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A HOMOGENIZATION RESULT
FOR PLANAR, POLYGONAL NETWORKS (*)

Michael„VOGELius (*)

Commumcated by E SANCHEZ-PALENCIA

Abstract — We study the relation between planar electncal networks and continuons
conductance models Our mam theorem is a homogenization resuit for networks with
infimtessimal edge length and rapidly varying resistor values We prove that any effective limit
will always correspond to a second order équation of the form V . (A Vu ) = 0 In the last section
we partially charactenze the possible symmetrie matrices, that can occur as effective limits of
equüateral tnangular networks

Résume — On étudie la relation entre des réseaux électriques plans et des modèles à
conductance continue Le principal théorème est un résultat d'homogénéisation pour des réseaux
à mailles infinitésimales et dont les valeurs des résistances varient très rapidement Nous
montrons que toute limite effective correspond à une équation du second degré de la forme
V . (A Vu) = 0 Dans la dernière partie, nous caractérisons partiellement parmi les matrices
symétriques, celles qui sont limites effectives de réseaux composes de triangles équilatéraux

0. INTRODUCTION

In this paper we study the relationship between planar electrical networks
and the boundary value problem

(1) V. {A Vu) = Oinft, u = <(> on 8ft .

We prove that équations of the form (1) for an appropriate class of matrices
A desenbe ail possible weak limits of the voltage potentials correspondmg to
a séquence of networks with decreasmg edge lengths and no in tenor sources
or sinks. This resuit is a network analogue of homogenization convergence
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484 M. VOGELIUS

resuit s by F. Murât and L. Tartar for second order elliptic boundary value
problems (cf. [16, 17]). Networks may naturally be viewed as tools to
calculate approximate solutions to second order elliptic boundary value
problems with smoothly varying (or constant) coefficients (see for instance
[7, 8, 10]). If the strength of the resistors in the network are permitted to
vary rapidly then the network contains two natural length scales : the edge
length (the discretization parameter) and the length scale of variation of the
resistors. The resuit in this paper shows that asymptotically, as far as the
structure of the limiting équations are concerned, the discreteness introduces
no new phenomena. Subsequences of solutions to continuous conductance
équations with rapidly varying coefficients converge weakly to solutions of
« new », homogenized conductance équations, and so do subsequences of
network voltages corresponding to rapidly varying resistor strength, as the
edge length approaches zero. The situation is quite different when it cornes
to characterize the exact set of matrices A, that can arise in (1). The set of
matrices that can appear in (1) when passing to the limit along séquences of
solutions to the continuous conductance équations is frequently referred to
as the (j-closure of the admissible set of matrices for the original
conductance équations. This G-closure has been determined in a number of
interesting cases (see for example [14, 17]). In the last section of this paper
we present one simple calculation related to the « G-closure » of locally
equilateral, triangular networks with infinitessimal edge length and conduct-
ances lying between 7min = 2 \x and 7max = 27. The « G-closure » appears to
bc different frorn any set one could predict based entirely on the continuous
theory. For the mixture of two components of continuous media there is a
natural notion of volume fraction and this leads to the much more
informative (but stiil, geometry independent) Hashin-Shtrikman bomids
[15, 17, 21]. For networks it is not in gênerai clear how to define a limiting
notion of volume fraction as the edge length approaches zero and so it is not
obvious what corresponds to the Hashin-Shtrikman bounds. Several authors
have derived selfconsistent effective medium théories for discrete networks
with fini te edge length (cf. [12, 20]). In cases (of simple geometry) where
there is a natural notion of volume fraction, it has been noted that the
discrete effective media théories may fall outside the corresponding Hashin-
Shtrikman bounds [12]. This is not surprising, and a similar observation is in
some sensé confïrmed (for networks with infinitessimal edge length) by the
calculation in Section 4 of the present paper.

We now proceed with a description of the assumptions concerning the
discrete network models. Let (Î be a bounded polygon in R2 and let
{co(l)} be a convex polygonal tiling of H. By this we mean that

(2.a) each o>(/) is a convex polygon,
(2.6) ü>(0 D co0) = 0 for 1 #7 , and
(lx) Ù = U ^ .
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A HOMOGENIZATION RESULT FOR POLYGONAL NETWORKS 485

The vertices and the edges of 9o)(l) form a planar, polygonal network
spanning ft ; it is exactly networks 91 that arise in this way which we shall
study in this paper. We refer to {o>^} as the polygonal tiling associated with
91. Note that ail edges of our networks are linesegments and note that
different edges of 91 only meet at a vertices of 91. A pattern, such as the
Wheatstone bridge, schematicalîy shown in figure 1, can therefore not be
part of our networks.

Figure 1.

We dénote the vertices of 91 by {xk} . If the network 91 contains an edge
joining xk to xt then we dénote this edge by ekl. The conductance (the
reciprocal résistance) of the edge ek} l is denoted by 7̂  }. If there is no edge
eki / in 91 then the corresponding conductance 7^ l vanishes. Let Uk dénote
the voltage potential at the vertex xk. Kirchhoffs laws of electrical
conductance in the network 91 (given a boundary voltage potential <j>) assert
that {Uk} minimize the energy expression

(3)
1

subject to the boundary conditions

(4) UkQ = <|>£o at any vertex of 91 lying on dfl.

Associated to any network is a maximal edge length h =
max { | ekj \ : ekj e 91}. In the remainder of this paper, whenever we write
Sflk, the subscript h refers to the maximal edge length of the network.

We call a séquence of planar, polygonal networks 91/, regular, provided
(5.a) coh< \ekJ\ < Coh for any ekJ e 9lh

(5.b) No vertex of a polygon associated with 9lA lies in the interior of an
edge of another,

(5.c) ail interior angles of the polygons associated with 91^ satisfy :

The constants Co, 0 < c0 and d0 are independent of h. We note that the
upper bound on the angles in the condition (5.c) in itself implies that all the

vol. 25, n 4, 1991



486 M. VOGELIUS

polygons Ü>^ must be convex ; the conditions (5.a) and (5.c) imply that the
maximal number of edges in any of these polygons is bounded independently
of h (and i).

We assume that the conductances yki satisfy

with ymm and 7max independent of h9 k and /. Given e => 0, H2

dénotes the set of functions that are continuous on dü, and furthermore are

in the classical Sobolev space H2 (/) for any linesegment / contained in
311. The boundary conditions <|>fco are assumed to be of the form

(6) <l>fc0 = <K*fcj) >

i

for some function $ in H2 (911). Most importantly we assume that the
maximal edge length of 9lh converges to 0, i.e.,

h =max {|eM | :ekJe 0 .

In order to formulate the main theorem of this paper it is necessary to
discuss in some more detail possible interpolations of the discrete voltage
potentials Uk. Let ï^l) be a triangulation of co^ in which each triangle has at
least one entire edge in comnion with 8w^ and such that ail vertices of
ï ( z ) are vertices of 8to(l). Let X = U ï ( l ) be the associated triangulation of
the domain £1. We shall dénote a triangulation X, which arises in this way a
minimal triangulation of the network 91. To illustrate this concept consider
the hexagon shown in figure 2. The triangulation in figure 2a is admissible
according to our définition of minimal triangulation, whereas the triangu-
lations shown in figure 2b and 2c are not (in 2b the center triangle has no
edges in common with the hexagon, in 2c the center vertex is not a vertex of
the hexagon).

Figure 2a. Figure 2b. Figure 2c.
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A HOMOGENIZATION RESULT FOR POLYGONAL NETWORKS 487

Given a regular séquence of planar, polygonal networks 91^ it is possible
to find a quasiuniform séquence of minimal triangulations %h of 91 h. By
quasiuniform we mean that there exist constants c and C such that

(7) each triangle T e Zh has an inscribed circle of radius ch, and a
circumscribed circle of radius Ch.
To verify this consider any polygon coĵ  e 91 h and select a fixed vertex,
XQ, on the boundary of coĵ . Connect this fixed vertex by straight lines to ail
other vertices of <oĵ . This construction is illustrated in figure 3.

Figure 3.

Since coĵ  is convex one obtains a triangulation Z^ of wj^. The union
%h = u X^ is a minimal triangulation of yih. Due to the conditions (5a)-
(5c) (and the fact that the maximal number of edges in any of the polygons
wj^ is bounded independently of h) it follows that this séquence of
triangulations %h is quasiuniform. We want to emphasize that the particular
construction method outlined above is not the only method to produce a
minimal triangulation of 9lh (cf.fig. 2a). It is, however, very easy to see that
any minimal triangulation of 9lh is quasiuniform due to the conditions (5a)-
(5c).

THEOREM 1 : Let 9lh be a regular séquence of planar, polygonal networks,
spanning Q and wit h maximal edge length approaching zero. Let {£/£}
dénote the minimizer of (3) subject to the boundary conditions (4), (6). There
exists a subsequence, for simplicity also denoted by 9lA, and a measurable,
matrix valued function A, A(x) is symmetrie, 0 <: cyrmn === A (x) === C7max,

such that : for any <j> G H (dO,) and any séquence of minimal triangu-
lations Hh of the subsequence 91^, the piecewise linear interpolants,
Uh, of the discrete voltages {£/£} , satisfy

Uh converges weakly in H l(£l) towards U°,

vol 25, ns 4, 1991



488 M VOGELIUS

where U° dénotes the solution to the elhptic boundary value problem

V . {A VU0) =0inÜ, U° = <$> on d(l.

Furthermore if CD is a smooth subdomain <=c= il, then the local power
dissipation in the network

xk, x/ e cü

converges to

i f {A Vf/0, VU0) dx ,
Jco

along the subsequence 9l /r The constants c and C depend on c0,
Co and dQi but are otherwise independent of the subsequence yih.

1. PRELIMINARIES

Part of the diffîculty in formulating Theorem 1 is the need to interpolate
the discrete voltage potentials. If the original networks 9lh are themselves
triangulations then it is not very difficult to rewrite the energy expression (3)
as a intégral over fi. If the edge ekl is common to the triangles T and
T' then we assign half of the conductance y^j to T the other half to
T'. For an edge on the boundary of £1 we assign the entire conductance to
the single triangle to which this edge belongs. Consider now a single
tnangie, T, as shown in figure 4, with vcrtices xl9 xz and x3 and edges given
by the vectors eu e2 and e3. The corresponding assigned conductances are
denoted yu y2 and 73. The expression

-u2y + y2(u2-u3y

may be written

where U is the linear interpolant of {Ut} and AT is the symmetrie positive
definite matrix

(8) A7= £ f , 7^7 |T | .

(t) What we mean by this notation is a sum over those edges whose endpoints
xk and xe lie in w Each edge is therefore represented only once in the sum

M2AN Modélisation mathématique et Analyse numérique
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A HOMOGENIZATION RESULT FOR POLYGONAL NETWORKS 489

With the above assignment strategy it is not difflcult to see that

where the constants c and C depend on the constants from the conditions
(5a) and (Se).

The entire minimization probiem may now be formulated in terms of an
intégral over ft. We seek the minimizer of

(9) i l (A(Xh)VU,S7U)dx
2 j n

in the set of continuous piecewise linear functions relative to the triangu-
lation Zh(= 9tA), subject to the following boundary condition

U(xk0) = <t> (*jt0) at any vertex of ï h lying on dft.

The matrix valued function A(%h) is defîned by

(10) A(Xh)(x)=ATXET, T 6 Ï A .

In the following P^X]i°(%h) dénotes the set of continuous piecewise linear
functions relative to *Xh, and P^>0(Zh) dénote those functions of
Pn°(Xh) that vanish on dO. Taking first variations of the expression (9) we
seek the minimizer Uh as the solution to

UhGP[l]>°(Xh)

(11) " f (A(Zh)VU\VVh)dx = 0 VVhePlll0(Xh)

Uh(xkQ) — <K*/c0)
 a t anY vertex of %h lying on 6H .

If the original networks 9lA are not triangulations then there are edges in
minimal triangulations %h that are not part of 91 k. Let ekl be an edge of
%h which is not contained in 9lh and let this edge be common to the two
triangles T and T'. We assign the energy contribution —y*(Uk— Ut)2 to T

vol. 25, na 4, 1991



490 M. VOGELIUS

and the contribution y*(Uk — £//)2 to T' or vice versa, such as to make these
contributions cancel when summation is performed over all triangles. It is
possible to select the signs so that any triangle of the minimal triangulation
%h has at most one of its edges contributing a négative term. To see this it
suffîces to consider a single polygon <o^ (not a triangle) associated with
9l;r Let n dénote the number of vertices of au)*1'* and let m dénote the
number of triangles of Z^ that have 2 edges in common with d^l\ A
simple counting argument gives that Z^ must have exactly 2 n — - m edges,
n ~ m triangles and n vertices. According to Euler's formula we get
( n - m ) + n - (in ~ ~rn\ = 1 , from which we deduce that m must be 2.

Piek one of the two triangles that has two edges in common with
dco(j) and assign it the number l, it has exactly one neighboring triangle (one
with which it shares an edge), assign that triangle the number 2. Either
triangle number 2 coincides with the second triangle that shares two edges
with 3co^ (and we terminate) or else it has exactly one neighboring triangle
that has not yet been numbered, in the latter case we assign that triangle the
number 3. We proceed this way till we reach the second triangle that shares
two edges with 8o>(i). Upon termination we have obtained a numbering of all
the triangles in Z^ with the property that triangle rk has one edge in
common with triangle Tk+l. This enumeration strategy is illustrated in
figure 5, using the two triangulations from figure 2a and figure 3 respec-
tively. If e is the common edge between triangle T^ and triangle
T£+l, then we assign the négative energy contribution to triangle rk the
positive contribution to triangle xfc+1. In this way no triangle has more than
one side representing a négative conductance.

Figure 5a.

We now get the formula
1
2

Figure 5b.

= ] E ykj(uk-u,)2
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A HOMOGENIZATION RESULT FOR POLYGONAL NETWORKS 491

where the matrix valued function, A (IA) , as before is given by the formulas
(8) and (10). In contrast to before one of the 7; 's in (8) may now be négative.
We observe that

LEMMA 1 : If y* nnd y2 nr? positive nuynbers and 73 is of arbiîrary sign îken

the symmetrie matrix A7 = ^ ej^jeP\T\ *s positive definite iff
7 = 1

7 i 7 2

72
73.

Proof : We use the notation shown in figure 4 and pick a coordinate
System which has origin at x2, x-axis parallel to eï9 j-axis parallel to
ej~, and such that T lies in the first two quadrants. The angle 0 dénotes the
angle between ex and e2. A simple computation now gives that

£ 7 e =7 7 7 ' ~ n 1 r^ _L ̂ .^ *2^ r te A s i n e - 7 3 r sin 0

(72 + 73) f2cos 0 sin 0 — 73 r sin 0 \
x f \ 2 • 2 1

/

with r = \e2\/\ex\. Computing the determinant of this matrix we get

det ƒ £ e} y} ej\
1 0 ? T

3

The matrix £ e} y} ejl\fr\ is therefore positive definite iff y2 + 73 > 0 and

(7i + 73)(72 + 73) - 72 > 0. Since y{ y2l{yx + 72) < min (71, 72) these latter
conditions are equivalent to 73 > - 7! 72/(7i + 72)- D

Consider a single polygon o>(l) (not a triangle) associated with 9lh. Let the
triangles of ï ( l ) be labeled through the strategy described earlier (and
illustrated in fig. 5a and 5&). Corresponding to the common edge between
Tk and Tk+X we assign conductivity - yj* = - ak yrmn to rk and 7^ = <xk yrmn

to Tk+X. From lemma 1 it now follows that the matrices A7k are positive
definite if

0 < ttlymm <
^•/ /min ~ ^ / fmin

1

0

vol 25, na 4, 1991



492 M VOGELIUS

i.e.5 the matrices ATk are positive defmite if we select the constants
oik > 0 to satisfy

ax < 1/4
(12)

ak < , . ~ /C = Z, . . . , A - 1 .
l -h z, tx^_ ̂

Hère AT(i) dénotes the number of triangles from 3^ which lie in
co(i). Since there is a uniform upper bound on the number of triangles of
Xh which lie in any one polygon from the tiling associated with
yihi it is furthermore possible to select the ak so that the matrix valued
function A(Xh) satisfies

C7min ^ A ( 3 -A) ^ C7max ?

with constants c and C depending on the constants from (5a) and (5 c). The
problem of fïnding the discrete voltage potentials {Uk} has thus again been
reduced to the variational problem (11). In the next section we shall prove
that there exists a subsequence of networks tylh and a positive defmite matrix
A such that the functions Uh converge weakly in H1 (Cl) towards the solution
to V . (A VC/°) = 0 in H, U° = <|> on ôfi, for any 4>.

2. PROOF OF THEOREM 1

The proof of Theorem 1 consists in an appropriate combination of ideas
of F. Murât and L. Tartar, concerning homogenization convergence [16,
17], with well known resuits from approximation iheoiy. A crucial rolc is
played by the following localization lemma, which not surprisingly also plays
a fundamental rôle in most proofs of interior estimâtes for the fmite element
method [18].

LEMMA 2 : Let W*1 be in pW>° relative to the triangulation Xh and let
e C^(Ct). Then there exist VheP^°(Xh) such that

where h dénotes the meshsize of Xh. The constant C is independent of h and
W*1 but dépends on i|/.

Proof : This resuit follows directly from the proof of property (A.2) in
Section 2 of [18]. For completeness we provide a brief sketch of the
argument : it is well known that there exist Vhe P^°(Xh) such that

M2AN Modélisation mathématique et Analyse numérique
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A HOMOGENIZATION RESULT FOR POLYGONAL NETWORKS 493

where the sum is taken over all those triangles that intersect the support of
\\f, and where | . |2 Tco dénotes the seminorm

II / v̂ > M r\ (a) il 2 x '
I u L t,\ = l Y II D K C l ) M II o ,

We shall not pro vide a proof of this estimate hère, rather we refer the
interested reader to [4]. Since W*1 is linear we also have

T<0
c i

and the desired resuit follows. D
As stated in Theorem 1 the limiting second order differential operator

and the subsequence along which the piecewise linear interpolants converge
to U° do not depend on the particular choice of minimal triangulations of
9lh. To establish this independence of the choice of triangulations we shall at
various places make use of the following two simple lemmata.

LEMMA 3 : Let %h and Hh be minimal triangulations of the regular
séquence of networks 91 h. Let Vh and Vh be continuous, piecewise linear
polynomials relative to Xh and Hh respectivefy. Assume that Vh(x) = Vh(x)
at ail vertices of SSlh. Then there exists a constant C, independent of h}

Vh and Vh such that

Proof : Consider a single polygon, <x>ki in the tiling corresponding to
$lk. Let Sh dénote a square with side length Ch containing o>/r Let

Vh- V\ in <ÛA

0, in SA\Û)A .

This function P^is in H{(Sh) and vanishes on the boundary of Sh. From the
rescaled version of Poincaré's inequality it follows that

Consequently

(14) \\Vh~Vh\\L^h^Ch\\V^-VX^y

Summation of the inequalities (14) over all polygons <ùh associated with
3lA leads to the desired estimate. D

vol. 25, n° 4, 1991



494 M. VOGELIUS

LEMMA 4 : Let Vh and Vh be as in Lemma 3. There exist positive constants
c, C such that

Proof : The proof of this follows immediately from the observation that
^A|lw^m a n d II ̂ "̂  II r̂ î ^̂  a r e both equivalent to the expression

M {il) II M H (11)

1/2

where V\ dénote the common values of Vh and Vh at the vertices of

Let %h be a séquence of minimal triangulations of the networks
91/,. An important ingrédient of the proof of Theorem 1 is the construction
of auxiliary mappings R^ : H~ l(n) - H^(n) and So : H' x(Ct) -+ (L2(O,))2.
Given any F e H~l(£l), RQ(F) is our candidate for the solution of the
boundary value problem

- V . (A VW) = F, in a , W - 0 on dfl,

involving the effective conductivity A. The vector field S0(F) is our
candidate for the flux associated with RQ(F), and the effective conductivity
A will therefore implicitly be defined by SQ(F) = A VR0(F).

Consider the problem

fïnd W*1 G P^°(Zh) such that
(16)

f A(Xh)VWhVVhdx= (F,Vh)

Define Rh(F) := H^. The mapping Rh : H' \£ï) -• /fô(fi) satisfies

Passing to a subsequence (which we for simplicity also index by h), we may
obtain that

Rh(F) -> RQ(F) weakly in
(17)

Sh(F) - A (2A) VRh(F) -+ S0(F) weakly in

M2AN Modélisation mathématique et Analyse numérique
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A HOMOGENIZATION RESULT FOR POLYGONAL NETWORKS 495

where the linear operators RQ and 50 satisfy

(18)

(in order to show that one may take the same subsequence for ail
F € H~ '(O) we first verify, by a diagonalization procedure, that (17) holds
for a dense, countable subset of H~ '(H) and then we apply a density
argument). Let Ph dénote the orthogonal projection ^
Pi I l 0 ( î* ) <= Hl

0(ü), then it is clear that

where P£ : H~ \ft) -> H~ x(ïl) is the dual of Ph. Due to the fact that the
matrices A(%h) are uniformly bounded away from 0 it follows from (16) and
(19) that

(20) \\PÏF\\H->m^CWR^FnHi(ny

By insertion of Vh = Rh(F) into (16) and use of (20) we now get

(21) \\PÏF\\2
ff_l(a)^C(F,

Since the triangulations ïh have meshsize approaching 0 it is well known
that

P% F ̂ F weakly in H" \ü) for any F e H~l(n) ;

because of (17), (21) and the weak lower semicontinuity of the norm it now
follows that

(22) \\F\\2
H-l(a)^C(F,R0(F)),

or

(23) | | /n |^, ( n )^

RQ is therefore an isomorphism H-l(ïl) -> R0(H~l(Cl))9 and the latter
space is a closed subspace of HQ(£1), due to (18) and (23). If G e H~ x(fï) is
such that G anihilates ^ ( / T *(£!)), then (G, R0(G)) = 0 and using (22)
we get that G = 0 ; it follows that R0(H~ l(Q,)) = ̂ ( O ) . We may therefore
conclude that

(24) RQ is an isomorphism from H~ x(Cl) onto HQ(CI) .

LEMMA 5 : The limiting operators R$ and So depend on the particular
subsequence of networks, 9t/z, which has been extracted, but they are
independent of the choice of minimal triangulations.

vol. 25, n° 4, 1991



496 M VOGELIUS

Proof : Let Xh and ik dénote two minimal triangulations of the network
$lh. If Vh is an element in Pn°(Xh), î.e. piecewise linear respective to the
triangulation Hh, then we let Vh dénote the element in P [ 1 ] '°(î / î) which
agrées with Vh at all the vertices. From the very définition of the matrices
A(Xh) and A(lh) we get

(25) = (A(Xh)VRh(F),VVh)dx
Jn

= (F, Vh), VVheP[l]'°(Xh).

Let Rh dénote the analog of the operator Rh, only corresponding to the

triangulation ï / r R/,(F) satisfies

(A(Zh)VRh(F),VVh)dx
a

= (F, Vh) VVh€Pn°(%h).

We thus have

(A(ïh)V(RjF)-Rh(F)),VVh)dx

= (F, Vh- Vh)

where we used Lemma 3 for the next to last estimate, and Lemma 4 for the
last estimate. Based on (26) we conclude that

(27) \\R^F) - Rh(F)\\Hlm ^ Ch \\F\\û{a)

By Lemma 3 and Lerama 4

(28)

M2AN Modélisation mathématique et Analyse numénque
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A combination of (27) and (28) yields

(29) \\Rh(F) - Rh(F)\\L2(iï) *= Ch \\F\\û{Çl).

We assume thaï %h form a bequciice fui which ^(Z7) —• RQ(F) weakîy in
HQ(£1). Through extraction of a subsequence from "th we may assume that

Rh(F)^R0(F) weakly in ifo(fl). F r o m (29) xt now follows that
RQ(F) = RQ(F) for any F e Z,2(fl). By continuity the same identity holds
for ail F e H~\CL). Since the limit is independent of the particular
subsequence of Xh it furthermore follows that Rh(F) converges to
RQ(F) along the entire séquence. This shows that RQ is independent of the
choice of minimal triangulations.

We now proceed to show that the limit Sö is also independent of the choice
of minimal triangulations. Our vérification of this fact furthermore pro vides
a construction of the desired limiting conductivity A. Let x> *1> G Co°(^)>
with x = 1 o n supp (i|/), and let xt, i = 1, 2 dénote the two coordinate
functions in R2. With fff = ̂ W ^ x W ^ ) ) , we evaluate

f
Jn

dx

(30) = [ (A(Xh)VRh(F),V(W?4>))dx

"f.
According to Lemma 2 there exist Vh E P§^(%h)9 such that

L
= £ (A (IA) V/2A(F), VF'1) ̂ x + O (A | | ^ ( ^ ) | | ^ ( a )

(31)
f

(A(%h) VRh(F), VVh)dx + O(h\\F\\H-x{ÇÏ)), and
Jn

V h converges towards \\f (x) xt weakly in HQ

For the dérivation of the last statement we use that x = l on supp (v(i). We
also have

f (A(Xh)VRh(F\VVh)dx= {F,Vh) .
Ja
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Use of this identity in connection with (31) now gives that

(32) f (ACXh)VRh(F)9V(WÏ *)) dx converges to (F, i|i (x) xt > .
Jn

A the same time

(A(Zh) VRh(F)9 Vi|/ ) W^dx converges to
Jn

(33)

f (Sö(F),^)x(x)xldx.
Ja

Combinmg (30), (32) and (33) with the fact that V . S0(F) = - F (and
intégration by parts) we conclude that

| (A (%h) VRh (F), VW*) y\f(x) dx converges to

(34)

f (S0(F),V(x(x)xl))tydx= f
Ja Ja

By interchanging the rôles played by Rh(F) and wf in the preceeding
argument we get

.Mi

(35) = f (A(ïh)VWÎ,V(Rh(F)*))dx
Jn

According to Lemma 2 there exist Vhe PJil]'0(Xk), such that

L
(36)

in

Pf, VVh)dx+ O(h\\F\\H-i,a))3 and
fi

converges towards R0(F) v|/ weakly in
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We also have

L
Use of this identity in connection with (36) uow gives that

(A (Zh) VWf, V (Rh(F) i|/)) dx converges to

(37)

At the same time

L (A (Zh) VW* V*|i ) Rh(F) dx converges to
Jn

(38)

ƒ. dx .

Combining (35), (37) and (38) with the fact that V. S0(R^ l(x(x) xt)) =
\ *I) (and intégration by parts) we conclude that

L (A(Zh) VRh(F), VW,) ty(x) dx converges to

(39)

Jn

Given <o <=̂  XI select x ^ C^{Ct) so that x = 1 ^ a neighborhood of
ö) and defme a matrix values function by

(40) row ioïA = S0(R^ l(x(*) xj) in a> .

It is not difficult to see that A \ w is independent of the particular choice of x5

and therefore (40) provides a well defined A (on all of Q), see [16, 17], The
matrix A can easily be shown to be symmetrie, uniformly positive defïnite
and uniformly bounded in IL Due to (34) and (39)

S0(F) = A VR0(F) in <o ,

and since w e e d may be selected arbitrarily it foliows that SQ(F) =
A VR0(F) in O. For any F s H~\ft) we therefore have

S0(F) = A VR0(F) and
(41)

V . (A VRQ(F)) = - F in Ct, R Q(F) = 0 on 8X1 .
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If we had made a different choice of minimal triangulations ï / p then after

possibly extracting a subsequence we would obtain limit s Ro = Ro and

So and a matrix valued function Â such that for any F e H~l(ü.)

S0(F) = Â VR0(F) and
(42)

V . (Â VR0(F)) = - F in Q,, i? 0(F) = 0 on 3« .

Since Ro maps onto all of HQ(CL) it follows directly from (41) and (42) that

(43) I (AVV9\nV)dx= f (ÂVV,VW)dx VF, We ^ ( H ) .

Select complex V of the form fy(x) e^ + l^x^ and complex W of the form
I|I(JC) c<-« + «.*>, with «|f G Co^CO) and {, ^ e R2. Then

VF = (£ ' Ê ) tt )

so that

(44) (AVV,VW) = -ù(x)2e2i^xXA(x)t,O±O(m) as |£ | ->oo,

and

(45) (ÂVV9VW) = -*(x)2e2i&x\Â{x)ttl) + O(\t\) a s | [ | - > o o .

By insertion of (44) and (45) into (43), division by | Ç | 2 and passage to the
limit in | £ | (for a fîxed direction e = Ç/1 £ | ) we get

J
It now follows, through inversion of the Fourier transform, that

(A(x)e9 e)ty(x)2 = (A(x) e, e) i(i(x)2 Vi[> e C0
co(n), eeU2

Therefore Â = A and S0(F) = Â VR0(F) = A VR0(F) = S0(F). Since the

limit So is independent of the particular subsequence it furthermore follows

that A{?Lh)VRh{F) converges towards S0(F) along the entire séquence

%h\ This complètes the proof of Lemma 5. D
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2.1. Remark

There is a certain arbitrariness in the way the matrices A(%h) are
constructed. By a slight extension of the proof of Lemrna 5 It follows that
RQ and 5*0 are also independent of the particular choice of (cancelling)
conductances corresponding to edges which are in %h but not in
Sflh. It is furthermore of no conséquence for the limiting operators
RQ and So, whether we distribute the conductances, corresponding to edges
in 9tAs equally on neighboring triangles or in some other ratio.

For later use it shall be convenient to have the following lemma :

LEMMA 6 : Let 9lh be a subsequence of networks for which the limit s in
(17) are attained. Let Zh be a minimal triangulation of 9lH, and let
\\f be in C0°°(n). Then

i (A(Zh) VRh(F), VRh(G)) t|/ dx converges to

for any F, G e H

Proof: The proof follows the exact same lines as were used to dérive (34)
(or (39)) ; it shall for reasons of brevity not be given here. •

We are now in a position to give a proof of Theorem 1.

Proof: Since the boundary value 4> is in Hl^2 + E(dül) there exists
WeHl + \n) such that FF|an = <|> and || W\\ffi + t ^ C ||<|>||ffi/2 + . ([1, 11]).
Let Jf^£ P[l]>°(Xh) dénote the piecewise linear interpolant of W. Then

(46) *P*(**o) = <f> (^jt0)
 a t a11 vertices of % h on

The function C/J = Uh - Wh satisfies

^ E ? ^ ° ( I A ) , and

f A(Xh)VU*VVhdx = - \ A(Zh)VWhVVhdx
Ja Ja
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Therefore || U? || H, ̂  C || W* \\ RX ̂  C ' || 4> || H,/2 + Ë, and consequently

By extraction of a subsequence we may obtain that

Uh -> C/°weakly in //^(ft), and
^ ( Ï A ) VUh -+ Ç° weakly in 2

Hère we are relying on a similar diagonalization procedure, and density
argument as that which was used to dérive (17). One may also show that
C/° and £° are independent of the choice of minimal triangulations and the
particular conductance assignaient strategy. We shall not give the proof of
that hère (since it is nearly identical to the proof of Lemma 5) ; we only
briefly outline the steps that lead to an équation for U°. Let \,
\\f G Co°(fî)5 with x = 1 o n supp (^). Let xl3 i — 1, 2 dénote the two
coordinate functions in M2 and define W^ = Rh(R^^(x(x) xt)). Performing
the same calculations as in (30)-(34) we get

(47) f (A(Zh) VU\^Rh(l^\x{x)xl)))^dxconverges to f (to)ttydx.
Jn Jn

Interchanging the rôles pîayed by Uh and Rh(R$ i\x{x)xl)) and performing
the same calcuîations as in (35)-(39) we get

I {A (Zh) VU\ VRh(Rô l(x(x) xt))) * dx converges to
(48) J n

L
Let A dénote the matrix valued function defined by (40). The statements
(47) and (48) show that g0 = A VC/° in ft, and therefore

V. (A VU0) = V.£° = 0 i n H .

Since Uh\m = Wh\m^^ in L2(bfl) it follows that

u° - <t> on a n .
This vérifies the fîrst part of Theorem 1, except for the inequalities
C7min ̂  A ^ C7max. These inequalities follow immediately from the inequali-
ties in Lemma 7 in combination with (13). Instead of providing a proof of
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these inequalities hère, we refer the reader to the proof of Lemma 7 m the
followmg section We now turn to the proof of the second statement about
convergence of the local power dissipation

Given any positive e, we can flnd smooth subdomains to' and to" with
co <=ci co czci co tor which

f (A VU0, VU°)dx-z/2< f (AVU°,VU°)dx

r
(49) ^ (AVU0,VU°)dx

J Où

(A VU0, VU°)dx + z/2

Select 0 s= i|; «s 1 and 0 ̂  i);' ̂  1 in C^(n), such that

co' <= a {x . \\t' = 1} c supp (i)>') cr <= co and ,
(50)

w c c {x i(;=l}cz SUpp (i|/) c c= co"

From (49) and (50) ît follows ïmmediately that

(A VU0, VU0) dx - e/2 < (A VU0, VU0) v|/' dx

(51) ^ f (^ VC/°, VU°)tydx

{AVU°,VU°)dx+ s/2

Let coA be the union of ail those polygons, associated with Sflh, whose closure
lie stnctly inside o> and let (ùh dénote the union of all those polygons,
associated with Sfih, whose closure intersect co Usmg (50) we get

J, {A VU\ VUh)*\ff dx
n

J Q}

(A VUH, VUh) dx

(52)

{A VUh, VUh) dxL
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for h suffïciently small. Performing calculations similar to those in (30)-(34)
(or (35)-(39)) it is not difficult to see that

(A VC/°, Vt/°)i|i' Jx and
Ja Ja

(53)

r - r
(A VU\ VUh)ty' dx^

Ja Ja
r - r

(A VU\ VUh) i|> dx -> (AVU°,VU°)tydx.
Ja Ja

Combining (53) with (52) and (51) we conclude that

r - r

(A VU0, VU0) dx - e/2 < (^ V£/*, VÏ7A) dx

(54) ^ | (AVU\VUh)dx

< f U V£/°, Vt/°) Jx + e/2 ,

for h suffïciently small. Since s is arbitrary and since

f (AVUh,VUk)dx** % yltiU^-UÏf^ i (AVU\VUh)dx,
J wft xk, X / Ë W ^ ùh

it follows immediately from (54) that the local power dissipation

1 v

2 S ï

converges to

1 1 /A J-!TjO
i I (AVU°,VU°)dx

along the subsequence 9lh, This complètes the proof of Theorem 1. D

2.2. Remark

As mentioned earlier, network geometries containing Wheatstone bridges
are not covered by our convergence analysis. Consider the single
Wheatstone bridge shown in figure 6a, with associated edge conductances
ytJ. The condition

(55) min {712 734> 723 7u} & 7n 724
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is necessary and suffîcient in order that it be possible to replace the
Wheatstone bridge by a configuration, as shown in figure 6b, without
changing the voltages at any of the nodes in the original network (including
nodes xx through x4). New conductances for the edges of the graph shown in
figure bb are found by inversion of the so-called star-mesh transformation
[7]. These conductances are not unique. The condition (55) expresses the
fact, that the présence of diagonal edges has not changed the direction of
current flow along any of the edges on the boundary of the Wheatstone
bridge [9]. The configuration shown in figure 6b is included in our analysis,
and consequently so are Wheatstone bridges for which the edge conduct-
ances satisfy (55).

x2

Figure 6a. Figure 6b.

Consider a rectangular array of Wheatstone bridges. If all the Wheatstone
bridges have horizontal and vertical edges of zero conductance (meaning
these edges are really not part of the network), then we have in effect two
disconnected networks, as shown in figure 7.

Figure 7.

If all the edges indicated by solid lines are assigned one conductance and
all the edges indicated by dashed lines are assigned another conductance,
then it is fairly obvious that a convergence resuit, such as that in Theorem 1
(with an appropriate interpolation) is no longer valid. It is not clear what
happens if ail edges in the Wheatstone bridges are required to have positive
conductance, but one might speculate that if the horizontal and vertical
conductances are suffîciently small (so that (55) is violated) then there will
in gênerai not be a limit, that can be characterized via a continuous
conductance équation.
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2.3. Remark

We chose hère to perform the analysis within the framework of so-called
homogenization convergence. Very related techniques are associated with
the names of G- (and F-) convergence [5, 6], Once the problem has been
cast in a variational form, we could also have performed our analysis using
these techniques. The method of F-convergence has recently been used to
find effective limits of periodically reinforced structures [2, 3]. These
structures are not discrete, rather they are modelled by continuous
équations, incîuding thin, web-like areas of extreme strength (conductance).
The analysis is therefore entirely one of continuous problems. Ho wever, as
far as effective limits are concerned, one would intuitively expect that these
structures are quite related to geometrically penodic (discrete) networks
with edges of constant conductance per unit length.

3. TWO SIMPLE EVEQUALITIES FOR A

To provide some characterization of the possible effective matrices A,
that can be attained, we prove two inequalities. The proof is extremely
simple, and no different from that found in [17].

LEMMA 7 : Let (Xh be minimal triangulations corresponding to the
subsequence 5R/, from Theorem 1, and let A dénote the limit whose existence
is guaranteed by Theorem 1. If A+ is a weak* limit of a subsequence of
A(%h) in L^i^Vl), and if (A~)~l is a weak* limit of a subsequence of
(A(ïh))-

1 in Z,°°(n), then

A~ ^A^A* a.e. in Q .

Proof: T a k e x> ̂  e C^(Ct) wi th x ^ l on supp (v|i), a n d consider the
express ion

(56) [ (A(Xh) V[Rh(F) - R0(F)],V[Rh(F) - R0(F)]) * dx

with F G H' l(Q). Due to (17), (41) and Lemma 6 this expression converges
to

I
J fi

along the subsequence, which corresponds to the weak* limit A +. Since the
expression (56) is non-negative it follows that

(57) (A VR0(F), VR0(F)) * dx « (A + VR0(F), VR0(F)) ty dx .
Ja
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Insertion of F = £ r\t RQ * ( X W xt) into (57) gives that

( ) , )) \\} dx
J si J o

for any I|/Ê C£°(n). This immediately proves the second inequality of this
lemma.

The first inequality of this lemma may be derived in a similar fashion,
based on analysis of the limit of the expression

dx. D

In the following section we shall use Lemma 7 to partially characterize the
set of all possible effective matrices, A, which correspond to locally
equilateral, triangular networks with (interior) conductances ranging be-
tween 2 \x and 2 7.

4. A CALCULATION RELATED TO EQUILATERAL, TRIANGULAR NETWORKS

Consider a single triangle as shown in figure 4. The edge ej has
conductance yj. Piek a coordinate system which has origin at J^, x-axis
parallel to eu y-axis parallel to e^9 and such that the triangle lies in the first
two quadrants. A simple computation gives that the matrix

has the formula

\ex |
2 / (7 i + 7 3 ) + (72 + 7 3 ) ^ 2 c o s 2 0 -

T | T | \ (72 + 73) r2cos 0 sin 9 - 73 r sin 0

(72 + 73) f*2 cos 0 sin 0 - 73 r sin 0

(72 + 73) r2 sin2 0

l
with r= \e2\/\ex\

 a n ( i ITI = ~ \e\ \\ei\ s m ö. Let \ l ^ \ 2 déno te the

eigenvalues of A7 ; they satisfy

2
( (7i + 73) - + (72 + 73) r - 2 73 cos 0 j and ,+ X2 = - Asin 0

. X2 = 4(7! 72 + 7i 73 + 72 73) •
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We now specialize to the case of an equilateral triangle : \ex\ = \e2\ = h,
and 0 = TT/3, and proceed to characterize the set of all possible matrices
AT. The équations above simplify to

\x + X2 = 4(7! + y2 + 73)/ x/3 and ,
(58)

\ t . X2 = 4(7, 72 + 7i 73 + 72 73) •

We assume that the edge conductances for a single triangle, yj9 j = 1, 2, 3,
satisfy

0 < M, «s -y,- «s 7 .

In terms of an entire network this situation corresponds to equipartition of
the edge conductances in the network onto neighborin^ triangles, with the
original network conductances of interior edges lying between 2 fx and 2 7
(and conductances of boundary edges lying between /x and 7). If two of the
conductances, yJy are in the set {|x, 7} then there are, as far as eigenvalues
of AT are concerned, three possible cases :

(i)

(ii)

(iii)

In case (i) the solution to (58) is X, = 2 ( ^ + 2 73)/ \ / 3 , \2 = 2 V3 jx. This is
the dashed horizontal linesegment shown in figure 8.

ïn case (iii) the solution to (58) is K{ = 2 \/3 7, X2 = 2(7 + 2 73)/ \/ï. This
corresponds to the dashed vertical linesegment shown in figure 8.

Consider now case (ii). Through multiplication of the first équation in
(58) by V3(7 t + 72) and subtraction from the second équation we get

(X, - x/3(7i + 72))(^2 - \/3(7i + 72)) = - (7i - 72)
2 •

By inserting yx = (x, 72 = 7 and rearranging we get that Xt and X2 are related
by

7 i

7 i

7 i

- m
= V,

= 7,

72

7 2

7?

- ^ :

= 7,

= 7,

» V ^ 7 3 :

^ 7 3 =

^ 7 3 -

^ 7 :

s 7,

= 7-

or

This curve, which is a pièce of a hyperbola, connects the point P —
(2(^ + 2 7 ) /V3,2 V 3 ^ ) to Ô = ( 2 N ^ 7 , 2(7 + 2^) /V3) . AS 73 de-
creases from 7 to |x the point (Xl3 X2) runs from Q to P, This curve is also
shown (dashed) in figure 8.
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If none, or at most one, of the 7y are in the set {jx, 7 } , then we may
without loss of generality assume that |x = 7 Î < 72 =s 73 <: 7, I X < = 7 I ^

72 <: 73 = 7 or |x < 7! =s= 72 =s= 73 <: 7. Consider the first possibility. Defîne a
parametrized family of conductivities 7,0?) by

•YiCO = 7i( = M*), 7 2 O) = 7 2 - J » 7 3 O) = 73 + s ,

for 0 =s s =s min {72 - m 7 — 7 3} (such that |x ^ 7/(s) =s 7)- Let X^s)
dénote the corresponding eigenvalues. Then

Xi(s) + X 2 ( J ) = 4 (7 i + 72 + 73)/ \ /3 and ,
(59)

kx(s) . \ 2 ( j ) = 4CYJ 72 + 7i 73 + (72 ~ -s)(73 + *)) •

By differentiation of (59) with respect to s we get

(X,)' 0O+(X 2 ) ' ( s )=O and,
(60) (X0' (J) X2(j) + Xt(^)(X2)' (s) = 72 - 73 - 2 5 < 0 ,

for 0 < s < min {72 - |x, 7 - 73} ,

and therefore

(61) [X,(s)-X2(s)](X2)' ( j ) < 0 for 0 < ^ < m i n { 7 , - ^ 7 - 7 3 } .

Since XJ(J) => X2('
y) it follows immediately from (60) and (61) that

(62) (X2)' (s) < 0, and (X^' (^) = - (X2)' (s) > 0
for 0 <: ,s < min {72 — |x, 7 — 7 3} .

When s reaches the value smax = min { 7 2 - ^ , 7 - 7 3 } then the correspond-
ing point (X^Sjnax), X2(1smax)) lies on one of the dashed curves in figure 8.
From (62) it follows immediately that the points (X^s), X2(s)), 0 =s= s < smax

lie above and to the left of the point (X^s^J , X2(^max)). We therefore
conclude that the point (Xl5 X2) = (Xj(O), X2(0)), which corresponds to
|x = 7! <: 72 =s 7i_<: 7 u e s in the shaded area of figure 8 (or on the
linesegment 2 V3 (x <: Xj = X2 <: 2 V3 7). A similar argument shows that
the points (Xb X2), which corresponds to |x < y} === 72 < 73 = 7 or (x < yx ^
72 ̂  73 < 7 u e in the shaded area of figure 8 (or on the linesegment
2 \/3 |JL < X] = X2 < 2 \/3 7). Ail sets of eigenvalues corresponding to the
linesegment X! = X2 between the points (2 y/ï |x, 2 \ /3 JUL) and
(2 \/3 7, 2 \/3 7) are most easily attained by choosing 7j = 72 = 73 and
letting this common value range between jx and 7. It is also fairly easy to
show that, given any point in the shaded area of figure 8, it is possible to
pick conductance values |x ^ 7y- =s= 7, so that this point corresponds to the
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eigenvalues of the matrix AT. Through rotation of the triangle T we may
orient the orthogonal set of eigenvectors in any direction we désire. In
summary, the set of all possible matrices AT consists exactly of those
symmetrie matrices whose eigenvalues Xj =s X2

 a r e m the set indicated in
figure 8.

Figure 8.

For a given set of conductances |x === yj ^ 7, consider the cell £, shown in
figure 9a. It is not difficult to see that (with equipartition of the conductances
onto neighboring triangles) A(%) is constantly equal to A7o, where
ATQ is the matrix corresponding to the single triangle shown in figure 9b (see
(10) for the définition of A{%)). By building a network from.copies of the
cell shown in figure 9a (doubling the conductances of shared edges), we see
that any symmetrie matrix whose eigenvalues lie in the set indicated in
figure 8 corresponds to an equilateral, triangular network with internai
conductances between 2 jx and 2 y (and boundary conductances between JJL
and 7).

/

\
27i

V

7i

V 272

À
Af2

A
271

\ 7 3

\

/

/l2

7 I

Figure 9a.

7i

Figure 9b.

Let A dénote the effective matrix (valued function) constructed in the
proof of Theorem 1. We shall dérive a partial characterization of the
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constant effective conductances A arising from (globally) equilateral,
triangular networks (treating Ci as if it has no boundary !). If we only require
that our triangulations be locally equilateral, than it is intuitively clear that
this partial characterization leads to an almost everywhere, partial charac-
tciiZtttiöii of vâiiâulc effective cuiiducidiiccts. Lci ^4(2^) bc a bcquence of
matrices for which Uh converges to U° in the sensé of Theorem 1. By
extraction of a subsequence, if necessary, we may assume that

A+ =limA(Xk), {A-y1 =limA(Zh)-
1

exist as weak* limits in L00. According to Lemma 7 we now have

(63) A~ ^A^A+ a.e. .

Let X* s= X2 dénote the eigenvalues of A (%h). From (63) we immediately get
the bounds

(64) X" ̂ A^\ + a.e. ,

where X+ is the weak* limit of X* and (X~)~l is the weak* limit of
^ 1 . The hyperbola

(65)

goes through the points P and Q, only it is convex, not concave as the
hyperbola in figure 8. That pièce of the hyperbola from (65), which lies
between P and Q is shown in figure 10.

The eigenvalues X̂  === X2 of A(%h) (with equipartition) satisfy the
inequality constraints corresponding to (the closure of) the shaded set in
figure 8. Consequently they also satisfy the weaker constraints

X2 2= 2 V3 |x , X 1 === 2 v 3 7 and ,

Since the expression on the left hand side of the last inequahty is linear in
X̂  and (X^)~1 it follows that the weak* limits X+ and X" continue to satisfy

X

almost everywhere .
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Figure 10.

From the inequality (64) it now follows that

The eigenvalues X x s= \ 2 of A satisfy

\2 s= 2 V3 |JL , X ! =s 2 v 3 7 and ,

i.e., 4̂ has eigenvalues lying in (the closure of) the shaded set indicated in
figure 10. In summary : the constant effective conductances associated with
equilateral, triangular networks with infinitessimal edge length and with
(interior) edge conductances between 2 |x and 2 y are among those
symmetrie matrices whose eigenvalues lie in the set indicated in figure 10,
and any symmetrie matrix whose eigenvalues lie in the set indicated in
figure 8 may be attained as the effective conductance of such an infinitessi-
mal, equilateral, triangular network.

Eigenvalues on the hyperbola in figure 10 may be attained by means of
layering of networks which attain P {cf. fig. 9a) with 90 degree rotâtes of
networks which attain Q {cf. fig. 9a). Unfortunately such layering does not
preserve the equilateral, triangular structure of the network. It is unclear
whether all the points in the set indicated in figure 10 may be attained as
eigenvalues for effective conductances of equilateral, triangular networks.

4.1. Remark

It is possible to perforai similar calculations for networks consisting of
identical rectangles, or for networks that are made up of identical rectangles
ail with the same diagonal edge added, but these shall not be presented
hère. As seen from the example above the G-closure is in gênerai a fairly
large set. It should be interesting to examine examples in which there is a
very restricted set of attainable limits. Such examples would necessarily
corne about through restrictions on the microstructure of the network (e.g.
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through assumptions about periodicity or in the random case, stationarity).
The simplest of such cases, corresponding to a network of squares with two
possible edge conductances was analysed in [13], based on techniques
developed in [19]. For certain applications it should also be interesting to
understand exactly what réside Lions iead to isotropic îimits.
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