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MODELING CONTOURS OF TRIVARIATE DATA

by B. HAMANN (l)

Abstract. — A gênerai scheme for Computing contours of trivariate data is discussed. It is
assumed that three-dimensional points with associated function values are given without any
other information. The goal is to construct a smooth approximation to a contour o f these data.
Usually, an interpolating or approximating function is constructed in order to estimate values on
a whole three-dimensional domain. Very often, the resulting function is represented by a set of
contours which are surfaces in space. Hère, a method is described thatfirst estimâtes points on a
particular contour, générâtes a piecewise linear approximation to that contour, andfinally uses
this linear approximation as input for a surface scheme. The surface scheme then yields a surface
which approximates the désired contour. Applications for this technique are found in medicine
(Computerized Tomography (CT), Magnetic Résonance Imaging (MRI)), meteorology (tem-
pérature measurements) and physics in generaL Particularly in médical applications one is more
interested in contours and the shape ofobjects than in a function that interpolâtes measurements.

Keywords : Contour, curvature, data réduction, G1 surface, topology, triangulation, trivariate
data.

Résumé. — Modélisation de lignes de niveaux pour des données à trois variables. Un schéma
général pour le calcul d'iso-contours de données à trois variables est examiné. On suppose que
seuls les points tridimensionnels et la valeur de la fonction en ces points sont donnés. Le but est de
construire une approximation régulière pour un iso-contour de ces données. D'habitude, une
fonction d'interpolation ou d'approximation est construite pour en déduire les valeurs sur un
domaine tridimensionnel complet. Souvent la fonction ainsi obtenue *>vt représentée par un
ensemble d'iso-contours qui sont des surfaces dans l'espace. Ici une méthode est décrite qui estime
d'abord les points sur un iso-contour donné, génère une approximation linéaire par morceau de
ce contour, et utilise cette approximation pour un schéma de génération de surface. Ce schéma
donne une surface qui approxime V iso-contour choisi. On trouve des applications de cette
technique en Tomographie par ordinateur (CT), Visualisation par Résonance Magnétique
(MRI), météorologie (mesure de températures) et en physique en général. Plus précisément dans
les applications médicales, on s'intéresse plus à des iso-contours et à la forme d'objets qu'à des
fonctions interpolant des mesures.

C) Department of Computer Science, Mississippi State University, Drawer CS, Mississippi
State, MS 39762, U.S.A.
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52 B HAMANN

INTRODUCTION

In the following, it will be assumed that the given data are either of the
form

3, f l s i =

or

ƒ, € R, U 0 ... «|f 7 = 0 ... np k = 0 ...

(1)

(2)

In the first case, the data are given scattered in three dimensional space, in
the second case they are organized in a rectilinear fashion. Therefore, the
terms scattered data and rectilinear data will be used in the following.
Figure 1 shows the two different data types. The desired goal is to compute
an approximation to one or more contours of the data. A contour is defined
as the set of ail points for which ƒ = const holds, when ƒ is the (unknown)
discretized function.

z

r\
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i i
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Figure 1. — Scattered and rectilinear data in three-dimensiona) space.

There exist two basic approaches to deal with these data : either one uses
volume visualization techniques, if one is interested in rendering the original
data only, or one uses numencal methods, if one wants to obtain a
mathematical description of a trivariate approximating function to the data
or an approximation of certain contours of the data. Most volume
visualization methods are based on ray tracing techniques. A finite number
of rays (equal to the number of points to be colored on a screen) intersecting
the domain of the scattered or rectilinear data is used to détermine coior
values when the data are to be rendered directly. These methods can be
quite expensive, when large numbers of rays have to be considered (usually
l,0242 rays per image). Effect s like transparency of volumes can be
simulated.
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MODELING CONTOURS OF TRIVARIATE DATA 53

In this paper, it will not be explained which techniques could be used to
visualize this kind of given data directly using volume visualization.
Appropriate algorithms are given in the standard computer graphies
literature, e.g., Drebin et al. [13], Foley et al. [13], Fuchs et al. [22],
Hamann [24], Kajiya/von Herzen [27], Levoy [30], [31], Ney et al. [34],
Nielson/Hamann [36], Sabella [41] and Tiede et al. [44]. The gênerai
problem of data acquisition and noise réduction in the case of physical
measurements is discussed in the field of computer vision and pattern
récognition (see Ballard/Brown [9] and Fu et al. [22]).

One common approach in computer-aided geometrie design to model this
kind of data can be divided into three steps : first, certain derivative
estimâtes at the data points are generated, second, an approximating
trivariate function is constructed and third, the result is rendered, usually as
a set of contours. Stead [43] and Zucker/Hummel [46] give methods for
estimating gradients for this kind of data, scattered data interpolation
methods are described in Alfeld [1], Barnhill [6], Bloomquist [7],
Franke/Nielson [20], Hoschek/Lasser [26], Petersen et al. [37] and Wor-
sey/Farin [45]. Again, these techniques will not be covered here.

The whole modeling process to be explained here can be divided into the
following séquence of steps :

(i) A method for data réduction will be given as a modification and
extension of a bivariate point removal procedure (see Le
Méhauté/Lafranche [29]).

(ii) Algorithms will be presented for obtaining points on a contour
considering only the given scattered or rectilinear data or a reduced
data set as the result of step (i) in scattered form. The algorithms will
be different for scattered and rectilinear data. Triangles will be
constructed from these contour points as a piècewise linear approxima-
tion to a contour. They will be obtained by triangulating closed non-
planar polygons in three-dimensional space. In Choi et al. [11] a
criterion is proposed for a " good " triangulation in space. In Loren-
sen/Cline [33] contours are generated for rectilinear data.

(iii) Further, it will be explained how to get topological information, e.g.,
the neighbor triangles of a triangle and the component of a contour a
particular triangle belongs to (a contour can be separated into multiple
components).

(iv) A surface will be computed that interpolâtes to all the points
approximating the contour and eventually to prescribed normal vectors
at those points (see Barnhill et al [5], Boehm et al. [8], Farin [16], [17],
Hagen/Pottmann [23], Hamann et al. [25], Nielson [35] and Pottmann
[39] for more details on surfaces).
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54 B. HAMANN

(v) Finally, a technique will be introduced for estimating the curvature
behavior of a surface, if one knows a triangulated version of the surface
only. This technique can then be used for interrogating the
" smoothness " of the surface created in step (iv).

DATA REDUCTION

Data réduction should be done first among the five modeling steps. The
paradigm for data réduction is quite easy : if a subset of the given function
values can be approximated locally by a linear (trivariate) polynomial within
a prescribed tolérance, certain data points associated with the approximated
function values in this subset will be removed. They can be considered not
being significant, because a contour for the data will later also be
approximated by using a linear polynomial scheme. What is meant by the
term " subset " will be explained below. The data réduction procedure
presented hère is a modification and extension for trivariate data of the
algorithm described in the publication by Le Méhauté/Lafranche [29]. For
this point removal process, the data can be given in scattered or rectilinear
form. For the further discussion it is more convenient to ignore the implied
structure of rectilinear data.

First, the given point set {xj x, e Œ3, i = 1 ... n) with associated func-
tion values {ƒ J fl e R, i — 1 ... n} will be triangulated. It is assumed that
the resulting triangulation is the Deiaunay triangulation Do of the point set.
Whenever the term triangulation is used in combination with this point
removal procedure (and only in this context), one actually is dealing with
tetrahedra in three-dimensional space. Given the triangulation of the data
points and the function values ft associated with them it is possible to
construct a C ° piecewise polynomial interpolating trivariate function for the
data. This can easily be done by defining the function value at a point x in a
tetrahedron as ƒ (x) = ux fx + u2 f2 + "3 ƒ3 + "4 ƒ4» where (uu u2, u3,
u4) are the barycentric coordinates of the point x relative to the vertices of
the tetrahedron it is lying in, and ƒ 1? f2, f3 and f4 are the known function
values at these vertices. For the point removal process, it is not necessary to
achieve higher order continuity for the interpolant.

The basic idea of the point removal step is to iteratively replace the four
vertices of an interior tetrahedron by one point and retriangulate the data
set locally (" interior " will be explained below). Each interior tetrahedron
will be assigned a weight which is a measure for its significance to the
implied C ° interpolant. Data points are removed only if they are lying inside
the convex huil of the original point set such that the domain of the
interpolant still remains the same after point removal. Tetrahedra will be
removed if the interpolant for the reduced data set does not differ more than
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MODELING CONTOURS OF TRIVARIATE DATA 55

a prescribed tolérance e from the interpolant for the original data set. To
describe the procedure more formally the following notation will be used :
• Vt is the set of the four vertices vif i = 1 ... 4, constituting a particular

tetrahedron t,
• Tt is the set of all tetrahedra having either one, two, or three vertices in

common with tetrahedron t.
• P t is the set of all vertices lying on the polyhedral boundary of the région

implied by tetrahedron t and all the tetrahedra in Tt.
• predt is a predicate for tetrahedron t which is true if all the points in

V t are lying inside the convex huil of the original point set (tetrahedron t
is called an ' ' interior ' ' tetrahedron) and all tetrahedra in Tt are
tetrahedra in the Delaunay triangulation Do.
The predicate for a tetrahedron will later ensure that only convex régions

have to be retriangulated and that the significance of a tetrahedron is always
measured with respect to the original triangulation Do and not with respect
to an already modified triangulation. If a tetrahedron's predicate is true its
weight ü>t can be computed in the following way :

1 4

1. Compute the centroid c = - £ v, of the vertices of tetrahedron t and
i = 1

1 4

assign the function value ƒ (c) = - £ ƒ / to it (average of the given
function values at the four vertices).

2. Compute the (locally) new triangulation T of the point set Pt U {c} by
Connecting each point in P t with c. Considering the fact that P t describes
a convex polyhedron, this way of retriangulating is one possible way of
doing it.

3. Cornputc the (local) différence of the new piecewise linear spline
Sx based on the reduced point set and the previous piecewise Hnear spline
So based on the unreduced point set. 50 and S{ differ only on the convex
région implied by the polyhedron with vertices in Pt, Therefore, one has
to consider the local triangulation f only and the différence between the
two splines So and Si is given by

TeT

The norm that is used here to measure the différence is a very simple
discrete norm, || \\dis, defined as

IISo -SilL,= £ \f,-S1(yt)\. (5)
i = 1

vol. 26, n 1, 1992



56 B. HAMANN

It is a norm on the set of all polynomials of degree =* 1. The weight for a
tetrahedron t is defined as

To compute <ot one has to détermine the tetrahedra in the new
triangulation f the " old " vertices vf lie in and express them in
barycentric coordinates with respect to the new tetrahedra constructed.
Then linear interpolation is used to evaluate 5X at an " old " vertex
Vi-

lt is now quite simple to formulate an algorithm which iteratively
removes data points.

ALGORITHM 1 : " DATA REDUCTION "

Input : Point set in three-dimensional space with associated function
values and Delaunay triangulation, tolérance e ;

Output : Reduced point set in three-dimensional space with associated
function values and Delaunay triangulation ;

repeat until tolérance e exceeded or no more tetrahedron with true predicate
exists

( compute predicate predt for all tetrahedra ;
for all tetrahedra with a true predicate do

( (i) compute weight w t for tetrahedron t ;
(ii) détermine tetrahedron tmin with minimal weight <omin ;
(iii) if <oTrûn^s then

compute triangulation f for point set Pt U {c}
associated with tetrahedron tm,n ;

compute the Delaunay triangulation for the reduced point set ;

It is possible to use the reduced data set and the resulting Delaunay
triangulation after termination of algorithm 1 as input and start the
réduction procedure again.

Some remarks have to be made concerning the data réduction algorithm.
If two tetrahedra with a true predicate exist having both minimal weight
o)^^ the result of the algorithm may depend on the décision which
tetrahedron is chosen to be replaced by a single point. The data réduction
algorithm given by Le Méhauté/Lafranche [29] requires a much more
complicated strategy for retriangulating when extended to the trivariate
case. When a point is removed the polyhedral boundary of its platelet (see
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MODELING CONTOURS OF TRIVARIATE DATA 51

[29]) is not necessarily convex and to flnd the (locally) new triangulation is a
quite mvolved process using their technique.

If the polyhedral boundary of the convex huil of the original point set
does not need to be preserved, there are possibihties for removing
tetrahedra havmg faces belongmg to this polyhedral boundary, too. If a
tetrahedron has one face on the polyhedral boundary, one could use the
centroid of that face as the new point c, if it has two faces on the boundary,
one couid use the centroid of the edge shared by these two faces, if it has
three faces on the boundary, one could use the vertex belonging only to this
particular tetrahedron.

The effectiveness of the data réduction algorithm dépends on the
tolérance e and on the ' ' nature ' ' of the data : if the data are originally
obtained from a linear trivanate polynomial by some discretization process,
the réduction will be greatest. In figure 2, the data réduction algorithm is
shown for the bivariate case. The involved data and the old and new
triangulation are represented.

v t = {•}

Pt = {D}

Figure 2. — Point removal in the bivariate case.

CONTOUR APPROXIMATION

Two different ways for obtaining a piècewise linear approximation to a
contour ƒ = const must be considered for data of either scattered or
rectilinear form. If scattered data are given or the original data set has been
reduced as proposed m the previous chapter one is concerned with
tetrahedra only. In the case of rectilinear data, the term " cube " will be
used for a set of eight data points {x( + / } +Jtk + K}, /, / , K e {0, 1},
associated with an arbitrary data point x(, even if the actual geometry of
these eight points it not really a cube. Points lymg on the approximation of
the desired contour are now obtained by doing linear interpolation along
edges of each tetrahedron (cube, respectively) : if one of the two points
determining an edge has a function value greater and the other one smaller
than the contour level, then linear interpolation is done along this edge to
get a point on the contour approximation. It is assumed that the contour
ƒ = const is different from all given function values at the vertices of all

vol 26, n" 1, 1992



58 B HAMANN

tetrahedra (cubes). Special treatment is necessary if this is not the case. It
will now be described how to obtain a piecewise planar approximation to the
contour for both scattered and rectilinear data.

In the case of tetrahedra, one has to consider 24 cases (a function value is
either greater or smaller than the contour and four vertices constitute a
tetrahedron). By symmetry one actually has to treat two cases only : fïrst,
three function values are greater (smaller) and one function value is smaller
(greater) than the contour level ; second, two function values are greater
and two are smaller than the contour level. The first case automatically
implies three points along edges of a tetrahedron which détermine a contour
triangle. The second case détermines a planar quadrilatéral that must be
split into two triangles afterwards. These two cases for a tetrahedron are
shown in figure 3 (black dots dénote function values greater than the
contour level, squares dénote points on the contour).

Figure 3. — Contour triangles in a tetrahedron.

If rectilinear data are given and the data réduction procedure has not
been applied, one is concerned with a total of 28 cases for each cube in the
rectanguiar data grid. The rectangular data structure is essential for the
contouring algorithm to be given now. It is possible to simply store all cases
and then look them up in a table. Lorensen/Cline [33] use that technique
and make use of symmetry among these 28 cases. Hère, an algorithm will be
given that automatically détermines a piecewise planar approximation for
the contour. Again, the fïrst thing to be done is to détermine contour points
by applying linear interpolation between points of those cube edges whose
associated function values imply the contour to intersect that edge (one
value greater, the other one smaller than the contour level). Now, two
définitions have to be given in order to understand the notation used in
algorithm 2 that computes the polygonal boundaries (" contour polygons ")
of a contour in a cube.

DEFINITION 1 : Each contour point is considérée lying on two cube faces
of a particular cube. Two contour points belonging to the same cube have a
face in common if among those four cube faces on which the two contour
points lie (two cube faces per contour point) one cube face is the same.
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MODELING CONTOURS OF TRIVARIATE DATA 59

DEFINITION 2 : Two contour points belonging to the same cube have a
corner in common if the two contour points lie on cube edges that share a
common vertex with an associated function value which is greater than the
contour level.

Définition 2 is necessary in order to construct consistent contour
polygons. If there are more than two contour points on the same cube face it
must be guaranteed that one connects always the same points forming
contour polygons. The method for Computing a triangular contour approxi-
mation presented by Lorensen/Cline [33] does not consider this consistency
constraint. The meaning of the définitions of a common face and a common
corner are illustrated in figure 4 : the pairs of points 1/2, 2/3, 3/4 and 1/4
each have a face in common, the points 5/6/7 have corner c in common.

Figure 4. — Contour points with common face, contour points with common corner.

The idea of the algorithm is to construct a set of closed three-dimensional
polygons that constitute the line boundaries for a piecewise planar
approximation of the contour within a cube. The input for the described
algorithm is a list of contour points on edges of a cube. It is further assumed
that functions for effectively Computing the two predicates " two points
have a face in common " and " two points have a corner in common " are
given. These functions are rather easy, they basically compare indices
associated with two contour points referring to certain cube faces and
corners. If the f-th point of they-th polygon in a particular cube is denoted as
pj the algorithm proceeds as follows for each cube :

ALGORITHM 2 : " CONTOUR POLYGONS "

Input ; List of contour points lying on edges of a particular cube

Output : Set of closed contour polygons with given contour points as
vertices (the Z-th point of the y'-th polygon is denoted as
pi)

vol. 26, n* 1, 1992



60 B. HAMANN

while not all contour points are associated with a polygon
( p{ := any contour point not yet associated with a polygon ;

/* Among the two faces point p[ is lying on select one, */
/* denoted as ƒ, determining the ' ' direction ' ' of the polygon. */
détermine face ƒ ;
p{ == the contour point having face ƒ in common with p{

and not yet being assigned to another polygon
if there is only one point on ƒ not yet being assigned

or
the contour point having face ƒ in common with p{
and having a corner in common with p{
and not yet being assigned to another polygon
if there is more than one point on ƒ not yet being assigned ;

while y'-th polygon is not closed
/* closed when all contour points on the next */
* face ƒ are assigned to some polygon */

/* if the face which p{_2 and p{_ { have in common is fc */
/* then the other face p{_ { is lying on is the next face ƒ */
détermine next face/;
pj

i := the contour point having face ƒ in common with p[ _ x

and not yet being assigned to another polygon
if there is only one point on ƒ not yet being assigned

or
the contour point having face ƒ in common with/>/_j
and having a corner in common with p{ __ x

and not yet being assigned to another polygon
if there is more than one point on ƒ not yet being assigned ;

i := i 1 ;

«-y +

Figure 5. — Possible contour polygons inside cubes.
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MODELING CONTOURS OF TRIVARIATE DATA 61

Algorithm 2 guarantees consistent contour polygons in the following
sense : if the common face of two neighboring cubes contains two contour
points (on two different edges of that face), there is only one way to connect
these points ; if there are four contour points (one on each of the four edges
of that face), the points will always be connected in the same fashion on that
face since the convention for Connecting contour points having corners in
common (définition 2) is incorporated into algorithm 2. This algorithm
might be slower than the method of Lorensen/Cline [33] based on a look-up
table but it produces consistent contour polygons and might be extended
easily for more complicated polyhedra than cubes. The technique of
Lorensen/Cline [33] might lead to " discontinuous " triangulations (holes in
the triangulation) as pointed out in Dürst [14] which are a resuit of
constructing inconsistent contour polygons. Some possible contour polygons
are shown in figure 5 (using algorithm 2).

At the end, a set of closed polygons is obtained (with three to seven
vertices each) for a single cube. These polygons are interpreted as polygonal
boundaries of a piecewise triangular approximation of the contour. There-
fore, certain points of each polygon have to be connected to get the
triangulation of the contour inside a cube. Because of consistency constraints
with respect to neighboring cubes, a rule must be followed when Computing
the triangulation :

• The only edges Connecting contour points on the same cube face in the
triangulation of a contour polygon are the line segments constituting the
contour polygon ; no other edges Connecting contour points on the same
face are allowed.
This rule guarantees that triangles consisting of three vertices on the same

face are never constructed. This kind of triangles must be avoided in order
to obtain a triangulation with a continuation into neighboring cubes.
Possible triangulations inside single cubes for contour polygons are shown in
figure 6.

Figure 6. — Possible triangulations of contour polygons.

At this stage of the triangulation process of the contour, the " quality " of
the triangulation within a single cube is not taken into account. As soon as

vol. 26, n" 1, 1992
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one has obtained the whole set of triangles approximating the contour,
" smoothness " criteria can be used to ünprove the triangulation in the
whole domain given by the convex huil of the data points. Referring to the
involved data structures two tables have been created : one table contains
all the contour points, the other table describes the triangulation by
containing the références to those three contour points constituting each
triangle. Figure 7 shows the piècewice linear approximation to the contour
f(x,y, z) = x1 - y2 + z2 = 0.5 obtained using algorithm 2 and the technique
described for triangulating contour polygons. The trivariate function is
evaluated on a 21*21*21 gnd, where x, y, z e [— 1, 1]. Flat shadmg is
used for rendering.

Figure 7. — Contour for x2 - y2 + z2 = 0.5, xt y, z e [ - 1,1].

The skull shown in figure 8 has been computed as a contour from a set of
68 * 64 * 64 density measurements given in rectilinear form. The measure-
ments fltJtk themselves are integer values in {0, 1, ..., 255}. This contour
(for ƒ = 13.5) consists of approximately 30,000 contour points and 60,000
triangles. Gouraud shading is used for rendering.
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MODELING CONTOURS OF TRIVARIATE DATA 63

Figure 8. — Human skull as contour of a density function.

TOPOLOGY

In this section it will be described how to obtain topological infonnation
for the set of (contour) triangles. Some surface schemes require neighbor-
hood infonnation in order to construct smooth interpolants. The topology is
obtained as a ** byproduct " of the contouring step. The contouring process
basically yields two tables : a vertex table which contains each contour point
as a triple (JC, V, z) and a triangle table which contains each tnangle as a
triple (vh t>2> V3) °f indices referring to the three vertices in the vertex table
constituting a tnangle. An algorithm will be given that computes the
neighborhood information considering the triangle table only. The contour
ƒ = const might be split into several non-connected components inside the
convex huil of the data points. Therefore, it is also essential to know to
which component of the contour a particular triangle belongs to if one wants
to model the different components separately.

vol 26, n° 1, 1992



64 B HAMANN

DEFINITION 3 : Two triangles tx and t} are neighbors if tt have t} and
exactly two vertices in common.

It is assumed that there are no degenerate cases meaning that a triangle
has at most three neighbors (an edge in the triangulation is shared by at
most two triangles). Otherwise, one would be dealing with a bifurcating
triangulation. Algorithm 2 and the way each contour polygon inside a single
cube has been triangulated guarantee that there are no bifurcations in this
case. Denoting the total number of triangles by n, the algorithm to compute
the number of neighbors for each triangle and the actual indices of these
neighbors (referring to the triangle table) is straightforward :

ALGORITHM 3 : " NEIGHBORHOOD "

Input : Table of triangles, each given by its three vertex indices
Output : Number of neighbor triangles and their indices for each triangle

in the triangle table
for i = 1 to n

( cnt := 0 ; /* number of neighbors */
j -= i ;
while j ^ n and cnt < 3

( if i ^ j and 11 and t} are neighbors
then
( cnt := cnt + 1 ;

cnt-th neighbor of tt == j ;
)

j ==i + i ;
)

number of neighbors for tt := cnt ;
)
Algorithm 3 is of order O (n2) with respect to the total number of

triangles. Its performance can be improved by storing the index triple
(i, j , k) for the " lower-front-bottom " vertex of the cube a triangle is lying
in. Then, the search for the neighbors of a particular triangle inside a cube c
can be restricted to the cube c itself and its six neighbor cubes in the
rectilinear grid. By doing so order O {n) is achieved. In order to give an
algorithm for determining the component of the contour, a particular
triangle belongs to a définition has to be given first.

DEFINITION 4 : Two triangles tx and t} belong to the same component of a
contour if triangles tÏ9 t2, ..., tk exist, such that {tx is a neighbor of
O A (* 2 ̂  a neighbor oftl)A...A(tk is a neighbor oftk_{)A {t} is a neighbor
ofh).
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The actual ordering of the triangles tl9 t2, ..., tk does not matter. In other
words, two triangles tt and tj belong to the same component if there is a path
from tï to tj of triangles which are pairwise neighbors to each other. To
effectively détermine the component index a particular triangle belongs to,
the following algorithm is used. Again, n is the number of triangles.

ALGORITHM 4 : " COMPONENT OF CONTOUR "

Input : Table of triangles (including the neighborhood information)
Output : Component index for each triangle which détermines the compo-

nent of the contour it belongs to
/* initially all triangles have an invalid component index * ' 0 " */
p := 1 ; /* first valid component index */
for i = 1 to n

( détermine minimal component index min among all the component
indices of ^'s neighbors ;
if min = 0

then
( component index for triangle tt := p ;

ƒ>!=ƒ>+ 1 ; /* one more component of contour found */
)
else
( component index for triangle tt := min ;

if there is 1 [are 2] valid component index [indices] ^ min among
/(-'s neighbors

then
( component index for this [these] triangle [s] - min ;

p z= p - 1 [2] ; /* " Connecting " triangle has been found */

The case in brackets ([ ]) in algorithm 4 indicates the situation, when
triangle tt has three neighbors with valid component indices (^ 0) which are
all different from each other. At the end, each triangle will have been
assigned to a certain component of the contour. The principle of assigning a
component index to a triangle tt is shown in figure 9 : the minimal
component index among tl;'s neighbors is 1 ; therefore, the component index
for tt is 1 and all component indices 2 and 3 are changed to component index
1.

At this stage of the modeling process, it might be worth considering some
methods for improving the triangulation of the contour approximation.
Knowing the neighborhood configuration the * * max — min ' ' or
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Figure 9. — Assigning component index to triangle tt.

" min — max " angle criterion could be used. Itérative algorithms as
proposed in Lawson [28] for swapping diagonals in quadrilaterals (given by
two neighbor triangles) could be applied. Considering the fact that the
triangulation to be improved is not a planar triangulation different
optimization criteria might be appropriate. Choi étal. [11] use the angles
between normals of neighboring triangles as a smoothness criterion and
minimize these angles.

A G1 SURFACE

The question to be addressed now is the problem of constructing a
tangent plane continuous surface when a triangulation TS = {(v\9 v^ v3)\
t = 1 ... nt} (implying the topology and the neighborhood configuration) is
given in form of index-triples (v{, v'2, v3) for a set of points x( together with
(outward) unit normal vectors n,-, denoted as the set XN = {(xn n(-)|
i = 1 ... n}. The fact that each triangular patch has to be determined from
three vertices and three normals solely gives rise to speak of a " six
parameter patch " .

A brief overview for existing interpolation methods will be given.
Different surface schemes have been proposed recently for solving the
interpolation problem when points together with unit outward normals in a
triangular mesh are given in three-dimensional space. It is not the goal hère
to discuss these methods in detail but rather to give a brief overview for
existing methods. Basically, there are two approaches for solving the
interpolation problem, either parametrically or implicitly defined triangular
patches are created. The methods discussed in Farin [15], Hamann étal.
[25], Nielson [35] and Piper [38] follow the first principle, Dahmen [12] uses
the implicit form for constructing a surface based on the ideas of Sederberg
[42]. If normal vectors are not initially given they can easily be approximated
using a différence scheme or by differentiating a locally approximating
function when the points to be inteipolated are points on a contour of an
underlying (unknown) trivariate function, as it is the case hère. Possibilities
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for obtaining gradient estimâtes for tnvariate data are given in Stead [43]
and Zucker/Hummel [46]. The gradients then détermine the unit normal
vector s for the contour points directly (the gradient is normal to a contour).

The methods of Hamann et al [25] and Nielson [35] generate a tangent
plane continuous surface for given points and unit outward normals. Each
triangular patch is a convex combination of the form

s(u)= £ wJ.(u)s,(u)) (7)

where the weight functions w^u) and the single patch constituents
s,(u) are chosen in a way, such that each S;(u), i = 1 ... 3, interpolâtes to ail
three boundary curves and to the normals along the i-th boundary curve of a
patch. The notation " u " refers to the triple (ul9 u^ w3) of barycentric
coordinates associated with a point on the patch. The différence between
the two methods is that Hamann étal. [25] use degree elevated conics in
Bernstein-Bézier form and Nielson [35] uses cubic polynomials in Hermite
form for the curve scheme that is needed in both methods for blending from
a vertex to an opposite boundary curve of a triangular patch.

Piper [38] also constructs a tangent plane continuous surface when points
and tangent (normal) vectors are given. His solution consists of a set of
triangular Bernstein-Bézier patches of degree four. His scheme has to use a
Clough-Tocher split to obtain the desired continuity.

Dahmen [12] uses the lowest degree possible for implicitly defined
triangular Bernstein-Bézier patches with tangent plane continuity, which is
degree two. These patches are contours of trivariate functions defined inside
tetrahedra. To obtain these quadric patches a complicated procedure for
constructing tetrahedra over each given triangle has to be followed. A
Powell-Sabin split for each tetrahedron is necessary to guarantee tangent
plane continuity between ail quadric patches. The rendering process for
these implicitly defined patches is quite expensive : intersections of paramet-

Figure 10. — Parametric triangular surfaces using different weights.
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rically defined lines with the implicitly defined patch have to be calculated in
order to obtain points on the surface.

An example for the method described in Hamann et al. [25] is shown in
figure 10. Four points from a unit sphère have been given with their
corresponding unit (outward) normal vectors. The weights for the interior
Bézier points decrease in the séquence of surfaces from left to right giving
the effect of increasing " tension ".

CURVATURE ESTIMATION

A technique will be described now that allows to interrogate a surface. It
is assumed that the surface created in the previous step is approximated by a
set of triangles (the topology is also known), and a method for curvature
estimation is desired in order to interrogate the smoothness of the surface.
Especially, when the number of approximating triangles is large and their
size small it is hard to tell whether there are changes in the sign of Gaussian
curvature by simply looking at an image of the set of triangles themselves.
Therefore, a way is needed to approximate principal curvatures of a surface
and to render these estimâtes on a screen.

Calladine [10] introduced a method for estimating Gaussian curvature for
a triangulated surface. The technique described hère will not be limited to
this particular curvature measure but compute a whole set of estimâtes for
normal curvatures for each surface point. Given a triangulation of a surface
in three-dimensional space and outward (unit) normal vectors associated
with each point in the triangulation, a technique will be derived that allows
to calculate estimâtes for different kinds of curvature, e.g., Gaussian, mean
and absolute curvature. These curvature estimâtes can then be linearly
interpolated inside each triangle approximating the surface to be interro-
gated. Therefore, one obtains a Gouraud " shaded " représentation for the
curvature behavior of the surface. The curvature estimâtes will be color
coded and rendered on a screen.

To obtain estimâtes for a particular point xy- only triangles having
xy as one among their three vertices have to be considered. It is assumned
that the polygonal boundary around Xj formed by an ordered séquence of
vertices (except x;- itself) constitutes a closed polygon, denoted as

= xpixp2...xpj, (8)

where the edges of this polygon are given by xpi xp2, xp2 xp3, ...,
Xp. xpV The case when this polygon is not closed will be treated later. The
normal vector at Xy, denoted as ny, détermines a whole set of vectors
perpendicular to ny-. If a fînite set of perpendicular vectors, say

Dj = { d i d i , . . . , d i } , (9)
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has to be determined, these vectors are chosen such that

(i) n,d{ = 0, i = 1...*,
(ii) dj - - d*,
(iii) all angles between two consécutive vectors dj and dj + ls

i = 1 ... k — 1, are the same, and
(iv) the sum of these angles equals 180 degrees.

The vector ^ can be chosen arbitrarily as long as it satisfies (i). The
motivation for conditions (i) to (iv) is to obtain a finite number of normal
planes with normal vectors d( equidistantly distributed over a finite range
(condition (iii)). The conditions (ii) and (iv) ensure that this range is just
large enough to compute normal curvature estimâtes in ail directions of
interest and not to compute estimâtes in a certain direction more than once.

It is now very easy to get a normal curvature estimate for a point
Xj : calculate the two intersections between polj and a normal plane with
normal vector d{, i = l ... k (it is assumed that there are exactly two
intersections). These two intersection points, called yx and y2, détermine a
circle together with the point Xj. Defining the two vectors a = xy - yt and
b = y2 - yj such that b x n, = aéj

h a s= 0, the radius of this circle (approxi-
mating an osculating circle) is given by

r= l la | | | |b | | | | a- r "
2| |axb| |

(see also Faux/Pratt [18]). Hère, " || || " is the usual euclidean norm.
Therefore, the absolute value of the normal curvature estimate is given by
K = 1/r. The sign of the curvature estimate can be obtained doing the
following convention : if b x a = adj', a 52= 0, K is considered being positive,
otherwise négative. Using this method for calculating normal curvature
estimâtes, one gets a total of k - 1 estimâtes for each point (the
k-th estimate equals the lst estimate). The minimal and maximal normal
curvature estimâtes (KX and K2) can be computed as estimâtes for the
principal curvatures and estimâtes for Gaussian (KX K 2) , mean

^ (Ki + Ki)) an (i absolute curvature (| KX\ + | K2\ ) can be derived from

them. It has also been found that the average of all computed normal
curvature estimâtes at a point x;, denoted as ïcJ\ is a good measure to
understand the curvature behavior of the surface (approximating the mean
curvature) :

where K{9 i = 1 ... k - 1, are all normal curvature estimâtes computed for a
point Xj. Figure 11 illustrâtes the method for obtaining a single normal
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curvature estimate for a point Xj. The accuracy of the computed normal
curvature estimâtes can further be checked using standard results of
differential geometry, e.g., whether the normals for the normal planes
associated with the principal curvature estimâtes K{ and K2 are perpendicular
to each other, or whether Euler's theorem is satisfied (see Farin [17]). It will
be investigated whether the method presented hère can be extended to
higher-dimensional geometry in order to interrogate higher-dimensional
surfaces, e.g., surfaces of the form (x, y, z, ƒ (x, y, z))T (see Rath [40]).

Figure 11. — Normal curvature estimate for

Some remarks have to be made. The quality of the curvature approxi-
mation dépends on the size of the involved triangles relative to the surface
area approximated by thern and on the accuracy of the normal vectors at the
data points. If Xj is not surrounded by a closed polygon two cases can occur :
either, some among the used normal planes for obtaining normal curvature
estimâtes still have two intersections or, no normal plane has two
intersections with the polygon. In the first case, some normal curvature
estimâtes can still be computed using the proposed technique, in the second
case, a weighted average of curvature estimâtes of points connected to
Xj by an edge in the triangulation could be taken. Special considération must
be given to the case when more than two intersections are found between a
normal plane and a polygon surrounding x,-. Figure 12 shows the average of
all computed normal curvature estimâtes (formula (11)) for points on the
surface (x, y, ƒ (x, y)) r , where ƒ (x, y) = 0.2 (x 2 - y2) and x, y G [- 1, 1],
Normal vectors for a point on the surface can be computed exactly using the
gradient of ƒ and are given by (— fx(x, y), - fy(x, y), l ) r . The function ƒ is
evaluated on a 21*21*21 rectangular grid such that the surface is
approximated by 20 * 20 * 2 = 800 triangles (each rectangle in the domain is
split into two triangles). Brighter grey levels represent areas with positive
average normal curvature estimâtes, darker areas with négative average
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Figure 12. — Average normal curvature estimate for a bivariate function.

% • * 11 .f. *"^r^*a >.< *y

Figure 13. — Average normal curvature estimate on human skull (see fig. 8).
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normal curvature estimâtes. The " discontinuity " in the grey levels
corresponds to the change of sign in the estimate for the average normal
curvature.

Very often, surfaces appear to have no changes in the sign of curvature
behavior when rendered on a screen, especially when Gouraud shading is
used. If there are changes in the sign of curvature these can be made visible
using the described technique for surfaces approximated by triangular
facets. In figure 13 the estimate for the average normal curvature (formu-
la (11)) is shown for the human skull from figure 8 (which appears to be
fairly smooth there). The triangulation used for Computing the estimâtes is
the triangulation obtained from the contour approximation step (ii).
Normals for the points on the surface are obtained using a linear différence
scheme for gradient approximation of the underlying trivariate function.
Brighter grey levels represent areas with positive average normal curvature
estimâtes, darker grey levels areas with négative estimâtes. The changes of
sign in average normal curvature can be seen clearly (sudden changes in the
grey levels).

CONCLUSIONS

A scheme has been presented which includes all steps necessary to
mathematically model contours of skalar fields in three-dimensional space,
beginning with data réduction and ending with a (contour) surface
interrogation technique. The limited length for this publication and the wish
not to leave out certain aspects of the whole modeling process have not
allo wed to discus s the single steps in more depth.

Future research is planned particularly for data réduction and curvature
estimation. Papers treating the problems of Computing a piecewise linear
approximation for a contour and of curvature estimation are in préparation.
The methods described more briefly here will be explained in greater detail
here.
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