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A GALERKIN SPECTRAL APPROXIMATION
IN LINEARIZED BEAM THEORY (*¥)

B. MiaRrA (!) and L. TRABUCHO (?)

Communcated by P. G. CIARLET

Abstract — Spectral methods are well adapted for numerically approximating the displace-
ment field of a thin beam In this paper, following a technique introduced by M Vogelwus and 1
Babuska [1981] and already extended by the first author to plates (see B Miara [1989]), we show
how to select the basis functions of the spectral approximation in order to mimmize the
approximation error with respect to a parameter that characterizes the geometry For special
loadings and for particular geometries, we prove that these basis functions are polynomials
Finally, we show on an example how to compute the spectral approximation

Résumé — Les méthodes spectrales sont bien adaptées & I’ approximation numérique du
champ de déplacement d’une poutre mince En adaptant une techmique introduite par M
Vogelius et J Babuska [1981] et déja utilisée par le premier auteur pour des plaques (B Miara
[1989]) nous montrons comment construire une base de fonctions de I’ approximation spectrale
de facon a miramiser I erreur d’ approximation en fonction d’ un paramétre hé a la géométrie de la
poutre Pour des chargements et des géométries particuliéres, nous montrons que ces fonctions de
base sont des polynémes Enfin, sur un exemple nous indiquons comment s’ effectue le calcul de
I approximation spectrale

INTRODUCTION

In this work, the summation convention on repeated indices is used. Latin
indices take values in {1, 2, 3} while Greek indices take values in
{1, 2}.

Let ¢ be a « small » positive parameter and let u®: 2° - R* denote the
displacement field of a thin clamped beam that occupies the cylindrical

volume 2° = @° x [0, L], (the beam is « thin » because the diameter of the
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426 B. MIARA, L. TRABUCHO

cross section w ° is of the order of &, which is « small » when compared with
the length of the beam). In section1 we give the three-dimensional
variational formulation of the equilibrium equations, whose solution is the
displacement field u®, in the framework of linearized elasticity. In recent
works, L. Trabucho and J. Viafio [1987, 1988a, b, 1989] have shown
(following the early works of P. G. Ciarlet and P. Destuynder [1979a, b] for
plates ; A. Bermudez and J. Viafio [1984] and I. Aganovi¢ and Z. Tutek
[1987] for beams) that, in order to study the behaviour of u® when
& becomes very small, it is convenient to give an equivalent formulation of
the three-dimensional elasticity problem posed in a fixed domain
2 =a x [0, L] whose cross section  is independent of e. We have found
that this approach, presented in section 1, is also appropriate for our
purpose of spectral approximation. Then the corresponding displacement
field u(e): 2 — R? is obtained as the unique solution of the variational
problem :
Find u(g) € V such that

B(e)(u(e), v)=F(g)(v) forallveV,

where B (¢)(u(e), v) denotes the internal virtual work associated with the
transformed displacement field u(e), and F(¢)(v) stands for the total
potential of the applied forces. The space V of admissible displacements will
be specified later. In section 2, the solution of this three-dimensional
problem is replaced by a finite number of problems posed on lower
dimensional spaces by applying a Galerkin speciral iechnique. For e€ach
N =0, the spectral approximation iiy(e) of u(e) is, by definition, the
projection of u(e) onto an approximation space V of V, of the form :

N
V= {VG Viv= (Z T,{((Xp X;) U?(X:{)) P
k=0 1

= si=3

(xl, x2) € w, X3 € [0, L]} .
Thus, if the basis functions TX are known, the coefficients uf(e) of

N
iy () = < Y Ti(x, x,) u,-k(s)(x3)\ , are solutions of one-dimensio-
k=0 l=1=3
nal problems. This significantly simplifies the computation of u(e). Moreo-
ver, using an argument from M. Vogelius and 1. BabuSka [1981], we show
that, for special loadings, the basis functions TX can be chosen so as to

minimize the approximation error |u(e) — iy (&) || with respect to the

HY(2)
parameter £. In section 3 we give an example of how to compute the
coefficients uf‘(s) of fiy (¢). For thin clamped plates the same kind of results
have already been obtained by B. Miara [1989].
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GALERKIN SPECTRAL APPROXIMATION IN BEAM THEORY 427

1. STATEMENT OF THE PROBLEM
1.1. The three-dimensional linearized elasticity problem

Let € and L be two positive scalars and let w ° denote an open, bounded,
simply connected subset of R?, with a Lipschitz boundary 7y °. The beam is
then identified with the three-dimensional body occupying the volume
02°¢, where 2° = w°x (0, L). The boundary I"¢ of 2°¢is the union of the
end faces I'§ = w ®x {0, L} and of the lateral surface I'{ = ¥ *x (0, L).
Let x° = (x7) denote a generic point in £2°¢, and let 8u® = du®/ax/. Let
u® = (¥): £2°-R> denote the displacement field and o°= (o):
2° - §3 the stress field. Assume that the beam is subjected to body forces
= (f5): 2°- R?and to surface forces g° = (¢°): I'f - R>. In linearized
elasticity the equilibrium equations are :

£

~divio®=f inf2°,
ocf.n"=g° only,

where (div® o), = 9] o, and n° is the outward unit normal to I'{. The beam
being clamped at both ends, the displacement field satisfies the boundary
condition of place u® = 0 on I'§. For an isotropic, homogeneous, linear
elastic material, whose reference configuration 2°¢ is a natural state, the
linearized constitutive equation in 2° is given by o = 2eg §,, + 2 ne;,
where the Lamé constants A and u of the material constituting the beam are
assumed to be independent of e, and where the components e, of the
linearized elasticity strain tensor are related to the displacement field by
e = (8; u/ + 8, u/)2.

Let us now introduce the variational formulation associated to this
problem. Consider the Hilbert space V *= {v®= (v/) € HW(25P; v =0
on 1"5}, equipped with the Hnorm. Let B*: V*x V ®— R denote the
symmetric, continuous, bilinear form :

) [Aey, (%) eg, (vF) + 2 nej(u®) e (vi)ldx*,

Bf(uf, v¥) = J

2

and let F¢: V? > R denote the continuous, linear form :
F‘(v5)=J ff.vsdxs+J gf.v®da’®.
£ rls

The following result, which relies on Korn’s inequality and the Lax-Milgram
lemma, is well known (for a proof see e.g. P. G. Ciarlet [1988], pp. 288-
292).
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428 B. MIARA, L. TRABUCHO

THEOREM 1.1 : Let f* € [LX(2°)) and g° € [LX(I'§)T ; then there exists a
unique displacement field u® € V © that solves the variational equations :

Bf(u®, v¥)=F°¥%), VvieV*. N

1.2. Equivalent formulation of the three-dimensional elasticity problem over
a fixed set 2

Let w be an open bounded domain of R? with a Lipschitz boundary
y. Define 2 = w x (0, L) to be the reference domain of R> whose
boundary I” is the union of the end faces I'y = w x {0, L} and of the lateral
surface I'; = ¥ x (0, L). For & = 0 the physical domain {2 ° is then the
image of {2 by the transformation which associates to each point
X = (X}, Xp, X3) € £2 the point x° = (x{, x5, X3) = (&x}, €xp, X3) € 2°.
According to this transformation the image of the section w is the section
w°®,

Following Trabucho and Viafio [1987, 19884, b, 1989] we associate with
the displacement field u®e R> the function u(e) = (x,(¢)): 2 - R3
defined by the scalings :

ul(x°) = cu, (e)(x), Vx‘e 2°,
uj(x°) = e2us(e)(x), Vx‘e 02°,

We also assume that there exist functions fe [L%(2)] and ge [LXTH]P
independent of & such that :

Fix) =ef (x), fix*)=¢efi(x), Vx‘e 2°,
go(x) = e*g,(x), g5(x°)=e’gs(x), Vx‘e2°.

We can thus reformulate the variational problem of section 1.1 in an
equivalent form. Consider the Hilbert space V = {v= (v,) e [H'(2)P;
v=0on I}, equipped with the H'norm. Let B(&)(.,. ): VxV SR
denote the symmetric, bilinear form defined by :

B(g)u(e), (v)) =

SZJ Ne,o(uie))egp(v) + 2 me,p(u(e)) e,p(v)]dx

2

+ 84J {/\ [333(u(8)) eﬂﬂ (V) + eaa(u(e)) 333(‘7)] 4+ 4 #e:;a(u(E)) e3a(v)} dx
(o]

+ sﬁj [((X +2 p)ess(u(ze)) es(v)]dx,
K]
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GALERKIN SPECTRAL APPROXIMATION IN BEAM THEORY 429

and let F(e)(. ): V - R denote the continuous, linear form, defined by :

F(e)(v) = EGU f.vdx + j g.vda] .
n r

1

The scaled displacement field u(e) is then the solution of the variational
problem

B(e)(u(e), V)=F(e)(v), VveV.

LEMMA 1.1 : For each ¢ = O the bilinear form B (¢)(., . )is continuous on
V x V and V-elliptic. This means that there exists two constants m and M
(independent of ¢) such that :

B(e)(m, v) =< SZM”u”}II(D)”V”Hl(D) , YuveV,
B(e)(v,v)=¢m ||v||fllm) , YveV.m

2. SPECTRAL APPROXIMATION
2.1. Principle of Galerkin Approximation

A spectral method consists in seeking the solution of a variational
problem in terms of a truncated series of known, smooth, functions (for
example, polynomials, trigonometric functions) taken from an approxima-
tion space V. More precisely, let Vy < V be the approximation space and
iy (¢) € V be the Galerkin spectral approximation to the unique solution
u(e) € V to the variational equation :

B(e)(m(e), v) = F(e)(v), VveV.

By definition, the approximation ity (&) is the unique solution of the
problem :
B(e)(y(e), v) =F(e)(v), VveVy,

which can also be characterized as the unique solution of the minimization
problem :

B(g)(u(e) —ty (&), u(e) — iy (¢)) =
=inf {B(&)(u(e) —zy, u(e) —zy):zy € Vy} ,

thus, tiy(e) is the projection of u(e) onto the approximation space
Vy with respect to the inner product associated with the quadratic form

B(e)(.,.).

vol. 26, n° 3, 1992



430 B. MIARA, L. TRABUCHO

In this section we give the structure of a possible approximation space
V and we state a convergence theorem when N goes to infinity.

2.2. Another variational formulation of the three-dimensional problem
posed over the fixed set 2

As it will be seen later, it is convenient to split the bilinear form
B (&) into an « horizontal part » By (€) (this means that By (£)(u(¢), . ) acts
only on the « horizontal » component v; = (v,) of any test function
v=(v;)= (vy, ¥3) and a «vertical » part B;(e) (this means that
B;(&)(u(e), . ) acts only on the « vertical » component v;). More specifi-
cally, we write,

B(g)(u(e), v) = By(e)(u(e), vy) + Bs(e)(u(e), v3), Vv = (vy,v3)eV

with the following explicit expressions for By (€)(., . ) and B;(., . ):

By (e)(u(e), vy) = EZJ [Aega((e)) epp (V) + 2 me,p(u(e)) e,p(v)ldx +
n

+ £4J {/\e33(u(e)eﬁﬂ(v) + e [d,us3(e) + 03u, ()] a3va} ax,
n
B;(&)(u(e), v3) =

~

_ e4J {Aena(e)) e3(v) + 1 [8,13(¢) + B3, (£)] 8,05} dx
0
.
+ eéJ [(A +2 p)es(u(e)) ey (v)ldx.
n
Similarly, the linear form F (e)(. ) can be written as :
F(e)(v) = Fy(e)(vy) + F3(e)(v3),

FH(g)(VH) = 86|:J‘ fa U, dx + J 9o Vs da-l s
0N r 1

<1
Fi(e)(v3) = eﬁ[J favydx + J g3 U3 da] , Vv= (vg,03)eV.
0 r,
Consequently, the unknown u(e) solves the system :

{Bﬂ(e)(u(sx Vi) = Fyu(e)(vy), @D

Bi(e)(u(e), v3) = F3(e)(v3), Vv=(vg,03)eV.
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GALERKIN SPECTRAL APPROXIMATION IN BEAM THEORY 431

2.3. Choice of the Approximation Space

As in section 2.2, let us distinguish the « horizontal » part (P f,) and the
« vertical » part Q* of the basis functions T mentioned in the introduction,
that is, T = (P%, P54, Q%) for k= 0. The approximation space V of the
space V, is therefore defined by :

N
VN = {V = (vi) € V:va = Z Pﬁ(xh x2) U’;(_x:;),
k=0
vk e H{(0, L), Pt e H (w),
N
v3= Y Q% x) v5(x3), 5 € HY(O, L), Q¥ e H'(w),

k=0
VO<k<N, (nosummationon« )} .
Following the results obtained for plates by Miara [1989], one can choose

as follows a particular element ¥, € V 5 that simplifies both the expressions
of By (¥y, vy) and B;(W¥y, v3) for all v = (vg, ;) € V.

LEMMA 2.1: For N=0 let ¥{=¥JeHZ"*%0,L) and let
Wk — (¥l wh ¥, k=0, be defined by :

PIx3) = 337 x3) = ;¥ (x3), PH(xy) = 353¥5 " U(x3), k=1,

Vi(xs) = U5(x3) = 3,571 (x3) = 053~ 1(x3) = 953¥5 " 1(x3), k=1.

N

Then, the element Wy = Y e2*(W{P{, Wi Pj, W5 QF) belongstoV and
k=0

solves the following equations, valid for all v = (vy, v3) €V :

By(¥y, vi) = 2V 4 | {20% e, (V1) — u (PY +0,0") Y *1} dw +

N

+ 3 €2k+2J. {/\eaa(Pk)epﬂ(sk)+2'u'e°‘B(Pk)a“s;;
k=0 @

+ A0 T () = n (3,0 '+ P sk} do

where (with no summation on «),

L
sﬁ(xl,x2)=j VE(x3) v, (x5 X, X3)dx;€ H(w), O<k<N,
0
L

SQN + 1(x1, .X2) = J 3311’?()(3) Ua(xl, x2, X3) dX3 € Hl(w) )
0

vol. 26, n° 3, 1992



432 B. MIARA, L. TRABUCHO

and

B3 (¥y, v3) = e”*éf A +2p)0"rVHldo +
N

+ ¥ e2k+4J (@0 +PLyo,r — (A +2p) Q" 1+ 2 3,P;17"} dw
k=0 @

where
L
r*(xy, x,) = J PE(x3) v3(x), X, X3) dx; € H(w), O<ks<N,
0

L
M (xy, xp) = J 33PN (x3) 3303(xy, Xy, Xx3) dx5 € HY (o),
0

and where, by convention, P~' = 0,0 1=0.

Proof : The proof is straightforward if we replace u(e) by ¥y in system
(2.1). m

2.4. Selection of the basis functions (P, Q%)

The idea now is to select the basis functions (P, Q%) so that
B(e)(u(e)— ¥y, v) be as small as possible with respect to ¢, for all
v € V. For simplicity, we suppose hereafter, and with no ioss of generality
(see remark 2.2), that all the forces vanish except g (the axial component of
the surface force), and that it depends only on x;. Accordingly, the
construction of the basis functions is achieved by the following scheme :

i) in B (&) (¥y, v), cancel all the coefficients of £2%*2 k

that of &,

=N + 1, except

ii) in B (e)(¥y, v), set the coefficient of e equal to J gz U3 da.
Fl
This yields :

B(u(e)— Wy, v) =

L
_ 82N+4J J‘ oV s, vl 35 + M(Pg 3311/’3’ + aBQN ' 2\ 3305 ] dx
w JO
L
_ £2N+6J j [(A +2x)0Y 8;%) a5v,]dx,
w J0O

and as a consequence the basis functions (P*, Q%) are given by the following
recursion formulas (1%), (2¥) for k=0, with P"1 =0, 0~ '=0:
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GALERKIN SPECTRAL APPROXIMATION IN BEAM THEORY 433

J {Nega(P) egp(s) + 2 e,z (PX) 8,55 +

A0 e () — (0,0 + PiT) s, do = 0, Vs € [H'(«)P, (19

J (RO +PLY3r — [(A +2p)Q* "+ 203,PL]r} do

:5{‘f rdy, VreHY(w). (25
Y

Remark 2.1 : Interpretation of equations (1¥) and (2¥)

The vector valued function P* = (P, P¥) can be interpreted as a weak
solution of a plane deformation problem of linearized elasticity in
w. The two-dimensional displacement field P* expresses the deformation of
a body with Lamé constants A and u subjected to volume forces
(A +p)8,0% '+ uP*¥" ') in w and to surface forces — AQ* " 'n, on
v where n= (n,) is the outward unit normal along the boundary
v. This effect is not present in the classical engineering beam theories. The
compatibility conditions for equation (1) express the fact that these applied
forces are in equilibrium, namely the resultant and total moment vanish :

J (3,0 '+ Pz Hdw =0, 35

J [0, '+ P¥ " YHx,— (8,0 '+ P5"YYx1dw =0. 45

Therefore, if these conditions are satisfied, there exists a function
P“, unique up to an infinitesimal rigid displacement, that solves the
variational equations (1%).

The function Q* can be interpreted as a weak solution of a plane
membrane-torsion problem of linearized in elasticity in . This takes into
account the warping of the cross section associated with Saint Venant’s
torsion theory. The two-dimensional body with shear modulus « and cross
section @ is subjected to volume forces (A + 2 x) Q% ' — (A + u) o, P*
in @ and to surface forces — uP%n, + 8% on y. The compatibility
conditions for equation (2%) express the fact that the resultant of the applied
forces vanishes :

J (A +2u)0F P+ 28,Pk1dw = 8% |v]. D)

Therefore, if this condition is satisfied, there exists a solution Q% of
equations (2¢), defined up to an additive constant. W

vol 26, n° 3, 1992



434 B. MIARA, L. TRABUCHO

Remark 2.2 : Extension to other loadings.

We considered that the system of applied forces reduces to
g3(xy, X3, X3) = g3(x3). This is not a restriction since other types of loadings
are possible. For example :

i) If f3(x;, x5, x3) = f3(x3) then we must replace the right hand-side of
(2¥) by 8% | rdw and the right hand-side of (1*) by zero.

w

i) If f3(xy, xp x3) = f31(x1’ x3) f%(xs)’ (resp. g3(xy, Xp, x3) = 9:13(3‘1’ X)
g%3(x3)), we must replace the right hand-side of (2¥) by
aff fi(xy, xy) rdw, (resp. 8¢ j g3(x;, x,) r dy), and the right hand-side

@ Y

of (1*) by zero.

i) If f,(xy, X9 X3) = fa(x3), (xesp. g, (x;, X, X3) = g,(x3)), then we

must replace the right hand-side of (1¥) by S’Z‘J (51 + 8) do,

[}

(resp. 8% J (s; + 5,)dy), and the right hand-side of (2¢) by zero.
Y
Moreover, the following compatibility condition must hold :
F1(x1s x5 x3) = folxy, X, x3)
(resp. g1(xy, X3, X3) = g2(x), X3, X3)) .

iv) If (with no summation on @) f,(x;, X5 X3) = 101 x3) £2(x3),
(resp. g o (x, Xy, x3) = g (x1, %) gﬁ (x3)), we must replace the right hand-

side of (1%) by 5§J fi(xy, x3) s, dow, (resp. aé‘f gh (xy, x5) s, dv), and

the right hand-side of (2%) by zero. Moreover, the following compatibility
condition must hold :

F10eq, x5, x3) = fo(xy, X9, X3) ,(xesp. g,(xy, X, X3) = G2(Xy, Xp, X3)). M

2.4.1. Some notations

We now introduce some notations for the statement of the next Lemma.
Let the vector field P* be a translation in R? and let 0% = — PX x_ ; then

Q* is solution of the problem :
J (3,0% + PX) o, rdo =0, VreH'(w).
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GALERKIN SPECTRAL APPROXIMATION IN BEAM THEORY 435

Let R = (RX¥) be an infinitesimal rigid body displacement. It has the
general form, Rf = — rkx, + P%, R¥ = rkx, + P%, with rf € R. It is thus the
solution of the two-dimensional elasticity problem :

J [A eqa (R") €pp(s) +2 1 e,5(R¥) 3, s5]1dw =0, Vse [HY(w)P.

Let the vector field P* = (P*) be of the form P* =
A2(A + )] P,p 13’;,, where the function valued matrix @ = (@,z) is
given by @, = — @, = (x? —x3)/2, ®,,= P, = x,;x,. Consequently,
P** is solution of the two-dimensional elasticity problem :

J A e, (P*) epp(s) + e,,B(P*k) 0,55 — /\1;’[‘, Xg €44(s)]dow =0,

Vse [HY(@)T.

Let n,, 6, and H be the unique solutions of the following second order
problems :

—A0,=2x,inw,

0,0, =—DP,gngony,
f 6,dw =0,
—AH = — |y|/|o]|in o,
93, =1onvy,
J Hdow =0.

Let Q* = [APX 6, + 32 +2x)PE 0, V2(A + u); then Q** is a so-
lution of the following membrane-torsion type problem :

J {1 @ 0™ + P o, r— [(A +2u) 0"+ A8,P*)r} do =0,

Vrie HY(w).

vol. 26, n® 3, 1992



436 B. MIARA, L. TRABUCHO

Let w (the warping function) and ¢ (the torsion function) be the unique
solutions of the following second order problems :

[ —Aw=0inw,
kanw=x2n1—xlnzony,

{
(j wdw =0,

{—A<p=2inw,
¢ =0on vy,

and finally define the following constants,

ZJ Xy ¢ dw ,

If=—2fx]¢dw, J =2J¢dw,

13:2J x,wdo, If

~
|

o —j xldw H, =J X, (X2 + X2 dw .

2.4.2. Existence of the basis function (P*, Q%)

Some results concerning the existence and uniqueness of the basis
functions are given in the following lemma.

LEMMA 2.2 :

i) Equations (1¥) and (2*)0 <k <j + 2 uniquely define the basis func-
tions (P*, Q") <r<,. Moreover,

ii) the displacement field P *' is uniquely defined up to any arbitrary
translation vector P! * 1,

iii) function Q’*' is uniquely defined up to the additive function
[

iv) the displacement field P! *? is uniquely defined up to an infinitestimal
rigid displacement R’ *? and up to the additive function P* *1,

v) function Q' *%is uniquely defined up to an additive constant ¢’ ** and
up to the additive functions Q' *2 + Q¥ *' 4+ r)* 2w,

Proof : The proof is done by induction. For j = 0 the result is true, since
equations (1%, 2¥),_,_, give the following expressions for the basis
functions (P*, Q%) s<».

Py=Cln,
0% = (D°- c? X M,
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GALERKIN SPECTRAL APPROXIMATION IN BEAM THEORY 437
where the constants C% and D° are defined by :
Cf,’ =[(A +u)YBAr+2uwp)] J x,dvyll,, (nosummationon a),
Y
D°=—[A+p)GAr+2m]|7|/|e],
Pl=A(=D°x,+Co®, )2 (A + ) — AK'x/pu?+ P},
P=A(-D°x,+C2 D, )2 n(A + )+ AK'x)/pu?+ P},

Q'=AK'Wwiu?+ AD Y+ BA +2u)Cln 2 1 (A + 1)

+AC20,2 (X + 1)+ ADO[(X? + X2 —
— U+ 1,02 |0 | VR (X + p)]+0OF,

where the constants K' and D! are given by :

K'= —u[BA+2p)CoIY+AC21212 AJ(A “‘)“‘J wdylAJ,

Y
D]=;L|:2Haj Xq d'y/I,,—J Z+xHdy +
Y Y
+ 7| UL+ L)Y || VEAGBA +24) o]

and where P! is an arbitrary vector in R? and Q! is an arbitrary constant in
R. Moreover,

Pi=—A’D'x32 p* (A + p) + PS5+ P} + R},
where the vector P? is defined as follows :
P2 =AK'P2Yu? 4 AP22 u + A2P232 (B A +2 1)

—A2|y| P22 u(BA +2p) |@| +AP2Ipu + uP2S

and where P2* 1<k =<6, are the unique solutions of plane deformation
elasticity problems of the form :

— A+ p)dg,Pe*—pn AP =Ffinw,

a

A3,P2kng + w(d,Pp*+0gP%%n,)=Gjonvy,
J P2 dw = J (PPkx,—P?*x))dw =0
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and the data F f;, G'é associated with P%’ k 1<k=<6, are given by (with
summation on «) :

1
Fg =0gw,

P N

1
G —wng,

"
W
Il

357, J x, dyll, ,
Y

G; - <17,,Jxady/1a) ng,
Y

=350, J x, dyll, ,
Y

= — <0aJ Xad'y/Ia) nﬁ,
Y

It

——— A T T T, At
"y
mq?,, wWw

4

FB :-XB’

Gg =~ [(F+xD2— U, +1)]w]|]ng,
5

Gg :_any

| FS=2C%0,0, + @, )2 u(X + 1)
+BA+2u)Cloam 2 u(A + p) + 0 Hiw + (AKY Y2 30,
FS=ACY(30, + Py )2 (X + 1)
+BA+2u)Clam 2 u(A + p) + RHIp — (AK1u?) 310,
G§=0.

The expression for Q?, which is defined by (2%), is omitted because it is
too lengthy in the general case. We shall nevertheless write it down for the
simpler case of a circular cross section (see § 2.4.3). Let us now suppose that
the lemma has been proved for 0 < k <j + 2, we shall prove that it also
holds for £ = j + 3 according to the following five steps :

First step (part i): Let us prove that the compatibility equations
3/ *3 determine the translation vector P/ *! and consequently that P/ *! and
Q’*! are uniquely defined. In fact, when we replace the test function
r by xz in equation 2 +2 we get, using the compatibility equations
3 +3.

J (A +24)Q" "'+ A0,PL* x5 dw = 5{+2J xgdy .
w Y
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This represents a nonsingular system of two equations in the two unknowns
P.*! which are thus uniquely defined. This implies that the vector field

P* *1and the function Q * * ! are known so that, first the displacement field
P *? is defined up to any infinitesimal rigid displacement R’*2 and
secondly, the function Q’ *?is defined up to the constant ¢/ * 2 and up to the
additive function Q’ *2 — 1} *+%w.

Second step (partii): Let us prove that the compatibility equation
4+3 determines r4*? and consequently that the displacement field

P’ *2 is defined up to a translation P/ *2. Since

J (3,0 *2+R{* D x, — (3,0’ "2+ R4 D) xy ] dw =

= ~r{)+2J 2+ xHdo,
w

the coefficient of r*? in equation 4 *3 does not vanish and therefore
ry*? is determined by this compatibility equation. Thus the function
Q’ *?is defined up to ¢’ *2+ Q' *2.

Third step : The vector field P/ *3 can be computed from equation
VY *3 as follows :

j Meqa (P *3) egp(8) +2 pegs (P +2) e, (s)] do =
=J [k (3,0 *2+ PL Y5, — AQ' *2e,q ()] dw

valid for all s € (H!(w ))% The only unknown on the right-hand side of this
equation is

J [ (3,07 2+ PLr %) s, — A (@ 2+ 0V *?) ey, (s)] do =
=J [A(qf+2+1;fﬁ+2xﬁ)eaa(s)]dw.

Therefore P/ *3 is uniquely defined up to the additive function P# *2 —
A/2(A + w)]g’ T*x + R +3,

Fourth step (parts iii and iv): Let us prove that the compatibility
condition 5 *3 determines ¢’ *2 Equation 5 *3 can also be written as :

J {A+2m)g P24+ 28,[- Aq’ *2x,12(2 + )]} dw = 84%3 | v] .
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Then ¢’ *? is uniquely determined and therefore the displacement flied
P *3 is uniquely determined up to the function R/*3 4+ P¥*2 and

Q! *?is defined up to the additive function Q' *2.

Fifth step (part v) : The function Q’*? can be computed from equation
3,
J #(8,0° 3+ PL*H 8 r dw = J [(A +21)Q"* 2+ 2 3,PL 2 rdo +

+6’1+3J, rdy, VreHYw)
Y

in which the only unknowns are on the right-hand side

[(A+2up)0' 242 3,P¥**rdw, and on the left-hand side

w

J w(8,0' 2+ P¥+2 4 RI*3 9, rdw. Therefore the function Q’*3 is

uniquely defined up to a constant ¢’ *3 and up to the additive function
Q~j+3+ Q*J+2_r6+3w =
2.4.3. Basis functions for the circular cross section

For the particular case of a circular cross section of radius R the basis
functions are polynomials since the elementary functions w, ¢, 7, 6,, and
H introduced previously are polynomials. In fact for this case we have :

w=0, ¢=I[R* - xi+xH]2,

Mo = X2+ x2— 3R x,/4, 0, =— X+ x2— R x /4,
H = [x}+x2—RY2)2R,

I,=wRY4, J=aR%2, I'=0, I¢=0,

a

H,=0, Hy; = mRY12, f,\/adyzO..
Y

For example, taking into account the first four equations (j =1 in
Lemma 2.2), we get the following expressions for P%, P!, 0°, Q!':

Py =0,

{Q°=—2(A +u)u(BA+2p)R,
Pp=Axg/u(3A+2u)R
{Q‘:—R/4,u + A+ )X+ BA+2p)R
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and for P?, Q% (which are defined up to additive polynomial functions which
can be determined using higher order terms) :
P3=A"Rxpl8uBA+2u)A+p)-
— QA+ )T+ xD a8 n(BA +2u)R 4+
+ QA4 6 A +3u)RxGB (A +n)BA +2u)+ P},
0%= QA +w)x?2+xHRN6 (B A +2 1) +

+ARYI2 (A + ) (BA +2u)—
“3A 4+ u)X D2 uBA+2u)R+ gy +G,. W

2.5. Convergence of the spectral approximation

For a sufficiently smooth data g, (all other forces vanish by assumption),
the spectral approximation iy (&) gives a « good approximation » of the
three-dimensional solution u(¢) when & goes to zero. This is the result we
shall state next.

Let Giy= {g3:x€ (0,L)—>gs(x) =3k, heHjO, L)},

the following result then holds.

THEOREM 2.1: If the system of applied forces is such that f=0,
g, = 0 and the component g, = g;(x3) € Gz NHZN~'(0,L) for N =1
there exists a constant C y, independent of €, such that :

“u(E)— ﬁN(s)”Hl(ﬂ)sCN 52N_2, ||ue— ﬁN||H1(ﬂE)$CN 82N—1 .

Proof : By assumption the element

N
Yy=1Y e (P 1 (xy, xp) 835 7305(x3), P5(x1, %) 83*7g3(x3)
k=0

Qk(xy, xp) 3347 2g5(x3))

belongs to V and satisfies Lemma 2.1 (this element is obtained choosing
W3(x3) = g5(x3)). Then, using the definition of the basis functions, we get
for all ve V,

B(e) (u(e)— ¥y, V)=

L
R TP
0 )
+ 0,07 93V ~2g3) 80, } dx
L
- 82N+6J J { +2p)Q" a3V 1g;050;} ax,
0 Jo

therefore, |B (s)(u(e) — @y, V)| <Cy &> *#||v|| 41q) Since iy () is the

vol. 26, n° 3, 1992



442 B. MIARA, L. TRABUCHO
Galerkin approximation of u(e) the result is a consequence of the
coerciveness of B(e)(., . ) and of the scalings defined in section 1.2. H

Remark 2.3 : Extension to other loadings
With reference to remark 2.2 we have, in addition :

i) If f3(x1, X5 X3) = F3(x1, X3) £3(x3), (resp. g3(xy, Xa, X3) = g3(x1, X3)
g%(x3)),we set ‘I'al(x3) = f3(x3), (resp. ’1’31(953) = g5(x3)).

i) If f,(xy, x5 X3) = fo(x3), (resp. g, (xy, Xy, X3) = g,(x3)), then we
choose ¥2(x3) = fo(x3), (resp. ¥3(x3) = g,(x3)).

iv) If (with no summation on a) f,(x;, X3, X3) = fi(x,, X5) fﬁ(x3),
(1esp. g o (x1, Xp, X3) = ga (X1, X) g2 (x3)), We choose WZ(x3) = f,(x3),
(resp. ¥2(x3) = g, (x3)).

We finally remark that in cases ii) and iv), the basis functions for the
circular case are not necessarily polynomials. H

Remark 2.4

For ¢ sufficiently small, M. L. Mascarenhas and L. Trabucho [1990] have
shown that Cy 2" =2 goes to zero as N goes to infinity.

3. AN EXAMPLE. SPECTRAL APPROXIMATION OF ORDER ONE

The spectral approximation i#,(¢), as we defined it previously, is
expressed in terms of Q° Q!, P°, P! by :
udP?+ e2ul P}
()= |udPI+ e’uj P}
u3Q°+ e2u3 Q!
and it is a solution of the following variational equations :

B(e)(@,(e), v) = F(e)(v), VveV,.
3.1. General case

Specifically, if P2#0, PL#0, 0°%0, Q' 0, we have for all
ve HNO,L):

L
J w3udPY PO + ud(PY, 9,0%] 00 dxs +
0

L L
+ SZL p(Bsul(PY Py + ul(P?, 3,011 050 dx; = SZJ Flvdxy, (3.1)
0
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L
J {(A +2p)@PL, (P ulv+ A(3,P1, 3P ugv +
0

+ u [(3,P 1], RP D) uj + (3P, RP 1) uzlv +
+ A (3P, 0% auv + p (P, PD) dgul + (P}, 9,0%) uf] 930} dx; +
L (3.2)
+ gzj (A @PL QY ogdv + w[(PL P aul +

0
+ (P, 3,0 u3ldsv dx 5} =

L
=82J Fllvdx:;,
0

L
J waud(P P + ud(PY 9,0°%71 80 dxs +
0

L L
+ EZJ wBud(PY P + us(P3, 3,01 00 dx; = ezf Flvdxy;, (3.3)
0 0

J‘L {A +20)(3P3, 8P uz v + A (4P, 3,P3) ujv +
0
+ m[(3,P 1, 0, Py) ul + (3P, ;P ulv +
+ A (3,P3 Q% 83ufv + w[(P3, PD) d3u] + (P2, ,0%) ud] 350} dxs +
+ €2JL {A(3,P3 Q") dsujv + G4
0
+ n (P, P3) dyuy + (P3, 3,0 u3l a0} dxsy =

L
= E2J levde,
0

L
j (3,00 Py 3;ud+ (3,0% P9 3sul + (350° 8,0 ufl v dx; +
0

L
+ €2J {(A +2p)(Q°% Q% duf v + ALQ° 8P 1) uj +
0

(3.5)
+ (Q° 3,P}) uz] 330 +

+ w[(8,0% P dsul + (3,00 P1) dsus + (3,0°% 9,0 u3lv} dxy +

L L
+54J‘ (A +2M)(Q0, Ql) a3u§a3vdX3=82J‘ ngd.x:;,
0 0
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L
f w (3,04 Py dsul + (8,0, PD) a5ud + (350", 9,0 ull v dx; +
0

L
+ szj {(A +2 )@, 0% oulaw + A [(Q), 8,P D) ul +
0

3.6)
+(Q1, 3,P)) uz] o0+

+ w3, QY P dgul + (3,01, P3) dqu; + (3,0, 3,0 ") uilv} dxs +

L L
+.fs4J~ (A +2;L)(Q1,Q1)a3u3la3vdx3=£2J Flvdx,,
0 0

where (with no summation on a); m = 0,1, F;":J‘ foaPrdo +

J gaP,’,”d‘y;Fg"zj f30"dw +J gz Q™ dy, and where (., . ) denotes
4 @ Y

the L *(w) inner product.

We shall now consider the problem of existence and uniqueness of
solution of system (3.1)-(3.6). To this end, we substitute this problem by an

equivalent one obtained by considering the following linear combinations of
(3.1)-(3.6) :

[ (3.1) (P}, P)/(P}, P})— (3.2) 3.7
- (3.1) (PLPYPYP) + (3.2) (3.8)
(3.3) (P31, P)I(PY, P))— (3.4) (3.9)
— (3.3) (PLPH(PYL P+ (3.4) (3.10)
(3.5) (@4 oM’ Q" - (3.6) (3.11)
- (3.5) (@°% 2" 2%+ (3.6). (3.12)

Let W denote the Sobolev space
W= {w= Wl wi wi, wi) € [Hs0, L)]°}.

Let C(.,. ): Wx W - R denote the bilinear form associated with the
variational formulation of problem (3.7)-(3.12), and let M(.): W-R
denote the linear form associated with the variational formulation of the
same system. We then have :

LEMMA 3.1 : The bilinear form C (., . ) is continuous on W and satisfies
the following inequality of Garding type on W : there exist six positive
constants (independent of €) A, 1 <k < 6 such that for any w e W :
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Cw, w) = A ([awf]” + o8] + [wi]* + [w3]” + [ws] ) +

+ e2A,([aw?] % + |aawd|? + [ogwl|® + | 8awi|” + [aawd|* + |wi|) +

+ 84A3|a3w31|2_

— A (Wi + [WaP 4 [WR]7 + [wi]® =+ [wd]® + [wd] D) -
e as( Dl el -
— S_ZAG(IW?I + IW2| + |W1| |W2| )

The proof is done using Young’s inequality that we recall here. Denoting
by | . | the L*Q0, L) norm, then for all @, b€ L0, L) and all § € R*,
(@, b) 20, 1y=~ 8lal¥2 - |b|%25. W

Since the linear form M (.) is continuous on W, we then have.

THEOREM 3.1 : For any € # 0, if 0 is not an eigenvalue associated with the
bilinear form C (., . ), system (3.7)-(3.12) and consequently system (3.1)-
(3.6) have a unique solution on W.

For a proof see Necas (1967, pp. 53]. R

3.2. Case of the circular cross section

When the beam’s cross section is circular (of radius R), the first basis
function P° vanishes and the previous equations (3.1) and (3.3) are
identically satisfied. It is easy to show that when ¢ = O the system of three
equations (3.2), (3.4), (3.5) gives immediately u,}, = 83u§) and u? as solution
of the variational problem :

L
B A+2p)(A + p)] WRZJ Q°85u3 33 dxs =
0

= JL [j f3dw+f g3d'y]vdx3,
0 @ Y

valid for all v € H4(0, L), which is exactly the leading term obtained via the
asymptotic expansion method (see Trabucho and Viafio [1978]). Equation

(3.6) gives u} as a solution of the variational problem (also for all

ve HyO,L):
L

A+ u) wRZJ Q% 8,u? 8,0 dxsy =
0

L L
=[AuR2(3A+2p)/(A+p)]J ngdx3+J Flvdx,,
0 0
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4. EXTENSIONS

The technique introduced here can be used in order to compute the basis
functions for multilayered beams. For the circular cross section case studied
before it is easy to show that these basis functions are (as for the plate case
(Miara [1989]) piecewise polynomials.

These results also apply to the anisotropic case.

For the multicellular cross section case we refer to Mascarenhas and
Trabucho [1990], where different approximations are studied resulting from
the noncommutativity between the Galerkin approximation and the
homogenization technique. W
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