatively identical. However the former graphs have smaller oscil-
lations around x = 19.7 than those observed in their results, although they

Figure 3. — Zoom on the mesh around point ( 1^ D\
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are practically negligible at the scale used in both works. According to a
conjecture in [9] these small oscillations would be due to the relative
coarseness of the mesh.

Finally let us add that we rerun the code for a mesh consisting of 315
rectangles. We observed that an attenuation of the oscillations of the extra
stresses represented by elements Tl2 and Tl5 effectively occurred.

6. CONCLUDING REMARKS

1. The next point related to the new finite elements for the three-field
Stokes system, considered in this work that the authors intend to exploit
computationally, is their use in connection with arbitrary quadrilateral
meshes. The theoretical results given for the Tl5 element by the first author in
[11], indicate that one might expect comparable performance in this case too.
Extension of this analysis to the Tn element is underway.

2. Another important topic that should be considered soon is the extension
of the new elements to the axisymmetric case.

3. Finally let us point out that although we did not present any
comparative data concerning CPU time for the different second order
methods that were considered in this work, the following a priori argument
should be stressed. For a given mesh 7Sh the number of degrees of freedom of
the space Xh for the Tn element is roughly 5/16 of the total number of degrees
of freedom of the space of piecewise bilinear functions defined on a submesh
four times finer than 73 A, used to define the extra stresses for the
MC1 element. This ratio increases by 1/16 for the Tl5 element. Moreover, in
the case of the T3 n element (n = 4 or 5) roughly n tensor degrees of freedom
out of n + 1 can be easily eliminated from the corresponding linear system at
a low cost, since they are associated with only one quadrilateral.
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