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MIXED FINITE ELEMENT METHODS
FOR QUASILINEAR SECOND ORDER ELLIPTIC PROBLEMS :
THE p-VERSION (*)

by F. A. MILNER (!) and M. SURI (?)

Communicated by R Scott

Abstract — The p-version of the finite element method i1s analyzed for quasilinear second
order elliptic problems in mixed weak form Approximation properties of the Raviart-Thomas
projection are demonstrated and L*-error bounds for the three relevant variables in the mixed
method are derived

Résumé — Nous analysons la version-p de la méthode d’éléments finis mixtes pour des
problémes quasilinéaires elliptiques du second ordre en forme faible mixte Nous démontrons
des propriétés d approximation de la projection de Raviart-Thomas et on dérive des bornes de
Perreur dans L*(2) pour les trois variables d’intérét dans la méthode mixte

I. INTRODUCTION

We consider here the numerical solution of the following boundary-value
problem :

0 in £,

{.@(u)=—y. (a(u) Yu + b()) + c(u) W

U= —¢g on 312,

where £21s a convex polygon with boundary 342, Vw denotes the gradient of
the scalar function w and V . v and div v denote the divergence of the vector
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914 F A. MILNER, M SURI

function v. We shall assume that for r = 2 and for each g € H = ?(302) there
exists a unique isolated solution u € H'(£2) of (1.1) (that is, a solution not
situated at a bifurcation point). Note that Sobolev’s embedding theorem
implies then that u e W'~ l-22(0), ¢=0, ¢ <1, which will be needed
throughout the paper.

We shall also assume that the coefficients a:2 xR >R,
b: 2 xR->R? and c: 2 xR > R are twice continuously differentiable
with bounded derivatives through second order, and that a(x, g)=a; = 0.
The variable x will be omitted as explicit argument of all functions, except
when necessary to avoid ambiguity.

For 1 =s =00 and k any nonnegative integer, we let

Wes(2) = {f e L*(Q2):D* f e L’(),

al sk}

denote the Sobolev space endowed with its standard norm

/s
a B
(l ;»k 1> f”[‘sm)) =%

max D" £l ).
|la] <k

"f“k,s‘ﬂ
1f Nk 0.0

The subscript £2 in the norms will be omitted. Let H*(2) = W*2(2) with
norm || . ||, = || | ,- In particular, the notation || . ||, will mean || . ||z ,,
or |l .l

| 2 For 0=r<oco let W"s(2). W"*(32), H'(2), and H'(3:2)
denote the fractional order Sobolev spaces with norms .|, ,,
-1, 5 000 -1, oand || .|, ,, respectively, defined by interpolation

[71.

We shall denote by (., . ) the Hilbert inner product in either L?>(£2) or
L?>(22)* and by (., . ) the L>inner product on the boundary of (2. The same
notation will be used to indicate the dualities between W™ °(£2) and
W () and H° (32 ) and H*(342), respectively. Throughout the paper, C,
0O, and K will denote generic positive constants which need not have the
same value in all their occurrences.

Let
V=H@@iv;2)= {pel’(2):divyeL’(2)},
normed by
1212 . 0y = lEll2+ ldivell?,
and
W=L*n).
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MIXED FINITE ELEMENT METHODS : THE p-VERSION 915

The mixed finite element method we shall consider seeks simultaneous
approximations of the solution of (1.1), u, and of the flux

z=—a@)Vu—bHu). (1.2)

The mixed weak formulation of (1.1) consists of finding (z, u) e V x W
such that

(¢(u)z,0)— (u, dive)+ (Bu), v) =g, v.2), v €Y, L3
(div z, w) + (c(u), w) =0, wew, (1-3)

where we have set
a)=1law), Bu)=am)bl), (1.4)

and v is the outward unit normal vector on 3f2. Our mixed finite element
method is a discrete form of (1.3).

Let B be a decomposition of {2 by parallelograms which will be the
«elements » E and let 2, ,(E) = {polynomials f(x, y) on E, of degree
<p in x and degree <gq in y}, 2,(E) = {polynomials of degree <p on
E} ; next define, for each element E,

...VP(E) = gp+],p(E) X gp,p-}.l(E)’

and let
VExWPcV xW

be the Raviart-Thomas-Nedelec space of index p = 0 associated with this
decomposition [3, 5], given by

VP = (n yP(E)) n {[:02_.[;&|£".VE

Ee®

=f.vgonENE,E E €6}
WP = ] 2,(E),

Ee®

where yp denotes the outward unit normal vector along 9F, E € . It is
known [3, 5] that div V” = WP, a property we shall exploit later.

We seek (#, uP) € VP x WP so that

(a@)Z,0)— W, divy)+ (B@W), )= (g,v.¥), v € VP,

1.5
(div Z, w) + (c@), w) =0, w e WP, (1.5)

Equations (1.5) define the p-version of the mixed finite element approxi-
mation for (1.3). This version is based on using a fixed mesh and increasing

vol. 26, n° 7, 1992



916 F A MILNER, M SURI

the degree of the finite elements (as opposed to the Z-version that keeps the
degree fixed and refines the mesh). The p-version has been analyzed for the
linearized version of (1.1) in terms of the standard variational form in [1] and
in terms of the mixed variational form in [6]. In this paper, we extend the
results obtained in [6] for the linear problem to the quasilinear case. We also
obtain an improved version of lemma 3.1 of [6] by reducing the regularity
assumed there. We restrict our attention to the mixed method, the corre-
sponding generalization for the standard finite element method is more
straightforward.

Milner [3] described the h-version of this method for the same problem,
demonstrated the unique solvability (for small %) of the nonlinear algebraic
system (1.5) and derived error estimates in L°(£2 ), 2 < s < + o0, for the error
in u, and in H(div ; £ ) for the error in z. The assumption there was that the
solution of (1.1) was in the space H>* (2 ). In contrast, for the present paper
we shall need an extra half derivative, that is, u € H>?>**(£2).

We shall follow very closely the analysis of [3]. In order to do so we shall
use the L’-projection onto W?, P?:L? WP, given by

(PPw—w,x)=0, xeWP, weW, (1.6)

for which the following approximation properties follow by repeating the
arguments of [4] in two dimensions and using interpolation from the cases
s=2and s =00 :

IPPw —w| —<Qp m*32-3w| s=2, 32-3ls=sm, (1.7)

m®

0,s

if we H"(£2). We shall also use the Raviart-Thomas projection of
VYV onto VP, wP:V — VP, [5] for which we shall demonstrate in Section 2 the
following approximation property :

|7Pe —vll,=@p"* "lell,, r=12, pveH(@YNYV. (1.8)

Our proof of (1.8) improves upon the one presented in [6], which imposed
extra regularity on v by requiring that » > 1. In contrast, the condition
r=>1/2 is optimal (see remark 2.1). We also obtain estimates for the
approximation properties of #? in the W% $(£2 )-norm.

We shall find very useful the following inverse-type inequalities, the two
dimensional form of the ones found in [4] :

“X"O,sstM"‘”sH,\/Ilo)r, lsrss=<sow,
X €ELS2)NWP (orxy e L°(2Y NVP). (1.9)

The plan of the paper is as follows : in Section 2 we demonstrate (1.8), in
Section 3 we prove that, for p sufficiently large, (1.5) is uniquely solvable

M2 AN Modélisation mathématique et Analyse numérique
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MIXED FINITE ELEMENT METHODS : THE p-VERSION 917

and its solution (Z, u?) converges to (z u) in V NL2**(2) x
L@+4Ye(0) for any fixed &, 0 < £ < 1, and in Section 4 we establish the
rate of convergence of the approximation to the exact solution.

II. THE APPROXIMATION PROPERTIES OF =*

We recall that 77 v is given locally (on every element E) by the following
relations (2.1) and (2.2) (see [5]):

<[7r"y—l~2].yE,(p>S=0, pEZP,, < (2.1)

where (.,.)s, 1=<i=<4, denotes the line integral along each side
S, of the element E and 2, is the set of all polynomials in one variable of
degree less than or equal to p,

(77'1]2_2’ ?)E:O’ {/_‘IE,.,VP(E)’ (2-2)

where (., . ) denotes the standard L2(E )-inner product.
Now, let R=[-1,1]x[-1,1] and let {P,}’20 denote the

L*([- 1, 1])-complete orthogonal Legendre polynomials. For any
v e H(div; R), let

INgE

2(x, y) = [z Y a,,P,(x)P,0),

=0;=0

Z b,,JP,(x)P](y)] , (2.3)
;=0

0

and let

p+l p p p+1l
ﬂpy(x’ }’)= ‘VZ Z 5;,1Pz(x)Pj(}’), Z Z bz,JPz(X)PJ()’)-I (24)
0, 6y=0

e = =

=3

1= 4

It follows from (2.2)-(2.4) that

{aw=5u, O<i<p-1, O0sj=p, 2.5)
by =b, Osks=p, O=<sl=<p-1.
Next, we see that (2.1), (2.3)-(2.5) imply that

p+1 0

Y a,P(x1)= Y a 6 P (x1), O<j=<p,

:’i ter (2.6)

M8

Z~bz,1P,(i1)= b,,P(x1), Osis<p.
1=p

~
]
A}

vol. 26, n° 7, 1992



918 F. A. MILNER, M. SURI

Since P,(—1)= (- 1) and P,(1) = 1, (2.6) implies that

o0
a, = Ay ipys Gpi1,; = Za2l+p+l,j’ Os;sp,
0

3

I

o
~
N
~J
~

bz,p+1 =

J

b b

K~y
B~

|
M
M8

Lp+2) > L,p+1+2)>

]
o
Il
o

J

PROPOSITION 2.1 : Let v € V and let P v be its Raviart-Thomas projection
in VP given by (2.1)-(2.2). Then, if v € H (2 ), we have

e - wpyuo <Qp'?-r el , r=1/2,
where Q = 0 is a constant independent of p and v but depending on r.

Proof : We first assume that {2 = R and that the decomposition consists of
just one element. Then, v € V and 7w”v € V” can be given, respectively, by
(2.3) and (2.4).

The following relation is a trivial consequence of well known properties of
the Legendre polynomials,

+ 5 2 + 3 2
||v—7rpu||2=pzli 4.(‘1"/ a,:]) + ipzl 4.(bz,1 bl.,]) .
i TS S+ DR+ A 5 2i+ DRI+

+ @ 2 © + 2
+p 1 2 4al,] + Z pzl 4b1,1
S, S Qi+ D2+ S 52+ D2+
hd P 4 g2 P © 4 p?
] 1,7
+ - . + i :
l=pz+2,§o Ci+D2j+1) ,;01;”(2”1)(2]“)

2 4 b2,

© © ah] o ©
+ L L airneiint L 2 aiineisD

t=p+2j=p+1 t=p+1j=p+2

=I+I1+-.-+ VIII.
Note that III-VIII can be bounded as follows :

© @ g2 (140242
I+ V + VI < Qp~2’ 2 : , r=0,
,;,Z:O Qi+ 1)2j+1)
while
© @ p2 (1 + i+ )
IV + VI + VIl < Qp~ 2%’ =2/ . , r=0,
ZZ Ci+DH2j+1)
which implies that (see [6])
I+ .-+ VII< Qp~?"|g||?, r=0. 2.9)

M? AN Modélisation mathématique et Analyse numérique
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MIXED FINITE ELEMENT METHODS - THE p-VERSION 919

On the other hand, it follows from (2.7) that

_ ;=0 1 =0
_2p+lj§) 2j+1 2p+31§0 2j+1
o 2 © 2
(Za21+p/> (Za21+p+l,]>
_ 4 i r=1 + 4 Z =1
2p+1j:0 2j+1 2p+3]:o 2j+1
and (2.10)
© 2
4 (btp—— Z bz,2]+p>
— 1=0
H_2p+ll§0 20 +1
© 2
(bt,p+1_ Z b1,21+p+1)
+ 4 i 71=0
2p+3 & 2i + 1
© 2 © 2
(z bz,2]+p) © (Z bl,2j+p+l)
_ 4 i 7=1 + 4 Z J=1
T 2p+1 2i+1 2p+3 2i+1 )
Pris P25 (2.11)

Next observe that bounding the series Z (c+ kY S A +2k) using the

k=p+1
integral method for J (c+2)yS (1 +2¢t)dt < S—K—lpz-“ (s>1), and
, —
using the Cauchy-Schwarz inequality, we see that, for s bounded away from

o« a 0
<Y UL 4 Qi pP+PF Y [+ Qi+ pP+ 2T x
4 N t=1

2 :2 22\§
a, (L +i"+j°y 2
& Y oA+ +y (1 +2i0)
1=0 1=p+2
= a2 (1+i*+j%

&~ 20+l (2.12)

vol. 26, n° 7, 1992



920 F A. MILNER, M SURI

®© 2
with exactly the same final bound holding for ( Z Ay ipst, j) . It follows
=1

from (2.10) and (2.12) that, for s bounded away from 1,

o © 42 (1 +i2+j2)s
I<Qp'~?s oz ) 2.13
op J;Ol§0(2i+1)(2j+1) 2.13)

In an entirely analogous way (replacing @, , by b, ; and reversing the roles of
i and j) we deduce from (2.11) that, for s bounded away from 1,

» @ p2 (] 4§24 %)
<Qp'-? 2 . 2.14
I<0p l;}; Qi+ D2j+1) 2.14)

Combining (2.13) and (2.14) results, for s bounded away from 1, in

I+1I<Qp' = u|?. (2.15)

Next note that

2oz, =
nElLy)=3% Ya,P )P, -l=sy=l,
';”/;“ (2.16)
v, x1)=Y Y b, P,(y)Px1), —i<x=<l.

[l
(=]

! 0

[}

7

The trace theorem (Sobolev’s embedding theorem) implies that v, v, €
L?(8R) for s = 1/2. Consequently, since P,(1) =1 and P,(— 1) = (- 1),
we see from (2.16) that

[ WZ
LY &EDa,
2 L: =0 J
lv; (= 1,.)|]0_m=21§0 3T <00,
- . 2.17)
2 - Lzo &1V b,
— J = .
“"2(-,tl)”o,a!z—zg:‘J 20 +1 =%
Let now v € H"?** (2)%. We shall prove that
e —efl,<0p“llel,,,.- (2.18)

M? AN Modélisation mathématique et Analyse numérique
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In view of (2.8) and (2.9) it is sufficient to prove that I, Il < Qp~ 2| v|| %/2 e

It follows from (2.10) that
2 @ 2
aZt+p,j> +<Za21+p+1,j) ]
1 =1

© 2 o 2
=2p‘12(2j+1)_1[< Yy aw) +( Y (—1)’a,,1):|

;=0 P+ t=p+2

M8

I<4p! i (2j+1)—1[(

1=0

4 © p+1 2
=2p‘1Z(2j+1)‘1[<2a,,]—2aw) +
J=0

-0 =0
© p+1 2
+ (Z (_l)laz,]_ Z (_l)laz,j>]
1=0 1=0
p © 2 © 2 p+1 2
<4p 'y <2j+1>-1[( a,,,) + (Z <—1>’a,,,) +( az,j> +
1=0 1=0

1=0

p+1 2
+ (Z (- 1) a,,]) ]
1=0

<4p ' (o1, DR Lo+ a1 D2 0+

)4 p+1 2 p+1 2
+4p‘12(2]+1)“1{<zaw) +<Z(—1)taw) } 2.19)
1=0 1 =0

1=0

Note that the next to last term on the right hand side of (2.19) can be
bounded, using the integral method for

p+1
Jf Qi+ 1A +i2+2 12 =0(@p' 2?9
0

as p —» oo, as follows :

P p+1 2 P p+la2 (1 +i2 +j2)1/2+g
. ~-1 = . 1 (A
20(2]“*'1) (,goaw) \,§0(2]+1) Z 2i+1

=0

J
p+1
x Y @i+ 1) +i%+ )

1=0

<Qlel?,,.p 7%, (2.20)

with an identical bound holding for the last term of (2.19). Combining (2.19)
and (2.20) and using Sobolev’s embedding theorem yields

I<Qp *°|ul?,, .- (2.21)

vol 26, n° 7, 1992



922 F. A. MILNER, M. SURI

In an entirely analogous fashion we can see that
—2¢ 2
T<0p""lzlliy, .-

which together with (2.21) yields (2.18). Using interpolation [7], it follows
from (2.15) and (2.18) that, for s bounded away from 1/2,

I+I=<Qp' ?|jp|?,

which together with (2.8) and (2.9) concludes the proof for the case
2 = R. For the case when (2 is a disjoint union of parallelograms the result
follows on each element by using affine mappings onto R. The proposition
then follows by summing over all the elements (see [6] for details).

Remark 2.1 : This result differs from the one known for the A-version of
the finite element method [3, (1.5)],

le— 7o, <Qnrlell,. r=12. (2.22)

The constraint r = 1/2 (or r = 1/2 + &) stems from the fact that, according to
the trace theorem, this is the minimal requirement to ensure that v has a trace
on the boundary which is an L*function (not just a distribution). In [6] the
corresponding result required an additional half derivative on v(r > 1). In
contrast, proposition 2.1 assumes the minimum regularity necessary. It is
possible, however, that the bound still holds with the exponent of p replaced
by — r, as suggested by (2.22).

COROLLARY 2.1: For s =2, r>max {1/2;3/2—3/s},

le —#Pe|, ,<0p™ "~ *|f,.

Proof : Let PP v be the L2-projection PP x PP :V — V. Then the following
analogue of (1.7) holds :
[P o -2, ,<Qp " 2|, s=2, 32-3/s<r. (223
Also,

lw?e =l <1272 -l + =2 -2, . @24

The second term in this expression may be bounded using the inverse
inequality (1.9) as follows :

| =72 —BPu|, <0Qp* ¥ 7P - PPyl
=op> " (|eP e~ ol + |72 -2 ). (225)
Combining (2.23)-(2.25) and using proposition 2.1, we obtain the corollary.

M? AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



MIXED FINITE ELEMENT METHODS : THE p-VERSION 923

1II. SOLVABILITY OF THE DISCRETE PROBLEM
Following [3] we introduce, for p € W?, the notation

a(p)—a@W)=—a,p)u—p)=—a,@)w—p)+d,p)u—p)7*,
(3.1)

where

1
&, (p) = J a,(p +tlu—pldr,
0

and

1
@y(p) = J A-t)a,(u+tlp —ul)de,
0

are bounded functions in £2. Similarly, we write

Bp)-Bw)=—B,(p)u—p)=—B,)u—p)+B,0p)u-p),
(3.2)

and

c(p)—cu)=—C(pYu—p)=—c,)—p)+Culp)u—py,
(3.3)

where éu(p ), éuu (p), ¢,(p), and ¢,,(p) are bounded functions in Q. Also,
let

'=a,m)z+B,m), v=c,u). (3.4)

With the notation of (3.1)-(3.4), the following error equations follow from
(1.3) and (1.5), [3]:

(@ @7z~ 21, 8) — (dive, PPu—u) + ((PPu—ul T, v) =
= (Q(up, ..Z,p)’ E)’ QEYP,
div [7Pz— 2], w)+ (y[PPu—-uP]l,w)= (n@), w), weWP,

3.5)

where

q@, F)=a@)[7Pz-z1 + [PPu—u]l [+

+ (U= ) (@, ) 2+ BuP)] + &, )u—uwP)(z— 7#), (3.6)

vol. 26, n° 7, 1992



924 F. A. MILNER, M. SURI
and
n () = y[PPu—ul + &, )(u—ul). (3.7)
Just as in [3], we let
D VP x WP VP x WP

be given by @ ((&, p)) = (A, k), (A, «) being the (unique) solution of the
system

(e @)[7Pz- A v)— (diveg, PPu—«)+ (PPu—«]L, v)=

= (g, n)p), vEV?,

div [7Pz— AL, w)+ (y[PPu—«], w)=(n(p)w), weW?’,
(3.8)

where g(p, #) and 7n(p) are given by (3.6) and (3.7), respectively,
replacing u” by p and Z by w. The unique solvability of this (linear) system

follows, for p sufficiently large, from [2], since the left hand side of (3.8)
corresponds to the mixed method for the operator M : H 2)YNHY)N) >
L*(£2) given by

Mw=-V.(@uw)Vw+aw)ywl)+ yo,

which has a bounded inverse. In fact, note that (1.2), (1.4) and (3.4) give
Mw=—-V.law)Vw+a@)w(a,w)z+B,m)N] +c,m)w

a,(u)
=-V. [a(u)YW + a(u)W[— - (—a(u)Vu) + a(u)bu(u)” +
a (u)

+c,(u)yw

= - Y . [a(u) Yw + (au(u)vu + bu(u)) w] + Cu(u) w,

which shows that M is the linearization of the operator 2 in (1.1) about the
function u, and, thus, it has a bounded inverse since we have assumed that
(1.1) admits unique isolated solutions.

The solvability of (1.5) is now equivalent to showing that & has a fixed
point. This will follow from the Brouwer fixed point theorem if we show that
@ maps a ball of V? x WP into itself. We shall need the following technical
result, a p-version of lemma 2.1 of [3]. Let ¢ > 0 be fixed for the rest of the
paper, & < 1.

M? AN Modélisation mathématique et Analyse numérique
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MIXED FINITE ELEMENT METHODS : THE p-VERSION 925

LEMMA 3.1:Let2<60 <4 — ¢ Letw eV, ge L* (), and n € L*(22).
If T € WP satisfies

(e@)w,v)— divy, 7)+ ([, v) = (q,v), veV?,

dive,w)+ (yr,w) = (n,w), we WP,

then, there exists a constant C = C (0, u, a, I, v, {2, €) such that, for p
sufficiently large, depending upon e,

”7_”0’0sc[p1/2—2/0“‘g”0+p—1—2/9”div 53"0+ ||€||0+ ”77”0] .

Proof : We follow the proof of lemma 2.1 of [3]. Let 6’ = /(8 — 1) be
the conjugate exponent of 6. For ¢ € L? (£2) let ¢ € W> 9 (£2) be the
(unique) solution of M* ¢ = ¢ in 2, ¢ = 0 on 32, where M * is the formal
adjoint of M. It follows that || ¢ ||2 o <0l¥l 0.0 We then have [3],

(7, ¥)= (g, a@)YV)+ (¢, 7"a) V¢ —a@)V¢) +
+ dive + y7r, ¢ —PP &)
t(@e+7L,a)¥¢ —nPa)Vé)+ (n,d)+ (n, PP ¢ —¢).
3.9)
Note that Sobolev’s embedding theorem implies that
(g a@ Ye)=Clq|, Iel,=Ca] 160y,  (B.10)
Next, (1.8) and Sobolev’s embedding theorem imply that

g-a@) e, 7Pa)Vé —au)Vé)=<

=C(|qf,+ lel)p ¥ 1Y,
<C(qf, + Nelpp? 2 él,, . G11)
and that
(7L, a@)Vé — nPa@)Vé)<C |7, , |la@) V¢ — 7Pa@) Ve ||,
<Clivllo o2 "Ny - (3.12)
On the other hand, (1.7) and Sobolev’s embedding theorem lead to
(dive, ¢ —PP¢)<K|divel,p ' "¢, , (3.13)
(yr, ¢ —PP¢)<K|7llo o0 "N, 4 (3.14)
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and
(m, )+ 1, PP &~ $)<Klnllo I6llo<Klnllo 161, (315
Collecting (3.9)-(3.15) we see that
(o )<Ko, 02 Nl lly+ 07 = div ], +
el + gy + Il

which, for p sufficiently large, yields the desired estimate.

Now let ¥# = V” with the stronger norm ||z, = 2], ,,, + [ldivy]|,
and let #'7=WP with the stronger norm |wl|l,,= ||w|,, where
t = 4+2¢ . We can prove now the existence of a solution of (1.5).

&

THEOREM 3.1 : For & = 0 sufficiently small (dependent on p) and for p
sufficiently large, @ maps a ball of radius & centered at (w? z, PP u) of
VP x WP into itself.

Proof : Note that 1/t + 1/(2 + ) = 1/2. Let

l[vrpg—/f“w,sé and ||PPu—p|, ,<8<1.

Let us use lemma 3.1 on (3.8) with 7=PPu—k, w=alz- A,

qg=q(, 1), n=n(p) and @ = 4 — . Observe that (1.7)-(1.9) and
corollary 2.1 imply that, for r=1/2, m=r +1,

late, ||, + Im@)llg= 20" llzll, +p~"llull,, + lu—=plI§ 4 +

+ ||“"PN0,: ”Z_—";L”(),2+€]
sg[p1/2—r'|u||r+1 + (”u—Ppu”O,4+ ”Ppu_p”(),4)2+

+ (lu—PPully , + [|IPPu—pl, )x

X ("Z_ 7Tpgn0,2+£+ nﬂpg— &”0,2+s)]

<2V ull, ., + @ " ull, + 87 +
+ (p5/2—r—4/(2+zs)”u“r+1 + 6)(p—m+3/2—3/t“u”m+ )]

< 2(8*+p" ull,, > 3.16)
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where 2 depends on |u||,. Therefore,
PPu—« <9 —€/8 aPz_ A + -1—2/(4—s)x
I 0,4—¢ 2= 2o *P

x ||div (m? z— )|, + 8%+ p"""1. (3B.17)

On the other hand, taking v = w7 z— A and w = PP u — « in (3.8), we see
that

lmez— Al < 201PPu—xlly+ [lgf,+ 71,1, (3.18)

and, taking w = div (#? z— A) in the second equation of (3.8) results in

|div (7 z - 4)||OSQ[||PPu— « |, + ||6£”0+ | 70ll1. (3.19)

Combining (3.17)-(3.19) yields the relation

1PPu—xlly, <2 B|PPu—-xl|,+8+p” "],

which, for p sufficiently large and r = 5/2, implies that
IPPu—r|,, .<2[8>+p 71, (3.20)

where the constant 2 depends on || «||,,. Combining (3.20) with (1.9) we see

that
4 2¢

||P”u—/<|]0ts.@p4_5_5+2 |PPu—«|

sg(pl—em 62+p—1-—£/4)’

0,4~ (3.21)

while (1.9), (3.18), (3.16), and (3.20) imply that

|72 2= 2l o, <277 27224,

0,2+ ¢
' _ (3.22)
<2(pc8i+p2*e).
Combining (3.19) and (3.22) yields
|72 z= 2], <2@ 8*+p 2*°). (3.23)

We can now combine (3.21) and (3.23) in the bound

I1PPu—rllyp+ |77 2= 4| < 2,@ 8% +p 1. (3.24)

1—5/462 —-1-e4 _

We want to choose p and & so that 2, p

N &

s% and 2, p
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€4 -1

Letp= (22,)", sothat [ = |22,p~ 14 P is not empty. Then,
p 1 1 23,

for 6 € I, (3.24) implies that

|PPu—«|,,<8 and |a?z-2| ,<3,

as we needed.

Remark 3.1 : Note that the choice 6 = 2 2, p~ !~ “* in theorem 3.1 shows
(using (1.7) and (1.8)) not only that (1.5) is solvable but also that, for
p — o0, the solution of (1.5), (&, #”), differs from (z, u) in the ¥P x
% P norm by 0(p~ !~ **) at most. We shall need this observation in order to
arrive at the correct error estimates.

4. THE L>ERROR BOUNDS
Just as in [3], using (3.1)-(3.3) we now rewrite (3.5) in the form

(@) ¢, ) — (dive, 7)+ (v[, v) = (¢, v), pveEVP,
- ~ 4.1
@div{, w)+ (Fr, w) = (n, w), weW?, @D

where { =z— 72, 7=PPu—w, [ =&,W)7Z+B.0F), ¥=2)
g={PPu—u)l, and 7 = (PPu —u) . Noie thai the lefi hand side of
(~4.1) corresponds to the mixed method for the operator N: H*(2) -
L*(2) given by

Nw=—Y.(@w)Vw+a@)wl)+ yw.

Therefore, if we show that its formal adjoint, N *, has a bounded inverse
L[* - H*(2) N H{(2), then lemma 3.1 would apply to (4.1) without any
change in the proof. Since we know that M * has a bounded inverse, all we
need to do is to check that the operator norm of M* — N * can be made
arbitrarily small by taking p large enough.

LEMMA 4.1: There exists a positive integer p, such that, for all
p =po, N* has a bounded inverse L*(2) - H*(2) N Hy(2). (N * depends
on p through ¥ and If' ).

Proof : Just as in [3], we have
M* ~N*x = a@){[@ 2+ Bul@— )+ &,@)(z- )} x
XYX"'Euu(u_up)Xs XEL2(0)9
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a,(m) - a,u) - _
where &, = E— and B,, and ¢, defined by analogous
u-—u
relations, are bounded functions in 2. It follows from remark 3 1 and
Sobolev’s embedding theorem that

I ~N*)xlly <Kzl o lu-wly, 19l 5, . +
wlz= 21y, 1900, + =l lxlly )
<K(vxll, + Ixl, op' =
<kp~ x|,

as needed
To conclude, we establish the rate of convergence of (2, ¥”) to

(z, u).

THEOREM 4.1 : Assume that the solution u of (1.1) 1s in H"*(2) There s a
posiive constant Q, independent of p but dependent on |ull,, , ,., such
that, for p sufficiently large and m = 7/2,

1) lu —w? ||, < Qp' =" |lull,,
1) lz- 2|, <2p** "ull,,
111) ldw (z— 2|, < op* "|ul,

Proof In view of remark 3 1 and lemma 4.1, we can use lemma 3.1 on
(4 1) with 6 = 2. Thus,

Irlo=<C ™|, +p 2llav gl + llall, + Nn ) 4.2

Note that remark 3.1 together with (1.7) lead to the following estimate for
r=0, m=3/2,

lall,+ 1mllo= PP u-w) L[ + | PPu—u) 7| <

<K(|PPu—ul,+ | PPu-u)?|)

<Klp~"[lull, + llzlly )+ |17 - 2] 1P?u—ul,,]

0,2+¢
SI((p—r"u“r_+_p—l—z/4p3/2—3e/[2(2+e)]—m "u"m)
<Kp'=""||u],

“ 3)
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Combining (4.2), (4.3), (3.18), (3.19), (1.7) and (1.8) yields,

Irllo=<Cl™ (2= aPz|,+ |77 2= 2] )+ p~*(|dwv z— PP div £,
+ ||div (#? z— 2)]| ) +p' " f ]l ,]

<Cl lrllo+p P ull, ., +p 2P llul,,, +

+p Pp et ], r= 12, s=0, m=3/2,

which, for p sufficiently large, leads to
Irllp=Cp' " "|ul,, m=2, 4.4)

where the constant C depends on ||u«||,,. The first part of the theorem is an

immediate consequence of (1.7) and (4.4). On the other hand, it follows from
(1.8), (3.18), (4.3) and (4.4), that

”g—f”os ”-Z_ 77-1)5”0_+_ ”77.172_;;7”0

<Cp** "ull,, +p' " lull,].

which proves the second part of the theorem.
Finally, we deduce from (3.19), (1.7), (4.3) and (4.4) that

ldiv (z— 2|, = lldiv z— PP div ]|, + |[div (=7 z— 2)],
<C > "lull, +p' " ™ull,],
which gives iii).
Remark 4.1 : The estimate for the error in zis the best we could hope for in

view of (1.8). The estimate for the error in div z is optimal in rate and
regularity, while the one for u is probably not sharp in view of (1.7).
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