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MATHEMATICA!. MODELUNG AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE FT ANALYSE NUMERIQUE

(Vol 26, n° 5, 1992, p 595 à 625)

FINITE ELEMENT COMPUTATION
OF HYPERELASTIC RODS IN LARGE DISPLACEMENTS (*)

by P. LE TALLEC 0), S. MANI (2) and F. A. ROCHINHA (3)

Communicated by R TEMAM

Abstract. — The present paper deals with the Numerical Analysis of the equilibnum problem
of an elastic rod subjected to very large displacements, involving traction, flexion and torsion
The model which is used descrtbes the motion and the déformation of the rod by orthogonal
directors, which leads to an hyperelasticproblem wntten in an objective and intnnsic framework
This problem is then approximated by Mixed Finite Eléments and the corresponding approxi-
mation is proved to be well posed and to produce solutions which strongly converge towards any
isolated stable equilibnum position ofthe rod Finally, the discrete problem is numencally solved
by a Newton's type procedure which respects the orthogonahty of the directors and the
inextensibihty of the rod

Résumé. —Le sujet de cet article est l'Analyse Numérique du problème d'équilibre d'une
poutre soumise à de très grands déplacements, et à l'action combinée d'efforts de traction, de
flexion et de torsion Le modèle utilisé décrit le mouvement et les déformations de la poutre à
l'aide de vecteurs directeurs orthogonaux, ce qui conduit à un problème hyperélastique écrit sous
forme vanationnelle, objective et intrinsèque Le problème est ensuite approché par une méthode
d'Éléments Finis mixtes, et on démontre que le problème approché est bien posé et qu' il possède
des solutions discrètes qui convergent fortement vers toute configuration d'équilibre stable de la
poutre Enfin, on propose une méthode de résolution numérique du problème discret à l'aide
d'une méthode de Newton qui respecte l'orthogonahté des vecteurs directeurs et V inextensibilité
de la poutre

1. INTRODUCTION

This paper is concernée with the Numerical Analysis of the equilibnum
problem of a hyperelastic rod subjected to large displacements, flexion and
torsion. The relevant mechanical model, introduced in [1], [2] or [3], uses
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596 P LE TALLEC, S MANI, F A ROCHINHA

directors to describe the motion of the rod and to measure torsion and
flexion in an objective and intrinsic framework.

In a previous paper [4], we have written such a problem under a
variational form and proved it to be well-posed.

Our goal is to dérive hère a consistent Finite Element approximation of
this problem (Sect. 3), to prove its convergence (Sect. 3), its consistency
(Sect. 4) and to describe a Newton's type solution procedure (Sect. 5) which
respects its geometrie constraints (orthonormality of the directors and, if
relevant, inextensibility of the rod).

2. THE MECHANICAL PROBLEM

2.1. Référence configuration

Figure 1. — The Physical Problem.

We consider herein the déformation of a rod which, in its référence
configuration is straight, of length L and of cross sections H (S). By
choosing an adequate cartesian basis in the physical space E, this référence
configuration can be identified to the domain £2 of M3 given by

H = {XeR3, X = (XUX2, S), 0=s=S=sL, (Xlf X2) e Ö(S)} . (2.1)

2.2. Kinematics of the rod

Following [4], we will suppose that the position x{X) of any particle X
after déformation is given by

x(Xu Xl9 S) = r(5) + Xx d,(S) + X2d2(S), (2.2)

da(S). dfi(S) = ôafi, VI ^ a, p ^ 2 , V5 G [0, L] . (2.3)

Above, r{S) is the final position of the rod center line and {da(S)} can
be viewed as the images after déformation of two material vectors engraved
on the section X3 = S, initially parallel to the coordinate axes and of norm
unity. The above equality implies that the cross sections do not change
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HYPERELASTIC RODS IN LARGE DISPLACEMENTS 597

shape but does not require them to stay normal to the center line after
déformation. In other words, shear is permitted.

In addition to (2.2)-(2.3), the déformation x(X) must satisfy the
kinematic boundary conditions imposed to the rod under study. Introducing
the director d3 = dx x d2, we suppose that these conditions consist in

r(0) = r0 (rod fixed in 0) , (2.4)

and in one or more of the following

r{L ) = rL (rod fixed at both ends ) , (2.5)

^ ( 0 ) = d°kfox k given in {1, 2, 3}

(rod rotating around d J?)

or djfe(O) = dl "ik = 1, 2, 3 (rod clamped ) , (2.6)

dk{L ) = di for k given in {1, 2, 3} ,

or dk(L) = d£, V£ = 1,2, 3 . (2.7)

Finally, the set of kinematically admissible déformations is obtained by
combining the kinematic assumption (2.2)-(2.3) with the above boundary
conditions, and is therefore given by

K = {{r, dlt d2, d3} = {r, d,} e Wl-'(0, L;E4),

r(0) = r0, d,(s).dj(s) = 8tJ, Vi, ƒ - 1, 3 , VJ E [0, L] ,

{r, d,} satisfies one or more of the
boundary condition (2.5)-(2.7) } . (2.8)

Herein, Wl'p(0, L) dénotes the usual Banach space

Wl-P(0,L)= {ƒ eZAO, L), f' = d^eL"(0, L)} ,

withnorms 11/II0,, = ( £ 1/\P <*

11/111.,= ( l l / l l P o , P + l l / H S , p ) -

2.3. Measuring strains

Following [4], to the déformation x(X) given by (2.2), we associate the
strains {w;} and {wk} defined by

uJ{dl) = ^ejkld
t
k.dl, (2.9)

vk(dt) = r'.dk. (2.10)
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598 P LE TALLEC, S MANI, F A ROCHINHA

When {r, dt} e K, the above définitions reduce to

<*,' = (Ujdj)xd,, (2.11)
r' = vkdk. (2.12)

As indicated in [4], {Uj} and {vk} are an objective measure of strains. They
are defined independently of any observer and their knowledge charac-
terizes x(X) within a rigid body motion. From a geometrie point of view,
ua measure flexion, u3 measures torsion, va measure shear and v3 measures
volume changes.

From the compact injection from Wl*p(0, L) into L°°(0, L), ît is also a
simple matter to prove that u} and vk are weakly continuous maps from
WUp(09 L ; E4) into L*(0, L).

2.4. Variational formulation

In the above kinematic framework, the equilibrium positions of the rod
under study are characterized by the equilibrium équations

m' + r x n = 0 , (2.13)

n ' + ƒ = <), (2.14)

and by the hyperelastic constitutive law

m=^d,, (2.15)

n=^-dk. (2.16)

Above, m and n dénote the stress couple and stress résultant inside the rod,
ƒ is the lineic density of applied forces, and w is the elastic stored energy
potential of the rod. A typical choice for w is :

w(S, up vk) = i {GAa(S) v2
a + EA (S)(v3 - l ) 2

+ EIa{S)u2
a+GI(S)ul) . (2.17)

Such an energy potential involves shear (GA a v2
a ), tension (EA(v 3 -

l)2), flexion (EIa M2) and torsion (G/w2).
If ƒ is independent of r, the above equilibrium problem takes the

variational form [4]

Find {r, dt} e K such that
(2.18)

J(r,d,)*J(p,g,), V{p,g,}eK,
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HYPERELASTIC RODS IN LARGE DISPLACEMENTS 599

under the notation K = K and

,dt)= F* wiS.Ujid^v^d^dS- fL f.
Jo Jo

J(r,dt)= F wiS.Ujid^v^d^dS- f f.rdS. (2.19)
J J

In our analysis, we will suppose that w is so chosen that the energy /
satisfies :

(Hl) / is continuous on Whp(09 L;E4);

(H2) /(r, dt) = Co( £ Kllo,p + Ik' -d3|IS

with /0 positive and weakly lower semicontinuous

These two assumptions are satisfied by the choice (2.17) if we take
p = 2 and Co = min (GA a9 EA, EI a, GI).

2.5. The case with no extension and no shear

The case with no extension and no shear is an important limit case in
practice. It is simply obtained by adding the constraint r' = d3 in the
définition of kinematically admissible déformation fields. In other words,
we introducé

Kmc - { {r, d j G K, r' = d3} (2.20)

and define our equilibrium problem by (2.18) with K now given by

K = Kmc,

In this case, we have vx = v2 = v3— 1 = 0 and thus w is only a function of

3. THE FINITE ELEMENT PROBLEM

3.1. Finite Element formulation

The classical Finite Element approximation of the equilibrium problem
(2.18) approximates the position r of the rod center line by C 1 piecewise
cubic Finite Eléments and the director fields dl by C ° piecewise quadratic
Finite Eléments.

vol 26, n° 5, 1992
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Figure 2. — The Finite Element Mesh.

With this choice, the Finite Element formulation of our problem is simply

^ Find {r, dt} e Kh such that

/ ( r , d^^Jip, 0,), V { p , g , } 6 ^ ,

with

Kh=Kh= {{r, 4} e V, x ^ dl(Mp) . d^M^ = ôy ,
Vi,7 - 1, 3, VMp e MA, {r, d j satisfies the (3.22)
boundary conditions imposed for K} ,

in the gênerai case and

£„ = ^ r = { {r, d,} s Kh, r' = d3} (3.23)

in the case with no shear and no extension. Above, the Finite Element
spaces V h and Wh are respectiveiy given by

Vh = {veC\0,L;E),v\[a2iiai+i]eP3,Vi = l,Nh} , (3.24)

Wh= {ve C ° ( 0 , L ; £ ), « | [ û 2 , l û 2 , + l] e P2, Vi = 1, N A } , (3.25)

with ( [a2, _ i, <hi + \\)i = \,Nh
 a given subdivision of [0, L], P n the space of

polynomials of degree less than or equal to n, and Mh the set of vertices and
centers of the subdivision.

3.2. Lemmas

LEMMA 1 : Let ({rh, dlh} )h be a séquence of éléments with {rh, dlh] G

Kh, V/z and {{rh,dlh})h weakly converging towards {r, dt} in Whp(0,
L; E4). Then

dJ(S).dk(S)=Sjk9 V S e [ 0 , L ] , V y f * = l f 3 . ( 3 . 2 6 )
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HYPERELASTIC RODS IN LARGE DISPLACEMENTS 601

Proof : Let h = max \a2l + i - a2l _ i|, ? be such that l/p + \iq = 1 and
Mp be the point of M^ closest to S. We then have

djh(S) . dkh(S) - d]h{Mp). dkh(Mp) =

P d'kh{cr)d<T + dkh{Mp). P d;„

r * a AI r
)MP f \JMP

From the Hölder inequality and since {rh, dlh) e Khy this implies

Since ( {dlh} )h is weakly converging in Wh p(0, L ; £ 3), || d'kh ||0 is bounded
and djh(S). dkh{S) converges pointwise towards d}(S). dk(S). By going to
the limit as h goes to zero in the above inequality, we then obtain the desired
result. •

LEMMA 2 : For any {r, dt} in K, one can construct an element
7rh(r, dt) 6 Kh such that

lim | K ( r , 4 ) - { r . d J H = 0 .

The proof of this lemma is more technical and will be the purpose of the
following section.

3.3. Convergence result

We now are able to prove the following convergence result.

THEOREM 1 : Any isolated minimum of the continuons equilibrium
problem (2.18) is the strong limit in WltP(0, L ; E4) of a séquence of local
minima of the Finite Element problem (3.21).

Proof : The above theorem is valid for both the gênerai case and the case
with no shear and no extension. lts proof is based on standard compactness
arguments and requires five steps.

Step 1. Interpolation of the minimum.

Let {r, d^ be an isolated minimum of (2.18). In other words, we suppose

vol. 26, n° 5, 1992



602 P LE TALLEC, S MANI, F A ROCHINHA

that there exists a closed bail Bô in W1>/J(0, L ; E4) with center

j r , d^ and radius 8 such that

J(r, dt)^J(p, gt), V{p,gJ # {r,d,} e B6 n K .

From Lemma 2, and the continuity of / on VF1' p(0, L ; E4), wc have, for &
sufficiently small,

lïmJ(7rh(r,dl))=J(r,dl).

Step 2. Finite Element minimizing séquence.

Since J is continuous and since Kh H Bs is closed and bounded in
Vh x W|, there exists a minimizer {rA, dlh) of / on ̂  O B g. By construc-
tion, the séquence ({rA, dlh})h is bounded in VFltP(O, L ; E4). It can
therefore be decomposed into subsequences, still denoted by ({rh,
dlh})h which weakly converge towards éléments {r*, d*} of
Wl>p(09 L ; £ 4 ) .

Since B 5 is weakly closed, any such limit {r*, d*} is in 5 5 . Moreover,

since Kh is incîuded in Kh by définition, Lemma 1 implies that we also have

d*(S).d*(S)- ô v = 0 , V 5 e [0, L ] , Vi'.y = 1 , 3 .

By définition of Kh and of jf, we therefore have

{r*, d*} eKnB5.

Step 3. Characterization of {r*, d*}.

By construction of {rA, <2ïA} and of 7rft(F, J^), we have

JirtoU^Jiir^d^Vh. (3.27)

Going to the limit as h goes to zero, and taking into account the weak lower
semicontinuity of Jo and hence of / , we get

lim inf J(rh9 dlh) =£ lim sup/(r^, dlh)

Tk(r, dt)) = J(r9 dt). (3.28)
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HYPERELASTIC RODS IN LARGE DIS PLACEMENTS 603

But {r*, d*} e K n Bs and | r , dt} is the unique minimizer of / over

K Pi B 8. Therefore, we must have

{r*, d?} = {r, rf,} .

In other words, all the subsequences of ({rh, dlh})h converge weakly

towards {f, d^ in WlfP(09 L; E4) and then so does the whole séquence.

Moreover, since {r*, d*} = {r, d^, (3.28) also implies that we have

tim J(rh9dgh)=J(rfdt). (3.29)
* - > o

Step 4. Strong convergence.

From assumption (H2), / is the sum of the weakly lower semicontinuous
functions C0||Ö?/||Q , C0 | |r ' - d3\\

p
Q and /0 . Since J(rh, dlh) converges

towards / ( r , dt), each of its component must also converge, that is we must

have

l i m C 0 | | r j [ - d 3 J 5 =CQ\\r'-d3\\
p ,

ü-»0

Um J0(rh, dlh) = J0(r9dt). (3.30)

If it were not the case, then the weak convergence of ( {rh, dlh} )h and the
weak lowersemicontinuity of the different components of / would forbid
(3.29) to take place.

From step 3 and from above, we first observe that (d'lh)h converges weakly

and in norm towards d[ in Lp. We have therefore strong convergence of

(d'lh)h towards d[ in Lp which, combined with the weak convergence of

(dlh)h towards dx in Whp implies the strong convergence of (dlh)h towards

dt in Whp.

Similarly, (r'h — d3h)h converges weakly and in norm towards r' — d3 in

Lp, therefore converges strongly towards ff - d3 in Lp. This, combined with

the strong convergence of (d3h)h towards d3 in Lp and the weak convergence

of (rh)h towards F in Wh p
9 guarantees the strong convergence of

(rh)h towards f in Whp.
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604 P. LE TALLEC, S. MANI, F. A. ROCHINHA

Step 5. {rh, dlh} is a local minimizer of (3.1).

From the strong convergence of ({rA, dlh} )h towards {r, dt} proved in
step 4, we can deduce that for h sufficiently small, {rh, dlh) will be in the
interior of B s. Being by construction a minimum of ƒ on Kh H Bê> and being
in the interior of Bô, {rh, dlk} is then a local minimum of J on
Kh.

Therefore, finally, {r, dt} appears as the strong limit of the local minima

{rh>
 dih) of / on Kh.

4. APPROXIMATION RESULTS

4.1. Synopsis

The convergence resuit of the preceding section was based on Lemma 2,
which states that for any kinematically admissible déformation {r, dt} of
K, there exists a Finite Element approximation 7rh(r, dt) e Kh such that

lim 4 ) - {r, d t } \ \ = 0 . (4.31)

In the gênerai case {Kh = Kh), which allows shear and extension, such a
---

resuit is easy to prove. Indeed, there are interpolants irh r of r and
7rh dx of dt which satisfy ([5]) :

7rkreVh, VA,

7rhr(a2i-\) = r(^2i-\) , Vl = 1, iVA + 1 ,

lim \\irhr-r\\ = 0 ,

Tr.d.eW^ VA,

lim H ^ ^ - d J I = 0 .

By construction, ^hir, dt) = ('7rhr, ^r^d^ belongs to Kh and satisfies the
desired approximation property (4.31).

The situation is more complicate in the limit case when shear or extension

are no longer allowed (Kh = K™c). There, the element {irh r, TTH dt} does

not satisfy the inextensibility constraint (TThr)' — rrh d$ and therefore does
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HYPERELASTIC RODS IN LARGE DISPLACEMENTS 605

not belong to K™c. Imposing d3h = {?rhry does not solve the problem
because the element {irh r, irh da, {7rh r)'} does not satisfy the orthonor-
mality constraint

dlh{Mp). djh(Mp) = dlJ , VMp e M

On the other hand, the field rh defined by
rs

f
Jo

does not satisfy the boundary condition r(L) = rL.
To overcome this problem, we propose below a construction of

^ ( X dt) which first interpolâtes dt on Wh and then iteratively and locally
rotates this interpolate so that we can satisfy the boundary condition

f
J

L

d3h(<r)da = rL .
o

4.2. Notation

Let {r, dt} be the element of ̂ m c that we want to approximate. By
définition of Kmc, {dl (S)} is a direct orthonormal basis of E (it can thus be
identified to an element of the rotation group SO3) and we have

r' = d3. (4.32)

Moreover, if we want the set Kmcof kinematically admissible déformations
to be nonempty and to contain more than a single element, we must have

|r(L)-r(0)| = |rL-r0| = d3(a) da : L . (4.33)

This implies in particular that d3 does not stay parallel to itself, that is there
exists two points Sx and S2 in (0, L) and two unit vectors ex and
e2 in E such that

= ea, Va = 1,2, (4.34)

ki x ^ l = Cl^0 . (4.35)

Let now e > 0 be given. By continuity of d3, there exists two disjoint
intervals 7L and I2 in (0, L) such that

« a | < e , V 5 e / a , Va = 1 , 2 . (4.36)

vol 26, n° 5, 1992



606 P. LE TALLEC, S MANI, F A. ROCHINHA

To each interval ƒ„, we now associate a subinterval Ja with same center but
of half length and a function qa e WQ'P(Ia) such that

qa\Ja = 1/meas (Ja) ,

0^qa^ 1/meas (Ja ) .

(4.37)

(4.38)

Figure 3. — The function qa.

F i n a l l y , fo r a g i v e n s u b d i v i s i o n ( [a2l _ l5 a2l + i])t = itNh, w e d é n o t e b y

(<Pp)p = i,2Nh + i t n e F i n i t e E l e m e n t n o d a l b a s i s o f Wh7 d e f i n e d b y

and by pp the positive number

= <Pp
Jo

We then have

(4.39)

4.3. Itérative construction of irh(r, dg)

The proposed construction of the Finite Element approximation of
{r, dt} proceeds as follows :

• set d?= irhdl9

• then, for n 5= 0 and d"(Mp) known,

1. compute the residual

Rn= rL-r0- | d%{
Jo

e3x e3 ; (4.40)
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HYPERELASTIC RODS IN LARGE DISPLACEMENTS 607

2. compute the rotation vector

« ; = *2<li(Mp) e3 -\Ui(Mp) e2 + Af ?2 (Af,) <?3 (4.41)

which cancels the residual (Newton update)

From (4.40) and (4.41), this amounts to set

p p ) (4.42)

3. update dt(Mp) by rotation :

dr\Mp) = exp(fl;) ^r(Mp) , (4.43)

the skew symmetrie operator 12£ being defined by

• end loop on «,
• set :

dlk

d3h(o-)dcr ,
o

«•A(r, 4 ) = {r„ dlA} . (4.44)

The above construction can be proved to satisfy Lemma 2. More
precisely, we have the following technical theorem, whose proof can be
found in annex.

THEOREM 2 : There exists two constants C3and C4 such that, V s < 1/8 C4,
there exists h0 such that, Vft < h0, we have :

defined and belongs to K™c,

I 11 & r s* y 't
(4.45)

— » * - »̂ f \ ^ r,

vol. 26, n° 5, 1992



608 P LE TALLEC, S MANI, F A ROCHINHA

S. NUMERICAL ALGORITHM

5.1. The problem to solve

Within an arclength continuation framework, we have to solve the
following problem at each load incrément n [6] :

n + \ p , g t ) , V ( p , 9l

under the notation (3.23) and

f= f
Jo

-fJL \

Jo
f.rdS.

(5.46)

(5.47)

Hère, we have replaced the problem of finding one solution by the
problem of building a solution curve associated to a variable load factor. On
this solution curve, we build points fin + l, rn + \ d?+l which are at a distance
ds one from another.

More precisely, ju, is the incrémental load factor, ds the stepsize along the
solution curve, ( ., . ) an adequate scalar product on Wh, and fx u is a scaling
factor.

T <r,d)

Figure 4. — Arclength Continuation.

We bave specialized above in the case with no shear and no extension
which we think is the most interesting. It is better conditioned than the
slightly extensible case and since extensibility has very little effect on the
physical solution, using an inextensible approximation leads overall to a
faster and more accurate solution.

In the inextensible case, the constraint on r implies that we have

f
Jo

d3(<r) der
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and thus r can be eliminated from our problem. Under the notation

F (S) = - f(t)dt, (5.48)
Js

the energy J reduces to

rdS

(5.49)

Similarly, the élimination of r from the définition of K™ leads to the new
définition

K™ = {{dt} e Xh, dt(Mp). dj(Mp) = ôtJ , V/,y" = 1, 3 ,

VM„ e Mh, rL = r0 + rf3(o-) rfo- [ , (5.50)
Jo J

under the notation

Xh = {{di, <i2, d3} e W ,̂ {dt} satisfies the boundary conditions

(2.6)-(2.7) used in the définition of K } , (5.51)

Mh = set of all vertices and centers of the subdivision

= {au Ü2, <%, ..., a2Nh, O2Nh+i} • (5.52)

5.2. Euler-Lagrange Equations

By construction of K™c> the Euler-Lagrange équations associated to (5.46)
are simply

+ 1- [L
Jo

h, (5.53)

, (5.54)

(5.55)
o
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- f*"'1) = ds2, (5.56)

with \lJp and N the Lagrange multipliers associated to the constraints (5.54)

and (5.55). Observe that N is actually the reaction force exerted on the rod

by its support in L. After linearization around (dn /JL, Aljp9 AT), and if

dt satisifies (5.54), these équations reduce to the system

^ — - j (M, dt). g A . gJ + £ £ XtJp(gt . ^ + d, • g ;
p

g3(<r) da + dj* F (a) * g3(cr) d<r
Jo Jo

P tj

r g3(<r)dcr , V {$ } e dXh, {gk} e dXh , (5.57)

, = O, V i , / = 1, 3 , VMpeMh, (5.58)

rfo- = - r d3((r)do- +rL-r0, (5.59)
Jo

t ï l - M ' 1 - 1 ) , (5.60)

with unknowns {#,}, ̂ , ^Ay p and ^W.

5.3. Solving the linearized Euler Lagrange équations

When (5.54) is satisfied, (5.58) simply imposes that {gt} (Mp) be in the
tangent space to SO3 at {dt} (Mp), and hence it implies that {gt} is of the
form

gl(Mp) = Upxdl(Mp), (5.61)

with Up an arbitrary rotation vector. If we now restrict (5.57) to test
functions ëj(Û) which are also of the form

g}(Mp) = Ûpxd}{Mp),
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with Ûp arbitrary, then the linearized System (5.57)-(5.58) simply reduces to
the new system

a{U,Û) + dNl \L gl
3(Ü) do- + dp P F . g3{Û) da = L ̂ (Û)) (5.62)

Jo Jo

g3(U)d<r=L2, (5.63)
o

(gt(U), Adt) + dfx AM = L3, (5.64)

with new unknowns £/, (dNl)l = l3 and <i/-t. Above, Lx(gj\ L2 and
L3 respectively dénote the right-hand sides of (5.57), (5.59) and (5.60),
{dN l)t and (g3)t dénote the cartesian components of the vectors dN and
gf3, and we have used the notation

+ 1 1 Au/f/P xd^ÛpXdj + UpXdj.ÛpX. dj , (5.65)
P IJ

Adt= (df-dr1), (5.66)
Ayu = v l i f j L * - I J L " - 1 ) . (5.67)

Compared to the usual linearized system encountered in rod compu-
tations, this new system :

• also uses as basic unknown the rotation vector Up, defined in each node
Mp e Mh of the Finite Element mesh (nine unknowns per Finite Element),

• does not involve any unknown associated to the position of the rod
center line, these being eliminated by the inextensibility condition,

• adds four scalar unknowns which are the variations of the reaction force
N in L and of the load factor JA.

These last unknowns play the role of the scaling factor usually encoun-
tered in continuation techniques. They can therefore be treated by the
bordering algorithm proposed in ([6]). Then, the solution of the linearized
system (5.62)-(5.63) can be obtained by the following block Gaussian
élimination :

• Solve a{U\ Ü) = L^W)) , VÛ ; (5.68)

• For / = 1, 3, solve a(U2> \ Û) = - \ gl
3(Û) d<r , Vf/ ; (5.69)

Jo

• Solve a{U\ Û) = - F . g^(Û) der , V*7; (5.70)
Jo
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• Solve the 4 x 4 linear System (of unknown dN l and dp) (5.71)

dN1 \L Q3(U
2>l)do- +dix P g3(U

3)da = L2- P g3(U
l)dcr,

Jo Jo Jo
dNl(g,{U2'% Ad,) + d^((g,(U3), Ad,) + AM ) =

= L 3 - (g^U^Ad,) ;

• Set U = Ux + dNlU2l+dfi. U3; (5.72)

• Set g, (Mp) ^UpXd,(Mp), VMp € Mh . (5.73)

5.4. Compilation of A

The above solution procedure does not give the value of d\. To obtain it,
we rewrite the Euler Lagrange équation (5.53) at point {ir(dk + gk),
ix +dfi,N + dN} with {ir(dk + gk)} (Mp) a projection of {dk + gk} (Mp)
onto SO3. At first order, we get by construction of {gk}, d/j., d\l]p and
dN

^j(t*+ dfi, gk)) .g]+(N +dN)A g3(<r)d<r +

(A + d\ \,p (ir(dk + gk\ .gJ + Tr(dk + gk)j. g,)(Mp) =

2), V{g,}edXh.

A direct identification then yields :

dj
2(A + dk ) « - —- (M + d/JL, 7r(dk + gk)). g\3P

l

-(N+dN). P gl4P(<r)dcr (5.74)
Jo

under the notation

5.5. Final Solution Procedure

With the above results, the Newton and arclength continuation method
takes the following form when applied to the solution of our Finite Element
equilibrium problem (3.21) :
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For n = 1 until JA n 5= 1 do :
• For m = 1 until (5.53)-(5.56) is satisfied, do (Newton loop) :
1. Compute the rotation vector U, the variation of reaction force

dN and of load factor dp by (5.68)-(5.72) ;
2. Obtain the linear variation gl of dx by (5.73) ;
3. Set { d j , Af, ft = {*•(</,+0,)}, Af+d/V, n+dfi',
4. Compute (A + d\ )lJp by (5.74) ;
• End of Newton loop ;
• Update Ad, A/x and ds ;
End of continuation loop.

Remark 1 : Formula (5.74) is first order accurate as is the linear
expansion (5.57)-(5.60) of the nonlinear system (5.53)-(5.56). Therefore, as
confirmed by our numerical experiment s, the above Newton loop has a
quadratic speed of convergence. The use of (5.74) for Computing
d\ is much cheaper in CPU time than would be the solution of (5.57) : it is
explicit and only involves the first gradient of / . Moreover, the same
gradient is used in solving (5.68) at the next step, which results in further
savings.

Remark 2 : The solution procedure (5.68)-(5.73) only involves 3 un-
knowns by node Mp (the values of Up) instead of 9 (the values of
gt(Mp)) for (5.57H5.60). But it only works if {dt} (Mp) is in SO3 which
explains why we have to project {dt + gt} (Mp) back to SO3 at each step.
The projection procedure that we have used is from [7] and is given by

{*r(4 + 0,)} (Mp) = ir (4(Mp) + Upx dx(Mp))
= Qp. {dt}(Mp)

with Qp the rotation matrix defined by
p

Qp = Id+ {UpQp = Id+ {Up + t/p
2/2)/(l + ||£/„||2/4),

O -Ui
UP = \ Ui 0

\- u2
p

Remark 3 : In the case with shear and extension, the unknown field r
cannot be eliminated. The application of the above Newton procedure to
this case leads to the algorithm described in [8].
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Remark 4 : By construction of J and u, we have

+

+ •

In the case of nonconservative external loads such as drag forces, the force
résultant F dépends on d3. This case can still be handled by the above
solution procedure, the only change being the addition of the nonsymmetric
term

to the second derivative of J.

5.6. Initialization

We initialize our continuation loop by setting {Ad,} = 0 and by picking a
reasonable value for the first load incrément. The choice of {d(°} is more
delicate since it must satisfy the boundary conditions of X h, the orthonor-
mality condition (2.3) and be reasonably close to Kfc. Our current strategy :

1. takes a circular initial configuration r°, coplanar with the load
F(0), of length L, and satisfying the boundary conditions imposed on r,

2. sets d$= (r°)\
3. computes d® by linearly interpolating the angle defining da in the cross

section between the values imposed at the extremities of the rod,
4. and, if needed, changes locally the values of the Euler angles of

{dfj in order to satisfy the boundary conditions imposed on {dt}, in a way
very similar to the construction of irh{r, dt) in Section 4.

If needed, as is the case for example for the steep wave problem, this
strategy can be supplemented by an incrémental variation of the kinematic
boundary condition on rL.

5.7. Numerical Resuit

Ail tests were run on a Macintosh SE/30 personal computer.
The first numerical test deals with the Cantilever beam in large

displacements whose analytical solution has been presented in [9]. For a
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beam of length L = 10 m, of flexural stiffness EI = 100 daN x m2 and
subjected to a terminal load of P = — 10 daN, the exact solution corre-
sponding to a vertical displacement of 8.10 m was obtained without
continuation after five itérations of the Newton loop, and this for a mesh of
fifty Finite Eléments.

The second test is more challenging since it deals with a very flexible rod
such as those encountered in flexible riser Systems. The data are taken from
[4], We consider a very flexible rod, of length L = 32.6 m, of flexural
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stiffness El = 435 daN x m2, of torsional stiffness GI = 400 daN x m2 or
4 000 daN x m2, and subjected to a uniform loading f - -1.5 daN/m. The
rod hangs between point A = (0, 0, 0) and B = (1.8, 0, 15). Both extre-
mities are vertically clamped and a rotation of 90 degrees is imposed to the
rod section in B. The Finite Element mesh consists again of fifty Finite
Eléments. Hère, we have first computed the solution at zero imposed
torsion, solution which was obtained after 8 continuation steps of 3 to
4 Newton itérations each. Starting from this solution, we have then directly
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Figure 7. — Out of Plane displacement of the Flexible Rod.
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imposed the 90 degrees rotation, which was obtained in 5 Newton itérations
for each value of the torsional stiffness. As expected, with imposed torsion,
the rod configuration is no longer coplanar, the out of plane displacement
being larger when GI is larger. The first figure displays the in plane
configuration for the case without torsion and for the two cases with
imposed torsion. The second one displays the out of plane displacements
observed in torsion for the two values of GI.

The last test is adapted from a test case proposed by Coflexip Company
(the steep wave problem). It considers a rod of length L — 185 m, fixed in
points A = (0, 0, 0) and B = (55, 0, - 100), of flexural stiffness EI =
7 kN x m2. It is subjected to a vertical load of density ƒ (5) given by

- 0.3 kN/m
0.38 kN/m
0.60 kN/m

if
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Figure 9. — The flexion moment distribution in the steep wave problem.
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Figure 10. — The normal tension distribution in the steep wave problem.
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The computation used a Finite Element mesh of 37 éléments. A first
solution was obtained withi? fixed in 2? — (120, 0, - 100) in 33 continuation
steps of the loading factor. Then, the point B was incrementally translated
to its final position in 5 incréments of 10 to 15 meters. For each translation
incrément, the solution was obtained in 4 itérations of the standard Newton
algorithm. The final configuration, together with the flexion moment and
tension force are displayed on the above figures.

6. ANNEX. PROOF OF THEOREM 2

The proof uses the following lemmas.

LEMMA 3 : For any h with h =s meas (/a)/8 {restriction 1), we have

Proof: Let lh
a (resp. ƒ*) be the union of ail segments [a2l_i> <*2i + iï

having at least one vertex in I a (resp. included in Ja). By construction of
qa, we then have

meas
E PP

meas {Ja )/meas (Ja ) ^ - .

Similarly, we have

ja(Mp)^ £ pPqa(Mp)

1
meas (Ja) I PP

^ meas (7^)/meas (Ja) ^ - .

LEMMA 4 : Under restriction 1, we have

\\V\\C^O,L)^
C3\\V\\UP, V i ; 6 ^ ^ ( 0 , L ) , (6.76)

I /> p IKHC4l l*l . (6.77)
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where C3 and C4 dénote constants independent of s and h, and || . || dénotes
the euclidian norm in £.

Proof : Inequality (6.76) is a direct conséquence of the Sobolev embed-
ding theorem. As for (6.77), we have by Lemma 3 and définition of
«;

| | o i ; | | =s sj2(qi(Mp)+q2(Mp))sup \Xf\
l

Mp) + q2(Mp)) sup \Rf\

Using again Lemma 3, we then deduce

ci
10 v/2 .,„,,.

11*1

LEMMA 5 : Under restriction 1, f/ẑ re ejtms « constant Kx(s) such that

(6.78)

Proof : By construction of Z2£ and from Lemma 4, we have

n,p

+
11./»

i , /?

f

2C2

1
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which complètes our proof. From Lemmas 3 and 4, we als o de duce

sup \\n;\\ =s \\nn\\c0(0L)^C3Kx(e)\\Rn\\ . (6.79)
p

LEMMA 6 :

| | / r + 1|| sgi \\Rn\\ , (6.80)
2

||rfn+l_rfn||^ ^K2(s)\\Rn\\ , (6.81)

I K + 1 - ^ 3 | | c o ( / ^ c . (6.82)

Proof : The proof proceeds by induction. Therefore we have to suppose
that (6.82) holds for n + 1 = 0, which is

Restriction 2 : || irh d3 - ^3||co(/ } *s e .

We then proceed in 3 steps, assuming that (6.80), (6.81) and (6.82) hold for
any 0 ^ m < n.

Step 1. Checking (6.80).
By définition of Rn and by construction of Z2£ we have

p

R » + j ; (/rf - exp ( « ; ) ) ^^(Mp )
p

^ (ea Ind (ƒ „ ) - dï(

Above, Ind ( / a ) dénotes the indicator function of the interval Ia. Using
(4.36) and (6.82) at step m = n — 1, the above identity yields

II* —| ^ 12 v,K»|| +2>,K"||2 ( I J ^ y IMs"(̂ )||)
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From (6.77) and (6.79), we then have

\\Rn + l\\ ^C A\\Rn\\(2 e + C3Kx{s)\\Rn\\ e x p ( C 3 Kx(e) \\Rn\\ ) ) .

Using then (6.80) for 0 ^ m «< n, we finally obtain

\\Rn+x\\ ^C4(2 s + CK^n^W cxp(C3Kl(e)\\R°\\))\\Rn\\ .

This is (6.80), provided that we have

Restriction3 : C 4(2 e + C3 Kx{e)\\RQ\\ exp(C3 Kx(e) \\R°\\ )) ^ i

Step 2. Checking (6.81). By construction, we have

621

d

which implies

C 2 | | ( exp/2"-

Moreover, writing (6.81) and (6.80) for 0 « m < n yields

(6.83)

m = 0

vol 26, n° 5, 1992

(6.84)



622 P LE TALLEC, S MANI, F A ROCHINHA

Plugging (6.84) into (6.83) and using (6.78) and (6.80) finally yields

||d," + 1 -4" | | ^C2Kï(e)\\Rn\\exp(K1(e)\\R°\\KC2\\dl\\lp +

+ 2 K2(e)\\R°\\),

which is (6.81) if we set

K2(e) = C2K1(e)exp(l)(c2sup \\dt\\lp + 2\ (6.85)

and impose the restriction

Restriction 4 : max (K^e), K2(s))\\R°\\ === 1 .

Step 3. Checking (6.82). From (6.76), (6.81) and (6.84), we get

7rhd3-d3\\lp).

This is (6.82) if we impose the restriction

Restriction 5 : C 3 ( 3 K2(s) \\R°\\ + || TTh d3 - rf3|| lp) ^ e .

Proof of Theorem 4 : Let s < 1/8 C 4 be given. Let

eh = s u p \\de- irhdg\\Up.

We have seen that eh goes to zero with h, and therefore, there exists
h0 such that, V/z < h0, we have

(I a)/S , (6.86)

2 i (6.87)Ê ) ^ ) ^ i ,

C3L max ( ^ ( e ) , J^2(«)) eA ̂  1 , (6.88)

(3 ClLK2(s) + C3) ê  ̂  e . (6.89)
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Moreover, the définition of Rn implies that we have

C3L 11̂ 3

C3Leh .

623

(6.90)

With this choice of h and e, Restriction 1 holds because of (6.86),
Restriction 2 and 5 hold because of (6.89) and (6.90), Restriction 3 follows
from (6.87) and from our choice of e and Restriction 4 is a direct
conséquence of (6.88) and (6.90). Therefore, all the above lemmas can be
applied.

In particular, we have

e/C3 ,

L I Cs

+eh

l)e„

(d3~d3h)(<r)do-

(L\\d3-d3h\\"0p

(L + 1 )llp e/C3 ,

ds+\\d3-d3h\\ 'u,)

Vp

which proves (4.45).
To prove that {rk, dlh) G ̂ T̂ nc, we first observe that by construction of

dlh, we have

{dlh(Mp)} = f] exp/2; {d?(Mp)}
\ fm = 0
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Since {dt(Mp)} is a direct orthonormal basis of E and since exp O™ is a
rotation matrix, it then follows that {dlh(Mp)} is a direct orthonormal basis
of E. Moreover, because qa and hence a>m and O m take zero values at both
ends of the rod, the above identity yields

(4,(0)} = (4(0)} ,
{dlh(L)} = K(L)} ,

and hence {dlfl} satisfies the kinematic boundary conditions of K1™.
As for r;ï, by construction, we have

rh(0) = 0,

rh(L) = ro+ d3h(a)do-

= rL + r0 - rL + lim d%{cr) der
n -• oo J 0

= r £ - l i m Rn=rL,
n —*• o o

All conditions are satisfied for {r̂ , Ö?(̂ } to be in K™c which complètes our
proof.
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