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CURVATURE COMPUTATIONS ON SURFACES
IN n-SPACE (*)

by J.-H. CHUANG (*), Ch. M. HOFFMANN (2)

Abstract. — Z,e£ ÎF be a two-dimensional manifold in n-dimensional space, and let
ir{3F)be its projection int o the subspace ofthree of the variables in which <F has been expressed.
We give an algorithm that computes the normal curvature ofn^) directly from the équations of
!F without variable élimination. We also comment on applications in CAGD.

Résumé. — Calculs de courbures sur des surfaces dans des espaces à «-dimension. Soit
S? une variété bi-dimensionnelle dans un espace à n-dimension, et soit TT {^) sa projection dans
le sous-espace à 3 variables dans lequel &> est explicité. Nous donnons un algorithme qui calcule
la courbure normale de TT ( ^ ) directement à partir des équations de SF sans élimination de
variables. Nous commentons également les applications de ceci en géométrie de la conception
assistée par ordinateur (G.C.A.O.).

1. INTRODUCTION

Many surface opérations in CAGD dérive new surfaces from given ones
subject to certain constraints. Examples include offset surfaces, where a
distance constraint must be observed, and spherical blends, where a
curvature and a continuity constraint must be satistied. While there exist
intuitive descriptions of the resulting surfaces that are easily grasped, a
précise mathematical représentation of the surfaces appears diffïcult to
obtain in practice.

Indeed, closed-form représentations, are available in principle with the
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96 J.-H. CHUANG, CH. M. HOFFMANN

help of élimination theory — e.g., [4, 5] — or using Gröbner bases
techniques — e.g., [2, 3, 14]. In practice, however, closed forms are usually
unobtainable because the élimination problems that must be solved are well
beyond the capabilities of machines and algorithms available to date ; see,
e.g., [16]. In conséquence, surface opérations including offsets and blends
have been treated individually in the literature, and spécifie approximation
methods for the resulting surfaces have been given that are not gênerai. For
example, offset computations are addressed in [7, 10, 12, 13, 18, 19, 22, 25,
26], and many ingenious and useful techniques for analyzing and approxima-
ting offsets have been derived. But the methods proposed in those papers
for deriving and analyzing offsets do not apply unchanged to, say, the
treatment of other surfaces whose définition also involves distance cons-
traints, such as Voronoi surfaces [6, 11].

In [6, 8, 11, 15, 16] we have given a uniform method for deriving an exact
représentation of offsets, blends, equal-distance surfaces, and so on. The
représentation is a system F = 0 of nonlinear équations in n variables,
where n > 3, with the property that the surface of interest is the natural
projection of the solution set of the system into the subspace spanned by the
first three variables. Thus, the surface is conceptualized as the projection of
a certain 2-surface in w-space, and, as discussed in [6, 15, 16], the auxiliary
variables in the system F = 0 have a concrete geometrie meaning that can
be exploited for instance in engineering design applications.

In [14, 15], a uniform method for evaluating the intersection of such
surfaces has been described. In this paper, we develop a uniform method for
determining the surface curvature at a given point. That is, we present an
algorithm for the following problem : A surface !F is given as a system of
m nonlinear équations in n variables

/i(x, , ...,*„) - 0

f2(xu ..., xn) = 0

ƒ„(*!, ...,*„) =0

It is assumed that the solution set of the system is locally a smooth 2-
manifold in R", and so we have ordinarily m = n — 2 ; however, as discussed
in [16], in certain situations m > n — 2 is désirable. Let ir (^) be the natural
projection of SF into the (xl5 x2, x3)-subspace, p a point on ^ , and
v a tangent direction to SF at the point p. Détermine the normal curvature
of 7 T ( ^ ) at 7r(p) in the direction ir(v).

If the nonlinear équations fk are algebraic, our problem can be solved in
principle by eliminating x4, ..., xn from the équation system, followed by the
well-known curvature computation in 3-space using the shape operator ; see,
e.g., [21]. Such a solution would not be practical, however, for in CAGD
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CURVATURR COMPUTATIONS ON SURFACES IN rt-SPACE 97

applications the élimination of the auxiliary variables x4, ..., xn usually
cannot be carried out in practice. Hence, an algorithm is needed that avoids
élimination altogether. Such an algorithm is given here.

2. AN EXAMPLE FROM SURFACE BLENDING

To illustrate how surfaces can be described as sets of nonlinear équations,
we dérive a ruled surface K that arises in certain approaches to blending two
surfaces, e.g. [20, 23]. The approach can be conceptualized as follows : we
are given two surfaces (or patches of surfaces) ƒ and g, on which two link
curves Cx and C2 have been specified. Note that ƒ and g are usually
assumed to be parametric, but this assumption is inessential and can be
dropped. The blending surface h should be tangent to ƒ in the curve
Ch and tangent to g in the curve C2. See figure 1 for an illustration.

Figure 1. — Blending Surface and Link Curves.

Now, the approach is to put the points of Cx into 1-1 correspondent with
the points of C2, and to connect corresponding points px and p2 with a
straight line L. Thereupon, a plane P through L is considered that intersects
ƒ and g in two curves, Cf and Cg, that are blended as curves by a curve
Ch that dépends on L and on the way in which P has been chosen. Note that
Ch can be obtained as a functional blend [20] or as a parametric curve [23].
See also figure 2. The plane P can be suitably chosen, say by requiring that
it is normal to ƒ at pu as illustrated in figure 3. The approach effectively
reduces the three-dimensional surface-blending problem to a two-dimensio-

vol. 26, n° 1, 1992



98 J.-H. CHUANG, CH. M. HOFFMANN

? r

Figure 2. — Blending Curve Cb in the Plane P.

Figure 3. — The Plane P through the Line L.

nal curve-blending problem, for it can then be proved that the surface
obtained in this manner is a blending surface for ƒ and g. Moreover, [24]
proves that curvature continuity of the curve blend Ch implies curvature
continuity of the surface h with ƒ, provided that the tangents to
Ch and Cx do not coïncide a t ^ . That is, the planes P must not contain the
tangents of the link curves.

A difficulty with this approach to constructing a blending surface is to find
a simple method for establishing the correspondence of points on the link
curves Cx and C2. In [23], Pegna proposes the following idea : design a
space curve Co, say as a Bezier curve, and let the link curves be its
orthogonal projection onto the two surfaces. That is, C{ is the orthogonal
projection of Co onto ƒ, whereas C1 is the orthogonal projection of
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CURVATURE COMPUTATIONS ON SURFACES IN tt-SPACE 99

Co onto g. Then two points pi and p2 on Cx and C2 correspond precisely
when they are the image of the same point p0 on Co. See also figure 4.

The lines L under this point correspondance define a ruled surface
K, and we describe a représentation of K as a System of nonlinear équations.
This is an example of the surfaces considered in this paper, and the
dérivation illustrâtes our methodology for deriving complex surfaces
représentations by devising Systems of équations with auxiliary variables.
Note that the methodology is akin to the equational programming paradigm
in programming languages, e.g., [17], except that here the équations must
be interpreted over a field whereas in programming language research the
équations are typically understood over a free algebra.

Figure 4. — Point Correspondence on C\ and C2.

We begin the surface dérivation by assigning variable names to generic
point coordinates. Let

Po = (wo> üo> wo) b e a generic point on Co,
px = («i, üi, Wj) the projection ofpQ on to / ,

Pi = (U2> vi-> wi) the projection of pQ onto g, and let
q = (x, y9 z) be a generic point on the line L through/>j andp2-

Assume further that the curve Co is given parametrically with the coordinate
functions

Co : , H2{r), H3(r)) .

vol 26, n' 1, 1992
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The surfaces ƒ and g may be given parametrically or implicitly. For the sake
of illustrating both cases, we will assume that ƒ is given implicitly, as

f(x,y9z) = 0

and that g is given parametrically, by

G- (g\(s, 0, g2(s, t ) , g3(s9 t)).

It will then be clear how to modify the équations in case both surfaces are
parametric or both are implicit.

We now compile the équations defining the System K by translating ail
geometrie constraints on the points into équations. For each constraint, we
obtain one or more équations as follows :

The point pQ is on Co :

«o = # i 0 0
t>0 =H2(r)
w0 =H3(r)

The point px is on ƒ :

f(ul9vuwl) =0

The point p2 is on g :

The point q lies on the Une L, and L contains px and p2 :

x — kux -\- (1 — X) u2

y = \v{ + (1 - A ) V2

z = \w{ + (1 - A ) w2

p ! is the projection of p0 onto ƒ :

(uo-uuvo-vi,Wo-Wl). ( o , - ^ - , ^ ) =0
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CURVATURE COMPUTATIONS ON SURFACES IN rt-SPACE 101

p2 is the projection of p0 onto g :

, , / 901 902
 903 \

(«o - u2, v0 - v2, w0 - w 2 ) . ^ _ , _ , _ j = 0
90! 3gr2 3g3 \

_ - , _ , _ j = 0 .
So5 the ruled surface K with points q = (x,y,z) has been represented by 15
équations in the 16 variables

x , y9 z, uo,v0,wOiuhvhwu u2, v2, w2, r, s,t, A .

For an example, see the appendix.
There is a redundancy in the équation System that has been introduced on

purpose, when expressing the constraint that px is the orthogonal projection
onto the implicit surface ƒ. Hère

t , - i ~ , - — ,—

2

3

are three tangent vectors to ƒ at the point pu which is evident when the
inner product with the gradient vector

J \ duy dvx dw}

is computed. Clearly, there can be only two linearly independent vectors
among the t*, but since some of the partial derivatives could vanish at
pl9 we cannot décide a-priori which ones are independent. Instead, it is
convenient to have an algebraic dependence in the system and adjust the
algorithms that work with the system accordingly. See also [16].

3. CURVATURE COMPUTATIONS

We assume given a point p = (pu ..., pn) that satisfîes the System
F — 0 of m équations in n variables :

f2(xu ..., xn) = 0

fm(xh ..., JC„) = 0 .

vol. 26, na 1, 1992



102 J.-H. CHUANG, CH. M. HOFFMANN

Moreover, we assume that the hypersurfaces ƒk = 0 are smooth at
p, and that the Jacobian of the system,

J =

OXj "^2

3/2 a/2

dxx „ 8x2

3x,
\

dx2

9/2

has rank n — 2, so that the solution set defïned by F = 0 is locally a two-
dimensional manifold.

Let TT be the natural projection function from Rn to R3 that maps points
q = (xl5 ..., xn) to points 7r(q) = (xl5 x2, x3). If $F is the solution of the
system F = 0 in R" and w (<F) its projection into R3, then we will show that
the normal curvature of TT(^) at 7r(p) is determined by a certain linear
combination of the second fundamental forms of the hypersurfaces
fk9 where 1 ^ k ^ m, Moreover, we will show how to compute this linear
combination. In conséquence, we can détermine at Trip) all curvature
properties of 7T{^) without the need to détermine TT(<F) explicitly. The
foüowing lemma expiains how to détermine the normal to 77-(^) at the
point TT(/>), in R3

LEMMA 1 : Let nk be the normal vector to the hypersurface fk at
p G R", for 1 ̂ k ^m. Let ak be such that the last n - 3 components of

n0 = = (a, b, c, 0, ..., 0)

are zero. Then is normal to IT(<F) at ir(p).

Proof: If t = (tl9 t2, t3, ...) is tangent to !F at/?, then 7r(t) = (tl9 t%9 t3) is
tangent to TT(!F) at ?r(p). Since 7r(t) • 7r(n0) = 0, ^"(no) is normal to
TT-CJ5") at 7r(p). D

Meusnier's theorem in differential geometry states that the second
derivative of any curve, through a point p that lies on a smooth surface
ƒ in 3-space, has a projection onto the surface normal that does not depend
on the curve. The theorem generalizes to higher dimensions, where it can be
stated as follows :
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LEMMA 2 (Meusnier) : Let f3 (t) be a curve on the hypersurface
f in Rn through the point p = f3 (0), and let v = d/3 (0)/3r. Then

ar

where n is the normal to f at p, and N is the (unit) normal vector field off

Note that Lp(y) is the shape operator. Therefore, we can define the
normal curvature ,of the hypersurface ƒ at p in the tangent direction v as

where v has unit length. We now develop the main theorem.
Consider a curve f3 (t) on the 2-surface OF in R" that contains

/?, and assume that
(3(0) =p

3/3(0) v

Then the curve lies on every hypersurface fk, for 1 ̂  k =s m, and
v is tangent to !F and each fk,

The curve f3 projects to

7r(/3(t)) = (P\(t)9 f32(t), 03(O) .

We choose numbers ak such that

m
fl0 = X ak nk = (a> b-> Cf ^5 ---5 0 )

k= 1

where the n̂  are normals to fk at /?, and a1 + b2 + c2 = 1. That is, the

projected normal 7r(n0) has unit length. We will abbreviate — with
dt

f3 and —^ with (3. With L (Â:) the shape operator of fk at p , we obtain
ar

j ; .v)= ^ at(/8(0).nfc)
fc=l fc= 1

= £ (j8(0).atnt)

= 4 ( 0 ) . ( f ) a k n k ) (1)

= 4(0) . (a,i,c,0,...,0 )

= ( 4 i ( 0 ) , 4 2 ( 0 ) , 4 3 ( O ) ) - i r ( n 0 ) -

vol. 26, n' 1, 1992



104 J.-H. CHUANG, CH. M. HOFFMANN

So, if the curve p (t) has been parameterized such that the vector

" 0 0 = (J3i(0), /*2(0),/33(O))

has unit length, then expression (1) is the normal curvature of TT(JF) at
7r(p) in the direction TT(V). We summarize this fact as follows :

THEOREM 3 : Let p be a point on the 2-surface fF in R", where
3? is the intersection of m smooth hyper surfaces fk, and assume that
êF is smooth at p. Let v = (vu ..., vm) be a tangent vector to 3F at p, with

m

v\ 4- v\ + v\ = 1, and let there be numbers ak such that n0 — Y ak nk, where
k = 1

77 (n0) has unit length and Us last n - 3 components are zero. If L^ is the
shape operator of the hyper surface fk at p, then

K = akL?\Y)-Y
k= 1

is the normal curvature of TT(# ' ) at TT (p) in the direction TT(V).

In conséquence, the following algorithm computes the normal curvature
of the projected surface TT

1. Adjust the length of the tangent vector v such that its projection
77(v) has unit length.

2. For each hypersurface fk compute the normal vector nk at p.
3. Find a unit normal to the projected surface by solving the linear System

m

y aknk = (a, b, c, 0, ..., 0 ), and then adjusting the ak such that
k
a
2\b2+c2= 1.

4. For 1 ̂ k^m, compute L^k\\)-\.
m

5. Compute K = £ ak LJfc)(v) • v.
£ = i

It is straightforward to implement this method. A différent algorithm for
Computing the curvature of the projected surface can be given also, based
on flnding a parametric curve /3(r) on &, see [8].

Note that the computation of LJ;k\\)*\ can be based on the following
observation.

LEMMA 4 : Let g = 0 be a hypersurface, and let N = V# be the normal
vector field of g at the point p. With H the Hessian matrix of g at p, if
v = (yl5 ..., t;̂ ) is a tangent vector of g = 0 at p, then Lp(\)*\ = —\THv.
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Proof:

Lp(y).y = -VyN-v

= - V ¥ V 9 . y

- L?

Because of the bilinearity of the form — vT H\, notice that we can
rephrase Theorem 3 in a form better suited to computing the normal
curvature at ir(p) in different directions.

COROLLARY 5 : Let p be a point on the 2-surface <F in R", where
!F is the intersection of m smooth hypersurfaces fki and assume that
3F is smooth at p. Let v = (vx, ..., vm) be a tangent vector to !F at

m

p, with v\ + v\ + v\ — 1, and let there be numbers ak such that n0 = V ak nk

k = i

satisfies the hypotheses of Theorem 3. With nk = Vfk and Hk the Hessian of
the hypersurface fk at /?, let

Ho= £ akHk.
k= 1

Then

K = -\THQ\

is the normal curvature of TT(^) at TT (p) in the direction TT(V).

4. NORMAL CURVATURE OF A PARAMETRIC SURFACE

We illustrate our results by deriving a formula for the normal direction
and for the normal curvature of parametric surfaces, in the direction of the
isoparametric Unes. Another example is given in the appendix.

vol. 26, n° 1, 1992



106 J.-H. CHUANG, CIL M. HOFFMANN

We consider a parametric surface

x = hl(s, t)
y = h2(s,t)
z = h3(s, t)

as the projection, into (x, y, z)-space, of the 2-surface in 5-dimensional
(x, y, z, s, t )-space obtained by intersecting the three hypersurfaces

fx:x-h\(s,t)
f2:y-h2(s,t) (2)

f3:z-h3(s,t).

The coordinate functions hl9 h2, Kh are assumed to be analytic and twice
differentiable. This assumption holds in particular for the rational polyno-
mial functions used in CAGD. We abbreviate the partial derivatives of the
coordinate functions by subscripts ; for example, we write hls instead of
dhl/bs,

The normals to the fk are

V A = ( i ,o ,o , -* i„ -* i , )
V/2= (0,1,0,-tó,,-^) (3)

V / 3 = (0,0, 1,-A3W -h3t).

Applying Lemma 1, we must solve a linear System in order to obtain the
normal direction to the parametric surface :

«1*1,+ a2h2s+ a3h3s = 0

axhlt+ a2h2t+ a3h3t = 0.

The system is solved by

ax = h2sh3t-h3sh2t

a2 = h3sh\t~hlsh3t (5)

a3 = h\sh2t-h2sh\t.

In conséquence, the normal vector to the parametric surface is given by

K Û 2 » « Î ) = (hlSih2s,h3s)x (hlt9h2t,h3t).

To obtain the unit normal n0 in projection, we must adjust the ak by
dividing by the length of the cross product, i.e.,

no= (hls,h2s,h3s)x (hlt,h2tih3t)fm

m= ||(Al„A2„A3,)x (*1„ *2„ *3,)|| .
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Next, we compute the normal curvature in the tangent direction of the
isoparametric line t — const. The Hessians of the system (2) are the matrices

z l =

0
0
0
0

\o

1°
10

0

i °
\o

/o
0
0
0

\o

0
0
0
0

0

0
0
0
0

0

0
0
0
0
0

given

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

by

0
0
0
0
0

_

-

-

-

-
_

0
0
0
0
0

0
0
0

hl ss

h\st

0
0
0
hlss

h2st

0
0
0

h3st

0
0
0
a
b

0
0
0

-hl
-hl

0
0
0

-hl
-hl

0
0
0

-h3

- A 3

°\
0 ]

0
b
c

\

st

ui
\

St

J
\

St

J

where

(6)

a =

b =

c —

m =

- (hlss, h2ss, h3ss) . (hls> h2s, h3s) x («„ h2„ h3t)/m

- (hlst, h2st, h3sl). (Al,, H2„ h3s) x {hl„ hlt, h3t)/m

- {hlwh2tt,h3tt). (hls,h2s,h3s) x {hlt,h2t,h3t*)lm

\(lils>h2s,h3s)x (hlt,h2t,h3t)\\ .

Now the vector

v =

is tangent to the 2-surface defined by (2) and projects to the tangent of the
isoparametric line t = const. When divided by n = \(hls, h2s, h3s) \\, the
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108 J-H. CHUANG, CH. M. HOFFMANN

projected vector has unit length. In conséquence, the curvature is given by

Kr=const= -vTH0\/n
2

= -a/n2.

Similarly, the normal curvature in the direction of the isoparametric line
s = const is

Ks = const = ~~ cln •

5. SUMMARY

We have presented a method for determining the local curvature of the
projection, into 3-space, of a 2-surface in w-space. The method does not rely
on expensive élimination computations, and we have implemented it. Our
techniques are useful in situations in which complex surfaces cannot be
represented in a simple closed form, or are easily approximated by
parametric surfaces, when the surfaces instead have been expressed using
Systems of équations in more than three variables. Examples of such
surfaces include offset surfaces, Voronoi surfaces, fixed and variable-radius
spherical blending surfaces, and auxiliary surfaces such as the ruled surface
K of Section 2 or the trimming surfaces [11] used in the définition of the
skeleton. Algorithms such as the one presented here are part of an
infrastructure of surface interrogation methods that should make surface
représentations by systerns of équations a reasonable alternative allowing
practical work with geometrically constrained surfaces.
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Appendix

CURVATURE OF A RULED SURFACE

We give an example of a ruled surface of the type described in Section 2
and compute its curvature in the direction of the ruling. Note that the
curvature should then be zero.

Let ƒ be a cylinder of radius 1 whose axis is parallel to the z-axis through
the point ( — 1, 0, 0). Let g be a cylinder of radius 3 whose axis is the j-axis.
We assume that ƒ is given implicitly and that g is given parametrically.
Furthermore, let Co be a circle in the plane z = 4 of radius 3/2 centered at
( — 1/2, 0, 4). Co is also given parametrically. We formulate the équations of
Section 2 that describe the ruled surface that passes through the two
orthogonal projections of Co onto ƒ and g.

3(1 - r 2 ) 1

3 r
1 +r

w0 - 4
2 - l = 0

3(1-s2)
M2 = — —

1 + S*
v2 = t

6s
W

x = \ux + (1 - A ) «2

y = \vx + (1 - A) V2

z = Aw1 + (1 — À) w2

- ux) v{ + 2(v0 - v^iii! + 1) = 0
2(wo~wl)vl = 0

- 12 s(u0 - u2) + 6(1 - s2)(w0 - w2) = 0
i?0 - i?2 = 0 .
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Note that there are 16 variables and 15 équations.
On the surface defined by the équations, we choose the point

p = (x, y, z, Mo, vQ, w0, ul9 vl9 wl9 ii2, v29 w2, r9 s, t, A)

- 4 = , 0, 2 +-L , 1, 0, 4, 0, 0, 4 r i - , 0,
2 V17 V17 N / 1 7

2 V 1 7 - 1 1
' ' 4 ' ° ' 2>/Ï7

The curve and surfaces are shown in two projections in figure 5. The points
in the figure are the following projections of p :

q = (x, y, z)

Po = («o» vo> wo)

Pi - («i, vl9 wx)

p2 == (w2î v29 w2) .

Figure 5. — The surfaces /and g9 the curve Co, a generator of the ruled surface,
and corresponding points.
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Note that q — \pl + (1 — A ) p2. For the point p in R16, we construct the
sum of the Hessians. The resulting matrix Ho is as follows

0
0
0
0
0
0

0
0

0

0

0
0
0

0

0
0

0
0
0
0
0
0
0
0

0

0

0
0
0

0

0
0

0
0
0
0
0
0
0
0

0

0

0
0
0

0

0
0

0
0
0
0
0
0
0

0

0

0

0
0

0

- «2

0
0

0
0
0
0

0
0

0

0

0

0

0
0
0
0

0
0

0
0
0
0

0
0

- al

0
0

0

0
0
0

- a3

0
0

0
0
0
0

0
- «1

0
a l

0

0
0
0

0

0

- a5

0
0
0
0

0
0

0
a4

0

0

0
0
0

0

0
0

0
0
0
0

0
0

<*1

0

0
0

0
0

0

0
0

0
0
0
0

0
0
0

0

0
0

0
0

0
a 7

0

«s

0
0
0
0

0
0
0

0

0

0
0
0
0

0

0
0

0
0
0
0

0
0
0

0

0

0

0
0
0

« 8

0
a6

0
0
0
0

0
0
0

0

0
0

0
0

a9

0

0
0

0
0
0

- <*2

0
- a 3

0

0

0
ot1

0

0

« 0

0
0

0
0
0
0

0
0
0

0

0

0
0
0
0

0

0
0

0
0
0
0

0
0

- a5

0

a5

0

0

0

0
0

where

ax = 0.2776737 <% = 0.3038138
a3 = 0.2372107 <% = 0.4158092
a5 - 0.8316184 <% = 0.5553474
a7 = 0.4770799 c% = 0.5641258
a 9 = 1.4232639 % = 1.7147960 .

At the point p, the tangent vector in 16-dimensional space is

Vx/17
, 0, 4 ^ - 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1

V17

and projects in 3-space to the vector

3(
\ / i7

,0,

which is in the direction of the ruling. We compute

y H o vr = 0

so the normal curvature of the projected surface, in the direction of the
ruling, is zero.
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