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APPROXIMATION AND/OR CONSTRUCTION OF CURVES
BY MINIMIZATION M ET H ODS

WITH OR WITHOUT CONSTRAINTS (*)

by M BERCOVIER O and A JACOBI (l)

Abstract — This paper présents a global method for approximation andjor construction of
planar curves The method is based on the minimization of a functional which descnbes
approximation and differential geometrie charactenstics The functional includes weighting
factors which are used to control the approximation process It is also possible to combine
constraints upon the approximation!construction of curves, in order to achieve desired
geometncal or physical effects The numencal solution of the functional takes full advantage of
the Fini te-Eléments Method with Bezier shape functions

Keywords Bézier curve, Offset curve, Approximate Conversion, Geometrie Continuity,
Vanational Problem Formulation, Finite-Element Method (FEM), Uzawa method

Résume — Approximation et/ou construction de courbes par des méthodes de mimmisation
avec ou sans contraintes Cet article présente une méthode globale pour V approximation et/ou la
construction de courbes planes Cette méthode est basée sur la mimmisation d'une fonctionnelle
qui décrit les caractéristiques de l'approximation et de la géométrie différentielle de la courbe La
fonctionnelle comprend des facteurs de pondération utilisés pour le contrôle de V approximation
H est également possible d'inclure des contraintes dans l'approximation ou la construction des
courbes pour obtenir des propriétés géométriques ou physiques La résolution numérique de la
fonctionnelle utilise pleinement les principes de la méthode des Éléments Finis sur des fonctions
de base de Bézier

1. INTRODUCTION

Approximation of curves and construction of offset curves have a vanety
of applications m geometrie modelmg For example, industry standard
geometrie modelmg Systems for free form curves and surfaces require a
proper exchange format of data, as they use different mathematical
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212 M. BERCOVIER, A. JACOBI

représentations for curves and surfaces, and different polynomiai bases. An
exact conversion between représentations is possible in the case of degree
élévation, or if the degrees and the number of terms are the same in both
représentations. Otherwise, approximate conversion is needed. Another
case is when a conversion is needed between non-polynomial représen-
tations (such as conic sections or rational curves) to polynomial ones.
Another motivation for approximation is the ability of merging curves and
surfaces in order to reduce information. Construction of offset curves is
needed in tool paths planning for numerical control machines, or to describe
a thick surface (outer surface of a car or aircraft model design).

There are several methods for approximation of curves and surfaces. One
of the fîrst for actual approximate conversion is due to Hölzle [7]. This
method was extended by Dannenberg and Nowacki [4] to surfaces by
interpreting a surface as a grid of curves. Their method is based on a
combination of Hermitian interpolation and least square approximation.
Another approach to the approximation problem (as well as the construction
of offset curves) using Bézier curves, was presented by Hoschek [8, 9, 10,
11, 12]. It is a discrete method in which transformations of parametrization
and geometrie continuity conditions are considered. Another method which
créâtes a polynomial approximation that uses constrained Chebyshev
polynomials or the orthogonal polynomial method is described by Goult [6]
and Lachance [13]. Nowacki et al. [16] present another approach for
construction of Bézier curves from given interpolation conditions, boundary
conditions and area constraints, using a second derivative faimess criterion.

Our strategy is a global and continuous method for the approximation and
construction of parametric planar curves. The method is based on a
variational formulation which inciudes geometricai relations between
curves, and constraints upon the geometry and/or parametrization of the
approximated curve. The variation is based on the squared intégrais of the
zero, first and second derivative (semi) norms of the approximation and
approximated curves. A weighting factor is related to each of the derivative
(semi) norm. These weighting factors allow one to control the approxi-
mation of the related norm. The solution of this variational problem is done
by the Finite Element Method (FEM).

2. THE PROBLEM AND ITS SOLUTION

2.1. Problem Statement

We will first define the problem without constraints, working only in two
dimensional space. Given a parametric curve f(w) = (/i(w), fi(u))>
ue [a,b], find the unknown vector function x(w) = (%i(«), ^ ( M ) ) ,
ue [a, ft], which minimizes the functional J*(x) (defined below).
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APPROXIMATION AND/OR CONSTRUCTION OF CURVES 213

Let

E(x) = a P (x(u)-f(u))2du (1)
J a

Ë(x) = (3 {' (x'(uj-f'(u))2du (2)
J a

Ê{x) = y f* (x"(u)-f"(u))2du (3)
J a

be the zero, flrst and second error (semi) norms respectively, and a, /3 and y
positive moduli which are used as weighting factors.

We write

A*) = E(x)
J\x) = E(x) + Ë(x)
J2(x) = E(x) + Ë(x) + Ê(x) .

2.2. Solution for the Problem Using the FEM Technique

The Finite Element Method for analysis is a popular technique for solving
complex problems in engineering or physics. A FEM problem is given by a
functional and an approximation space [17]. The solution of a FEM problem
is a stepwise process and includes the following steps :

• Subdivision of the problem range into éléments
• Approximation of the solution for each element using shape functions

such as Lagrange or Hermite ones (i.e., définition of the approximation
space V)

• Création of the element stiffness matrix for the shape function
• Assemblage of the element matrices into matrices that correspond to

the complete fmite-element system
• General numerical solution of the system
• Error estimation of the solution.

The solution to the problem (4) will be described in three stages :

2.2.1. The Approximation FEM Space

G i v e n t h e p a r t i t i o n { M , - } ™ ^ 1 o f o r d e r m o f t h e i n t e r v a l [a, b],

a = uo*zul*zu2--'^um = b (4)

such that each subinterval [ui9 ui + l] is an element.

vol. 26, n° 1, 1992



214 M. BERCOVIER, A. JACOBI

We introducé an approximation «-dimensional space V^n, consisting of
functions which are piecewise C° Bézier curves over the interval [a, b].

A planar Bézier curve C of degree q is

P^(0 = £ b ; Bj(t) for 0 ̂  t =s 1 and (5)
7 = 0

The b0, ..., b q are the unknown 2-dimensional Bézier points,

Bj(t)= (*)(l-ty-Jï (6)

are the Bernstein polynomials.
Let

x(a) = f (a), x(6) = f (Z?) , such that there is a # =s « with
X(M)| [u.tU J] = P^(?(w)) a n d f° r ail 0 ̂  z ̂  m - 1, where
u(t) = U(l t) + u t f o r O ^ / ^ 1

and l =0 , 1,2}

where
f ' (8)

and C l is the space of functions with discontinuities at ut oniy.
Set

U f (9)

where F^ is called the minimization space and V^n is a flnite-dimensional
subspace of v\ î = 0, 1, 2.

With the partition (4) we write

£<(*) = a f""1 (x(M)-f(«))2A< (10)

(x'(u)-f'(u))2du (11)

(x f f(M)-r(M))2A (12)

to be the zero, flrst and second error (semi) norms for the element i
respectively.
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APPROXIMATION AND/OR CONSTRUCTION OF CURVES 215

Let

^jf(x(u)) (13)
i =0

where

Our objective is to fînd for ail n the function x(w) which is taken over the
space V*'n, in order to approximate f(w) in some sensé to be defîned later.

Remark : Element subdivision is done according to the curvature
behavior of the given curve f(w). This is done by an algorithm developed by
Hoschek [12], which créâtes the subdivision into generic curves according to
the minimal absolute values of the spline curvature (vertices, inflection
points). Séparation points are determined midway between these absolute
values according to the degree of the generic curve. For example,

• a generic cubic curve has at least one minimal absolute value
• a generic quintic curve has at least three minimal absolute values.

Therefore, in the cubic case the splitting will be between each absolute
values, and in the quintic case between the third and fourth absolute values.

Hoscheks' algorithm for subdivision introduces some problems in cases
such as the Cornu spiral, in which it will take the whole spiral as two cubic
segments, and leads to a further segmentation during the approximation
process.

After the partition, each element represents an approximation curve
segment which is a Bézier curve of any given degree (éléments may have
different degrees as in the p-method, see [1]).

2.2.2. Création of the Element Stiffness Matrix and the Load Vector for the
Bernstein-Bézier Basis

For each element of degree n, there are 2(n + 1) degrees of freedom
(n + 1 for each component), except for the flrst and the last éléments, where
they have 2 n degrees of freedom, since the values of the end points are
predetermined.

We have,

| I ! for 0 *s z *zm- 1 (15)

where for the z-th element, bt = [blQ9 ..., b h]
T is the vector of the unknown

Bézier points, ml is the load vector and Mx is the element stiffness matrix.
Ml and ml are calculated as follows :

vol. 26, n° 1, 1992



216 M BERCOVIER, A JACOBI

The r-th derivatives of a Bézier curve (5) is

= Y A ' b , B " ~ r ( t ) f o r O ^ r ^ l (16)
dtr * ' j?o

where

We dénote

Bn= [BQ, ..., B %] (18)

and using

\XB?dt=-L- (19)
Jö w + i

with

B?(OB?(t)= V / ^ ^ / ( O , for i = 0 , . . . , « ; 7 = 0,..., m
J /m -\- n \ J

\ i +J I (20)

one yields for a single element

(n\ fn

Therefore we have

^ [l BnBnTdt =—±—An.

Using these results we can evaluate the square intégrais in équations (10)-
(12)

Çui + ] fi fi T

a x(u)2du = aAul x(t)2 dt = a Aut b f BnBnhldt^
Jut JO J 0

maAu.bÏBÏb, (22)

)3 xf(u)2du = f3 ûut \ x'(t)2dt - )3 ̂ - ^ ^ f B n _ } Axhtdt~

= P l£-bïBl
Hht (23)
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"(ufdu = y Au, x"(t)2dt = y n ^n ~ \^ A\JBn_2 A\, dt =

XJ-hjB2
n\>t. (24)

From results (22)-(24) one yields the stiffness matrix,

Ml=B°n + Bl
n + B2

n. (25)

Since M, is a constant matrix for each n, a large part of the stiffness
matrices calculation can be done in advance for the available degrees of the
approximation curves. What remains is to calculate scalar-matrix multipli-
cations with constants determined by the element subdivision and to
perform matrix additions.

The element load vector is calculated as follows :

f" . f' (M)) du

M). f («))«&! j (26)

where the évaluation of the intégrais in (26) is done by Gaussian
quadrature, adapted to the degree of the element.

2.2.3. Properties of the Element Stiffness Matrix in Relation to the Bernstein-
Bézier Basis

The Bézier element mass matrix B„ is a symmetrical, positive defmite
matrix, with the éléments in the main diagonal greater than zero, all the
éléments are positive and the largest element per row or column is in the
main diagonal, the sum of all éléments of a row (or column) is a constant for
each n, and is influenced by the length of the éléments range, Aux [15].

The Bézier stiffness element matrices Bx
n and B%9 are symmetrical,

positive semi-definite matrices, with the éléments in the main diagonal
greater than zero, the largest absolute value per row or column is in the
main diagonal and the sum of all éléments of a row (or column) is zero.

2.2.4. General Solution of the Problem

After intégration element by element we obtain :

•>*(*) = "f jfW= ü b r M b - m r b ) f = 0 , 1 , 2 . (27)

vol. 26, nE 1, 1992



218 M. BERCOVIER, A. JACOBI

The éléments' stiffness matrices Mh and the vector m,, (z = 0, .„, m - 1 )
are assembled int o the global stiffness matrix M and the global load vector
m. Since we have divided the range into m éléments, then for C° continuity
between éléments there are at most 2 mn — 2 degrees of freedom.

The global stiffness matrix is a square band and symmetrie, and its order
is at most 2 mn — 2. The matrix band width is at most 2 n.

The minimum of (27) is given by the approximation curve x(w) (5), (7),
where b is the solution of the system

Vbf(x) = Mb + m = 0. (28)

The system (28) is linear symmetrie positive defmite, and we use the
LDL T algorithm [17] to solve it. The coordinate components of / ( x ) are
decoupled, and the solution of the system refers to each coordinate
component by itself.

2.2.5. Error Estimation

The zero, first and second derivative error (semi) norms (l)-(3) are used
for error estimation. The zero derivative error norm (squared error intégral)
is the L2-norm. The first and second derivative error (semi) norms are used
to estimate the error in tangential and the second derivative displacements.

We also use the error (semi) norms E(x)/L2, £(x)/L2and Ê(x)jL2, which
measure the error mean displacement per unit length, where L is an
approximated length of f(w). For error in curvature, we use the curvature
L2 error E\

rb
EK = (ie - K)2 du (29)

where K is the curvature of the approximated curve x(w), and the curvature
mean déviation error E^,

{ii-Kfduf6

J a
b

(K)2du

Since the approximation dépends on the parametrization of x(u) and
f(w), it does not necessarily yield orthogonal error vector s between
corresponding values of parameters. The absolute Euclidean minimum (or
maximum) is at the point where two normals are collinear. Therefore a re-
parametrization is needed, so that the correction of the parametrization will
direct the error vectors to be as orthogonal as possible to the tangent of
x(w). This will resuit in a better error estimation [9, 2].
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Figure 1.1. — Approximation of a Bézier curve of a degree 5 (solid line)
by a Bézier curve of degree 4, with weighting factor values « = 1, 0 = 0 , y = 0 .

.3 .4
Parameter

Figure 1.2. — Curvature profiles of approximation Bézier curves of degree 4 and with
different weighting factor values (drawn in dashed lines), and of the given Bézier curve of degree
5. See figure 1.1.

i~ 1 .
A refmement to the partition {wf1} ̂ _ Q is currently done by fïnding the

positional error 8 in the interval [a, b ] which is the maximum of the
Euclidean norm :

8 =max{|x(w)-f(w)| ,we [a, (30)

vol. 26, n° 1, 1992



TABLE L l

Weighting factors relative to derivative error (semi) norm estimations, for the
approximation of a Bézier curve of degree 5 by a Bézier curve of degree 4, with
approximated length L = 6.63297 e — 01 Meter. See, figures 1.1-1.3.

B

H

Si

a

1
1
1
1
1
1
1
1

0
0
0

0
0
1
2
1
4
0
1

1
0
1

7
0
1
1
2
4
1
4
4

1
1
0

E(x)
1.97933e-06
1.16714e-04
8.70318e-05
8.71392e-05
1.08845e-04
3.24070e-05
1.16946e-04
1.08845e-04

8.72467e-05
1.17023e-04
1.38500e-03

Ë(x)
4.82373e-05
1.32565e-03
1.00876e-03
1.00990e-03
1.24180e-03
4.17382e-04
1.32811e-03
1.24180e-03

1.01105e-03
1.32893e-03
1.5U24e-02

E(x)
4.75987e-02
6.21261e-02
5.76158e-02
5.76312e-02
6.09395e-02
4.87316e-02
6.21585e-02
6.09395e-02

5.76465e-02
6.21693e-02
2.56872e-01

E(x)/L*
4.49885e-06
2.65282e-04
1.97816e-04
1.98060e-04
2.47396e-04
7.36586e-05
2.65808e-04
2.47396e-04

1.98305e-04
2.65983e-04
3.14799e-03

Ë(x)IL*
1.09639e-04
3.01310e-03
2.29283e-03
2.29543e-03
2.82250e-03
9.48675e-04
3.01868e-03
2.82250e-03

2.29803e-03
3.02055e-03
3.43493e-02

Ë(x)/L>
1.08188e-01
1.41208e-01
1.30956e-01
1.30991e-01
1.38511e-01
1.10763e-01
1.41281e-01
1.38511e-01

1.31026e-01
1.41306e-01
5.83849e-01

w

w

5!
o
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If 8 is greater than a given e? then the curve is split by the de Casteljau
algorithm at the parameter value where 8 occurs. This refinement procedure
continues until 8 is smaller than e. For example, in figure 2.1 the curve was
split at parameter value 0.25 for 8 = 5.55925 e - 03 (one can see the result
in figure 2.2). In figure 3.1 the curve was split at parameter value
4.64286 e - 01 for 8 = 4.85932 e - 02 (the resulting approximation is
shown in figure 3.2). (Remark : 8 is not an optimal criterion, since it is
always greater or equal the maximum Euclidean norm after reparametri-
zation.)

TABLE 1.2

Weighting factors relative to curvature error estimations for the approximation o f a
Bêzier curve of degree 5 by a Bézier curve of degree 4, with approximated length
L = 6.63297 e - 01 Meter. See, figures 1.1-1.3.

| o
1

1
1
1
1

1
1
1

0
0
0

p
0
0
1

2
1
4

0
1

1

0
1

7 |
0
1

1
2
4
1

4
4
1

1
0

E*(x)
3.91639e-02
7.28446e-01
4.24859e-01
4.25857e-01
6.44574e-01
1.88113e-02
7.30S86e-01
6.44574e-01

4.26856e-01
7.31701e-01
2.33924e+01

££oo n
1.37062e-03
2.54935e-02
1.48688e-02
1.49037e-02
2.25582e-02
6.58340e-04
2.55789e-02
2.25582e-02

1.49387e-02
2.56074e-02
8.18666e-01

2.2.6. Properties of the Weighting Factors

The weighting factors a, /3 and y are positive moduli parameters. They
allow one to augment a spécifie geometrie or physical goal of approximation.
Each of the error (semi) norms (1) to (3) has a different geometrie or
physical significance. Therefore, in many cases an approximation using only
the zero, the first, or the second derivative error (semi) norm is required
[14].

For example, given the Newton équation,

where

F = mx(0

x(/) is the path
x(/) is the velocity (or momentum with the mass m = 1)
x(?) is the accélération (or force with m = 1) .

vol. 26, n* 1, 1992



222 M. BERCOVIER, A. JACOBI

• In a case where we would like to locate the position of a partiële at
every point in time, such as a bullet or an aircraft, then we only need to
approximate x(7).

• If only the velocity or the momentum is needed in order to know for
example the pénétration of a bullet in a solid, then the only influencing
factor is the momentum. Accordingly we need to obtain a good approxi-
mation for x(7).

• A problem where a description of the forces which operate on different
parts of a body in movement (such as a car in accélération), can be solved by
approximating x(r).

The weighting factors are attached to their error (semi) norms, meaning
that a larger value of a weighting factor will increase the « influence » of its
error (semi) norm upon the solution. On the other hand, we can decrease
the effect of a certain error (semi) norm upon the solution by reducing the
value of the weighting factor down to zero. For example, for angular
momentum m(x(t) x x(t)) is linear in a/?.

The above example is a special case of the gênerai form,

f(x(?), x(0 , x(O)ocf(a, /3, y) with a > 0 . (31)

The relation between the weighting factors and the error (semi) norms
can be seen in Tables 1.1, 1.2 and in figures 1.2, 1.3, where we can see the
relation between curvature profiles of different weighting factors values,
and the relation between the hodographs of those approximations.
Tables 1.1, 1.2 and figures 1.2, 1.3 illustrate the following :

• When the values of the weighting factors (3 and y are enlarged relative
to a, then the effect of their relative error (semi) norms is augmented.

• The value of a must be greater thon zero, since otherwise the order of
approximation will decrease by 1 when a = 0, (3 > 0, y = 0, and by 2 when
a = 0, /3 = 0, y > 0. This can be deduced from (23)-(24), for the
construction of the stiffness matrices. In the separated bottom part of
Tables 1.1, 1.2 and in figures 1.2, 1.3, it is evident that the results decrease
in accuracy when this condition does not apply.

• With the correct weighting factors the approximation is improved up to
a factor.

• The curvature of x(w), is dependent on both, first and second
derivative error (semi) norms. Since Ë(x) oc f3 and Ê(x) oc y, then the
curvature

|x' x x"l 'y
1 " ' — ' '• is proportional to — . (32)Kl3 P 2'

m The effect of the weighting factors and of the different error (semi)
norms upon the curvature is indicated in Tables 1-4. When the values of fi
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and/or y become greater or smaller, then the values of the curvature
L2 error EK and the curvature mean déviation error E£ behave pro-
portionally. For the weighting factors a : = l , j 3 = 4 , y = l i n Tables 1, 2
the curvature error (semi) norms have the best results, and for the weighting
factors a = 1, /3 = 0, y = 4, the curvature error have relatively poor
results. This example shows that despite y > 0, K is mainly dependent on /3,
as was expected from (32).

-.1

-.15

-.2

-.25

* -.3

-.35

-.4

-.45

-.5

-. 55

•

•

•

•

•

-1

Approximation
deg=4, weights
cieg=4, weights
deg=4, weights

^.-

x

Curve
^1,0,0
-1/1/1 -"-
-0,1,0

/ /

i

-.5 0
X

/f \

.5

\

\

\
\ \
\ \

1

-

-

•

1.5

Figure 1.3. — Hodographs of approximation Bézier curves of degree 4 and with different
weighting factor values (drawn in dashed lines), and of the given Bézier curve of degree 5. See
figure 1.1.

2.2.7. Intégration of Higher Continuity Conditions

The approximation curve x(w) is globally C° by construction. In order to
create a higher order of global continuity approximation curves, one must
include the proper continuity term in (28). For example, in the case of a
two-element approximation curve which is globally C1 over the interval
[uQ,u2], [5]
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224 M. BERCOVIER, A. JACOBI

TABLE 2.1

Derivative error (semi) norm estimations for approximation Bézier curves with
différent degrees, to a Bézier curve of degree 17 with approximated length
L = 1.39564 e + 00 Meter, and weighting factors (a = 1, p = 0, y = 0). (The last
tuple displays estimations for two éléments approximation.) See figures 2.1, 2.2.

Elm.

1
1
1
1

2

n || E(x)

5
6
7

00

3.73829e-04
1.74646e-05
9.98117e-06/
5.41058e-06

6 || L86566e-06

E(x)

8.79422e-02
4.41127e~02
8.28747e-03
5.11381e-03

Ë(x)

4.68648e+01
6.90335e+00
1.58263e+01
9.63218e+00

E(z)/L2

1.91922e-04
8.96622e-06
5.12429e-06
2.77777e-06

8.71906e-04 | 5.81642e-01 || 9.56063e-07

Ê(x)/L*

4.51491e-02
2.26472e-02
4.25475e-03
2.62541e-03

E(x)/L*
2.40602e+01
3.54415e+00
8,12516e+00
4.94511e+00

4.46811e-04 | 2.98064e-01 |

TABLE 2.2

Curvature error estimations and max Euclidean norm for approximation Bézier
curves with different degrees, to a Bézier curve of degree 17 with approximated length
L = 1.39564 e + 00 Meter, and weighting factors (a = 1, p = 0, y = 0). See
figures 2.1, 2.2.

Elm.

1

1
1
1

2

n II E*(*) 1 « ( * ) il « II
5
6
7
8

6

1.45890e+00
5.77705e-01
4.42768e-01
L99949e-01

7.14427e-02

1.22916e-01
5.29460e-02
2.54834e-02

1.31151e-02

4.96162e-03 |

4.80794e-02

1.42843e-02
7.83667e~03
5.55925e-03

1.28239e-04 ||

Xo(to) =

the C1 continuity term is

b„" m - l =

( ï 0 ) , M = M 0 ( l - t0) + U,

Aux Âu0

(33)

(34)

The intégration of the term (34) in the System (28) is done by eliminating
the row and column where bm _ j appears in the stiffness matrix and the load
vector, and inserting (34) for bm „ j . We obtain a new functional représen-
tation by the following transformation F [15],

M - TTMi

m = TTmt

(35)
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Figure 2.1. — Réduction of a Bézier curve of degree 17 (solid line)
to one Bézier segment of degree 8, with weighting factors a = 1, p = 0, y

Figure 2.2. — Réduction of a Bézier curve of degree 17 (sotid line)
to two Bézier segments of degree 6, with weighting factors o t = l , £ = 0 , y = 0 .
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Figure 3.1. — Merguig of seven C -Bezier segments of degree 3
to one Bezier curve degree 6.

where

T —

Au$+ Auj

Aux

- Au0

Aux

for 0

for i

for i

for n

= m - 1,7

- m - 1,7

i ^ ? ^ m 4

2, 0^=7 ^ m - 2

= m - 1

— m

w, m — 1 =£7 =s )

(36)

n —

The new functional représentation with the global C1 approach is

(37)

The condition for Ck contmuity between éléments 1 and 1 4- 1 is (See [5])

0 ' • *

If contmuity order of k is implemented then there will be at most
2 mn — 2 — 2 k (n — 1) degrees of freedom, since there are n — 1 connection
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points between éléments and the 2 k degrees of freedom per connection
point are reduced.

3. EXAMPLES

The approximation method was used in the following applications,
• Réduction ofdegree of high order polynomial curves to polynomials of a

lower order. The degree réduction can be done by reducing or increasing
the curve segmentation. Figure 2.1 shows an approximation of a Bézier
curve with degree 17, by Bézier curve of degree 8. Figure 2.2 présents an
approximation of two éléments of degree 6, to the same degree 17 Bézier
curve. Hère there is an improvement in the accuracy of the approximation.
Tables 2.1, 2.2 present error estimations for the approximation with single
element and two éléments. There is a significant improvement in the
accuracy in the case of the two éléments approximation. Table 2.2 also
provides the max Euclidean norm S.

• Curves can be merged through degree réduction or by degree élévation.
Figures 3.1, 3.2 present a merge of a C° Bézier spline curve with 7 cubic
segments, has been done using a single Bézier curve of degree 6, and a
Bézier-spline-curve with two segments of degrees 3 and 5.

Figure 3.2. — Merging of seven C°-Bézier segments of degree 3
to two Bézier segments of degrees 3 and 5.

• Construction of a parametric offset curve is done by approximating the
offset curve

(39)
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where n(w) is the principal normal vector, and d is the distance along
n(M).

In figure 4 there are eight approximation offset Bézier curves of degree 8,
to a given (intermediate) Bézier curve of degree 5.

The offset curve construction given hère does not solve problems such as
loops or cusps in offset curves. For the solution of such problems, see [8].

Figure 4. — Approximate offset Bézier curves of a degree 8
to a Bézier curve of degree 5.

4. INTEGRATION OF CONSTRAINTS

We introducé a Lagrangian multiplier formulation for the constrained
functional, and solve the resulting optimization problem by the Uzawa
method.

Given the inequality convex constraints fonctions,

* ( * ) = {*><>(*) »•*>*(*)} (40)

with <Pj(x) =s 0, fïnd u such that

I ueU= {v e V : <pt(v) ss= 0, 1 ̂  i =sm }
J(u) = inf J{v) .

ve U

Uzawa's method, is an itérative method which allows one to solve an
inequality constrained minimization problem by replacing it with a séquence
of unconstrained minimization problems [3].

The itération starts with an arbitrary value for the element À°e R™, a
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séquence of pairs ( A ^ w ^ e ^ x F , k ==* 0, is defined by means of the
following recursion formula :

m ( m ~\

uk:J(uk)+ £ Af«p,(W*)= inf \j(v) + £Af<p,(i;) (41)

where

{A* + P<pl(u
k), 0}, 1 < i < m (42): A

and M* = UKK
The parameter p is chosen « as best may be » (for a criterion for choosing

p and about the convergence of the method, see [3]).
The new constrained functional représentation is,

J*00 = A*) + £ A, *>,(*). (43)
t = i

Minimization of (43) with regard to the free variables in b yields the
following System of équations,

8 £ A, *>,(*)
Mb - m + ' = 1 , = 0 (44)

du

which is solved in every itération k until convergence is reached or the
number of itérations exceeds a given limit.

4.1. An Example with Constraint

The goal of this constraint is to eliminate loops in the construction process
of an approximation cubic Bézier curve. When a self intersection in a cubic
Bézier polygon is detected, the polygon is constrained to open itself thus
eliminating the loop.

Remarks : This condition for loop détection in a cubic Bézier curve, is
sufficient but not necessary. It is important to see that the approximation of
the curve is still preserved while opening the loop (as in fïg. 5, the upper
part of the loop is merged with the open curve), this is due to functional (1).

Given a cubic Bézier polygon Q, formed by b0,..., b 3. A self intersection
in Q, constrains the two vectors u = (b3b0 x bob^ and v = (b^b2 x
b ^ ) to have opposite directions. Since u and v are orthogonal to the same
plane, the first two coordinates of (u x v ) vanish. Therefore, the constraint
upon the polygon is<p(b) = w3t)3>0. The constraint <p (b) causes u and v to

vol 26, n° 1, 1992



230 M. BERCOVIER, A. JACOBI

have the sarae direction. This constraint also couples the coordinates
components in /*(x).

It is difflcult to détermine the initial value of the parameter p for this
constraint since (44) is non-ünear. Several solutions may exist (different
local minimum values), and different solutions can be obtained by different
values of p. In this case the optimal p is determined by trial and error.

Figure 5 shows an example of the loop constraint, where the loop was
opened with the initial value of the parameter p = 20 and with n = 100
itérations.

Since here the system (44) is nonlinear, it is solved using the Newton-
Raphson method.

Figure 5. — Example of the loop opening constraint, with p = 20 and n = 100.

5. CONCLUSIONS

In this paper we introduced a global and continuous method for
approximation and/or construction of planar curves. It is based on a
minimization of a functional which describes approximation and differential
geometrie characteristics. Weighting factors were integrated in the func-
tional to allow one to control the approximation. It is also possible to
integrate constraints upon the approximation/construction process in order
to achieve desired geometrical or physical effects. The numericaî solution of
the functional uses FEM.

The method introduces some advantages ;
• Functional which make use of a global and continuous criteria (the

squared intégrais of the displacements between the zero, first and second
derivatives of the approximation and approximated curves) for approxi-
mation and construction.
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• The weighting factors in the functional allow one to augment a certain
error norm which is included in the functional (or to emphasize the
appropriate physical task), by the détermination of the weighting factor
values. This is a vital flexibility in the control of the approximation process.

• The use of FEM with the Bernstein-Bézier représentation for the shape
functions has some cardinal advantages :

— Every element is treated separately, and its « influence » is added to
the gênerai stiffness matrix such that there is no limitation on the form of the
gênerai range combined from a collection of éléments.

— It is possible to approximate different éléments with different degrees
of Bézier curves.

— System of équations (28) is linear for any order of continuity
Cn between éléments.

— Segmentation of the original curve is natural to FEM because of the
subdivision of a FEM range probiem into éléments.

— The use of Bézier-Bernstein représentation, saves much of the
approximation calculation, which can be prepared in advance and be used
regardless of the subdivision into éléments.

• Intégration of geometrical and physical constraints is modular and
relatively easy. The constraints can be linear or nonlinear, with or without
inequalities.

• The solution of a constrained minimization probiem (43) uses the
Uzawa itérative method, which allows intégration of constraints that other
methods, such as the gradient method, fail to solve [3].

The present approximation method is currently extended for approxi-
mation and construction of surfaces.
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