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Abstract — We study the relation between planar electrical networks and continuous
conductance wmodels Our main theorem 1s a homogenization result for networks with
mfinitessimal edge length and rapidly varying resistor values We prove that any effective limit
will always correspond to a second order equation of the formV . (AVu) = 0 In the last section
we partially characterize the possible symmetric matrices, that can occur as effective limits of
equilateral triangular networks

Résume — On étudie la relation entre des réseaux electriques plans et des modéles a
conductance continue Le principal theoréme est un résultat d’homogénéisation pour des réseaux
a mailles infimitésimales et dont les valeurs des résistances varient trés rapidement Nous
montrons que toute lmute effective correspond a une équation du second degré de la forme
V.(AVu) =0 Dans la dermiére partie, nous caractérisons partiellement parmi les matrices
symetriques, celles qui sont himites effectives de réseaux composes de triangles équilatéraux

0. INTRODUCTION

In this paper we study the relationship between planar electrical networks
and the boundary value problem

1) V.(AVu)=0inQ, u=¢ondQ.

We prove that equations of the form (1) for an appropriate class of matrices
A describe all possible weak limits of the voltage potentials corresponding to
a sequence of networks with decreasing edge lengths and no interior sources
or sinks. This result 1s a network analogue of homogenization convergence
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484 M. VOGELIUS

results by F. Murat and L. Tartar for second order elliptic boundary value
problems (c¢f. [16, 17]). Networks may naturally be viewed as tools to
calculate approximate solutions to second order elliptic boundary value
problems with smoothly varying (or constant) coefficients (see for instance
[7, 8, 10]). If the strength of the resistors in the network are permitted to
vary rapidly then the network contains two natural length scales : the edge
length (the discretization parameter) and the length scale of variation of the
resistors. The result in this paper shows that asymptotically, as far as the
structure of the limiting equations are concerned, the discreteness introduces
no new phenomena. Subsequences of solutions to continuous conductance
equations with rapidly varying coefficients converge weakly to solutions of
« new », homogenized conductance equations, and so do subsequences of
network voltages corresponding to rapidly varying resistor strength, as the
edge length approaches zero. The situation is quite different when it comes
to characterize the exact set of matrices A4, that can arise in (1). The set of
matrices that can appear in (1) when passing to the limit along sequences of
solutions to the continuous conductance equations is frequently referred to
as the G-closure of the admissible set of matrices for the original
conductance equations. This G-closure has been determined in a number of
interesting cases (see for example [14, 17]). In the last section of this paper
we present one simple calculation related to the « G-closure » of locally
equilateral, triangular networks with infinitessimal edge length and conduct-
ances lying between vy, = 2 p and y,,,, = 2 v. The « G-closure » appears to
be different from any set one could predict based entirely on the continuous
theory. For the mixture of two components of continuous media there is a
natural notion of volume fraction and this leads to the much more
informative (but still, geometry independent) Hashin-Shirikman bounds
[15, 17, 21]. For networks it is not in general clear how to define a limiting
notion of volume fraction as the edge length approaches zero and so it is not
obvious what corresponds to the Hashin-Shtrikman bounds. Several authors
have derived selfconsistent effective medium theories for discrete networks
with finite edge length (¢f. [12, 20]). In cases (of simple geometry) where
there is a natural notion of volume fraction, it has been noted that the
discrete effective media theories may fall outside the corresponding Hashin-
Shtrikman bounds [12]. This is not surprising, and a similar observation is in
some sense confirmed (for networks with infinitessimal edge length) by the
calculation in Section 4 of the present paper.

We now proceed with a description of the assumptions concerning the
discrete network models. Let ) be a bounded polygon in R? and let
{w®} be a convex polygonal tiling of Q. By this we mean that

(2.a) each o is a convex polygon,

2b) o Ne =@ fori£j, and

20 O =Uaw®.
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A HOMOGENIZATION RESULT FOR POLYGONAL NETWORKS 485

The vertices and the edges of 3w form a planar, polygonal network
spanning () ; it is exactly networks N that arise in this way which we shall
study in this paper. We refer to {»)} as the polygonal tiling associated with
9. Note that all edges of our networks are linesegments and note that
different edges of M only meet at a vertices of M. A pattern, such as the
Wheatstone bridge, schematically shown in figure 1, can therefore not be
part of our networks.

Figure 1.

We denote the vertices of 9t by {x;}. If the network I contains an edge
joining x, to x; then we denote this edge by e, ;. The conductance (the
reciprocal resistance) of the edge e, ; is denoted by v, ;. If there is no edge
e, in 9t then the corresponding conductance v, ; vanishes. Let U, denote
the voltage potential at the vertex x;. Kirchhoff’s laws of electrical
conductance in the network M (given a boundary voltage potential ¢) assert
that {U,} minimize the energy expression

©) 2 Y Ve (U= U
k1

subject to the boundary conditions
@ Uy, = bx, at any vertex of R lying on 802 .

Associated to any network is a maximal edge length A=
max {|e; | :e,,; € M}. In the remainder of this paper, whenever we write
MN,, the subscript & refers to the maximal edge length of the network.
We call a sequence of planar, polygonal networks M, regular, provided
(5.a) cyh < |eg | <Coh for any e, € My,
(5.b) No vertex of a polygon associated with 9, lies in the interior of an
edge of another,
(5.¢) all interior angles of the polygons associated with 9%, satisfy :

O<dy<b<m-—-d,.

The constants Cj, 0 < ¢, and d, are independent of 2. We note that the
upper bound on the angles in the condition (5.¢) in itself implies that all the

vol. 25, n’ 4, 1991



486 M. VOGELIUS

polygons w{) must be convex ; the conditions (5.a) and (5.c) imply that the
maximal number of edges in any of these polygons is bounded independently
of A (and i).

We assume that the conductances yz, ; satisfy

h
0< Ymun =< Yk, ! = Ymax

1
=+

with v, and vy, independent of A4, k and /. Given & =0, H 2 (3Q)

denotes the set of functions that are continuous on 3{} and furthermore are

S+€
in the classical Sobolev space H? (/) for any linesegment / contained in
3. The boundary conditions ¢ are assumed to be of the form

(©) br, = & (xy)

1

=+¢
for some function ¢ in H2 (3Q). Most importantly we assume that the
maximal edge length of M, converges to 0, i.e.,

h =max {|e,;|:e,€N,} -0.

In order to formulate the main theorem of this paper it is necessary to
discuss in some more detail possible interpolations of the discrete voltage
potentials U,. Let T¢) be a triangulation of o) in which each triangie has at
least one entire edge in common with 30 and such that all vertices of
T @ are vertices of dw). Let T = U T be the associated triangulation of
the domain (2. We shall denote a triangulation I, which arises in this way a
minimal triangulation of the network . To illustrate this concept consider
the hexagon shown in figure 2. The triangulation in figure 2a is admissible
according to our definition of minimal triangulation, whereas the triangu-
lations shown in figure 2b and 2¢ are not (in 2b the center triangle has no
edges in common with the hexagon, in 2¢ the center vertex is not a vertex of
the hexagon).

Figure 2a. Figure 2b. Figure 2c.
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A HOMOGENIZATION RESULT FOR POLYGONAL NETWORKS 487

Given a regular sequence of planar, polygonal networks M, it is possible
to find a quasiuniform sequence of minimal triangulations X, of 9,. By
quasiuniform we mean that there exist constants ¢ and C such that

(7) each triangle 7€ ¥, has an inscribed circle of radius ch, and a
circumscribed circle of radius Ch.

To verify this consider any polygon (" € 9, and select a fixed vertex,
Xy, on the boundary of wf). Connect this fixed vertex by straight lines to all
other vertices of w}). This construction is illustrated in figure 3.

Zo

Figure 3.

Since w{') is convex one obtains a triangulation T§ of w{". The union
I, = U I is a minimal triangulation of M,. Due to the conditions (5a)-
(5¢) (and the fact that the maximal number of edges in any of the polygons
o is bounded independently of #) it follows that this sequence of
triangulations ¥, is quasiuniform. We want to emphasize that the particular
construction method outlined above is not the only method to produce a
minimal triangulation of M, (¢f. fig. 2a). It is, however, very easy to see that
any minimal triangulation of M, is quasiuniform due to the conditions (5a)-

(5¢).

THEOREM 1 : Let M, be a regular sequence of planar, polygonal networks,
spanning ) and with maximal edge length approaching zero. Let {U,'('}
denote the minimizer of (3) subject to the boundary conditions (4), (6). There
exists a subsequence, for simplicity also denoted by M,, and a measurable,
matrix valued function A, 1A (x) is symmetric, 0 < Yy < A (X) = CYnax

L
such that : for any e H?* (3Q) and any sequence of minimal triangu-
lations X, of the subsequence M,, the piecewise linear interpolants,
U", of the discrete voltages {U}}, satisfy

U" converges weakly in H '(Q) towards U°,

vol 25, n’ 4, 1991



488 M VOGELIUS
where U° denotes the solution to the elliptic boundary value problem
V.(AVUY=0inQ, U=¢donad.

Furthermore if o is a smooth subdomain —c Q, then the local power
dissipation in the network
1
5 Y va(UE=Uhy (M)

Xfes X € @

converges (o

% J A4vUu®, vu° dx,

along the subsequence WM,. The constants ¢ and C depend on ¢,
C, and d,, but are otherwise independent of the subsequence W,,.

1. PRELIMINARIES

Part of the difficulty in formulating Theorem 1 is the need to interpolate
the discrete voltage potentials. If the original networks M, are themselves
triangulations then it is not very difficult to rewrite the energy expression (3)
as a integral over Q. If the edge e, ; is common to the triangles 7 and
7' then we assign half of the conductance v, ; to v the other half to
7'. For an edge on the boundary of ) we assign the entire conductance to
the single triangle to which this edge belongs. Consider now a single
triangie, 7, as shown in figure 4, with vertices x;, x, and x; and edges given
by the vectors e, ¢, and e;. The corresponding assigned conductances are
denoted v,, v, and v;. The expression

1
) (Vi (Uy = Up)? + v2(Uy = Us)* + v3(Us — Uy)?)
may be written

L[
5 ) (A, VU, VU) dx .

where U is the linear interpolant of {U,} and A4, is the symmetric positive
definite matrix

3
T,
®) A, = Ze]'yjej/|'r|.
=1
() What we mean by this notation 1s a sum over those edges whose endpoints
x, and x; he in w Each edge 1s therefore represented only once 1n the sum

M?AN Modéhsation mathématique et Analyse numérique
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T3

€2
€3

pal \.

€

1

Figure 4.

With the above assignment strategy it is not difficult to see that
Cymn = AT = C'ymax k4

where the constants ¢ and C depend on the constants from the conditions
(5a) and (5¢).

The entire minimization problem may now be formulated in terms of an
integral over (). We seek the minimizer of

©) ' %L (A(Z,) VU, VU dx

in the set of continuous piecewise linear functions relative to the triangu-
lation I,(= N,), subject to the following boundary condition

U(x,) = ¢(x,) at any vertex of I, lying on 8Q2 .
The matrix valued function 4(Z,) is defined by
(10) AEZ ) x)=A4, xer, 7€T,.

In the following PU+%(T,) denotes the set of continuous piecewise linear
functions relative to ¥, and PF°(T,) denote those functions of
PUL0(T, ) that vanish on 8. Taking first variations of the expression (9) we
seek the minimizer U” as the solution to

U'e PUO(T,)
(11) ’ J (A VULV dx =0 YV'ie P(T))
QO

U"(x,) = &(x,) at any vertex of T, lying on 30 .

If the original networks 9, are not triangulations then there are edges in
minimal triangulations I, that are not part of M,. Let ¢, be an edge of
I, which is not contained in M, and let this edge be common to the two
triangles 7 and 7’. We assign the energy contribution — y*(U, — U,)* to r

vol. 25, n° 4, 1991



490 M. VOGELIUS

and the contribution y* (U, — U;)* to =’ or vice versa, such as to make these
contributions cancel when summation is performed over all triangles. It is
possible to select the signs so that any triangle of the minimal triangulation
T, has at most one of its edges contributing a negative term. To see this it
suffices to consider a single polygon o) (not a triangle) associated with
M,. Let n denote the number of vertices of dw'” and let m denote the
number of triangles of T that have 2 edges in common with d0). A

simple counting argument gives that T must have exactly 2 n — % m edges,

n—m triangles and n vertices. According to Euler’s formula we get
n—-—m)+n-— (2n - %m) = 1, from which we deduce that m must be 2.

Pick one of the two triangles that has two edges in common with
dw( and assign it the number 1, it has exactly one neighboring triangle (one
with which it shares an edge), assign that triangle the number 2. Either
triangle number 2 coincides with the second triangle that shares two edges
with 3w® (and we terminate) or else it has exactly one neighboring triangle
that has not yet been numbered, in the latter case we assign that triangle the
number 3. We proceed this way till we reach the second triangle that shares
two edges with 3w"). Upon termination we have obtained a numbering of all
the triangles in T with the property that triangle T, has one edge in
common with triangle 7,,;. This enumeration strategy is illustrated in
figure 5, using the two triangulations from figure 2a and figure 3 respec-
tively. If e is the common edge between triangle 7, and triangle
T, .1, then we assign the negative energy coniribution to triangic 7, the
positive contribution to triangle 7, , ;. In this way no triangle has more than
one side representing a negative conductance.

A7

Figure 5a. Figure 5b.

We now get the formula

1
3 Y (U = U)

ep €Ny

Y Y (U - U))

ek‘[EIh

Il

O] —

N} =

j (4(Z,) VU, VU) dx
Q

M2AN Modélisation mathématique et Analyse numérique
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A HOMOGENIZATION RESULT FOR POLYGONAL NETWORKS 491

where the matrix valued function, 4 (Z,), as before is given by the formulas
(8) and (10). In contrast to before one of the v,’s in (8) may now be negative.
We observe that

LEMMA 1 : If v, and ~, ave positive numbers and v, is of arbitrary sign then
[F vy Y

3
the symmetric matrix A.= Y e, el/|t| is positive definite iff
7=1

Y1 Y2
<
Y1+ Y2

Proof : We use the notation shown in figure 4 and pick a coordinate
system which has origin at X, x-axis parallel to e,, y-axis parallel to
ei, and such that 7 lies in the first two quadrants. The angle 6 denotes the
angle between e; and e,. A simple computation now gives that

3
ZejyjejT= |e1|2 X

j=1

(Y1 +7v3) + (V2 + v3) r?cos?’ 0 — 2 y;rcos ©
(Y2 + v3) r’cos Osin @ — y, rsin 0

(v2+7v3) r2cos 0 sin 6 — Y37 sin 0
(v, + v3) r2sin? 0

with r = |e;|/|e;|. Computing the determinant of this matrix we get

3
det ( Z e, eJT)
J=1

= [(vi + v3)(v2 + ¥3) — ¥3l|e1|” | e,|* sin? 0
=4[(vi + v3)(v2 + v3) = ¥3] |7|?.

3
The matrix z e, eJT/l'rl is therefore positive definite iff v, + y3 = 0 and
J=1

(Y1 + v3)(v2 + ¥3) — ¥3 = 0. Since v, v,/(y; + v,) < min (v, v,) these latter
conditions are equivalent to y; > — v; vo/(Y; + 7). O

Consider a single polygon »") (not a triangle) associated with N,,. Let the
triangles of T be labeled through the strategy described earlier (and
illustrated in fig. Sa and 5b). Corresponding to the common edge between
7, and 7, , | we assign conductivity — v = — oy Yun to T and vF = o Youn
to 7, ;. From lemma 1 it now follows that the matrices 4, are positive
definite if

1
2/Ymun + 2/Yaun
1

1/°’-k~ 1 Ymin + 2/'Ymm

0 < A Ymn <

, k=2, K®_1,

0< Oy Ymin <

vol 25, n” 4, 1991



492 M VOGELIUS

1e., the matrices A, are positive definite if we select the constants
oy = 0 to satisfy

) < 1/4

(12)
Qg1
—  k=2,.,KW_1.

e = 1 + 2 O _ 1 ’
Here K denotes the number of triangles from I, which le in
»®). Since there is a uniform upper bound on the number of triangles of
I, which lie in any one polygon from the tiling associated with
N, it is furthermore possible to select the o so that the matrix valued
function 4 (3,) satisfies

(13) CYmm = A (Ih) = C'Ymax >

with constants ¢ and C depending on the constants from (5a) and (5¢). The
problem of finding the discrete voltage potentials {U,} has thus again been
reduced to the variational problem (11). In the next section we shall prove
that there exists a subsequence of networks RN, and a positive definite matrix
A such that the functions U” converge weakly in H'(Q) towards the solution
to V. (AVU% =0 in Q, U’ = ¢ on 3Q, for any &.

2. PROOF OF THEOREM 1

The proof of Theorem 1 consists in an appropriate combination of ideas
of F. Murat and L. Tartar, concerning homogenization convergence [16,
17], with well known resuits from approximation theory. A crucial rolc is
played by the following localization lemma, which not surprisingly also plays
a fundamental role in most proofs of interior estimates for the finite element
method [18].

LEMMA 2: Let W" be in PUM0 relative to the triangulation X, and let
Y e CP(Q). Then there exist Ve P, such that

W = V) iy < CH I iy

H()

where h denotes the meshsize of X,. The constant C is independent of h and
W*" but depends on .

Proof : This result follows directly from the proof of property (A.2) in
Section 2 of [18]. For completeness we provide a brief sketch of the
argument : it is well known that there exist ¥ e P{»%(Z,) such that

6" — V4120, < CR2 Y W2 ),

M?AN Modélisation mathématique et Analyse numérique
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A HOMOGENIZATION RESULT FOR POLYGONAL NETWORKS 493

where the sum is taken over all those triangles that intersect the support of
¥, and where | . |, « denotes the seminorm

We shall not provide a proof of this estimate here, rather we refer the
interested reader to [4]. Since W* is linear we also have

Z |\I’Wh i’.,.(l) =C Z ” Wh” i]'(,(')) =C ” Wh”fql(ﬂ) ’
and the desired result follows. O
As stated in Theorem 1 the limiting second order differential operator
and the subsequence along which the piecewise linear interpolants converge
to U° do not depend on the particular choice of minimal triangulations of
N, To establish this independence of the choice of triangulations we shall at
various places make use of the following two simple lemmata.

LEMMA 3: Let X, and I, be minimal triangulations of the regular
sequence of networks RW,. Let V" and V" be continuous, piecewise linear

polynomials relative to X, and I, respectively. Assume that V"(x) = V"(x)
at all vertices of M,. Then there exists a constant C, independent of h,
V" and V" such that

1= 74

< Ch|V"- 7"

L) HY(Q) *

Proof : Consider a single polygon, o,, in the tiling corresponding to
N,. Let S, denote a square with side length Ch containing w,. Let

h h :
Vi—V", inw,

Wh =
0, in S\, -

This function W"is in H'(S),) and vanishes on the boundary of S;. From the
rescaled version of Poincaré’s inequality it follows that

I s,y =< ChIT|

L2(Sy) H'(S)

Consequently

(14) |vh- 7" ||L <Ch|V"- 7" I

o) H'(wy)

Summation of the inequalities (14) over all polygons w, associated with
N, leads to the desired estimate. O

vol. 25, n° 4, 1991



494 M. VOGELIUS

LEMMA 4 : Let V" and V" be as in Lemma 3. There exist positive constants
¢, C such that

AV gy =< 17 ey < €1V

H'(Q) ey -
Proof : The proof of this follows immediately from the observation that

17" 10, and || 7 are both equivalent to the expression

o) H'(Q)

(5 ot- Vf)z)”z,

ex1 € Ny

where V! denote the common values of ¥* and V" at the vertices of
N, O

Let I, be a sequence of minimal triangulations of the networks
9t,. An important ingredient of the proof of Theorem 1 is the construction
of auxiliary mappings R,: H~'(Q) — H}(Q) and Sy: H™'(Q) » (L}(Q))~
Given any F € H 1(Q), Ry(F) is our candidate for the solution of the
boundary value problem

—V.(AVW)=F,inQ, W=00nd3Q,

involving the effective conductivity A. The vector field Sy(F) is our
candidate for the flux associated with Ry(F), and the effective conductivity
A will therefore implicitly be defined by S,(F) = 4 VR (F).

Consider the problem

find W* e P'1°(Z,) such that
(16)

J A VWhvVhde = (F,V? YVhe P{Y(T,).
Q

Define R,(F) = W" The mapping R, : H '(Q) - H)(Q) satisfies
” R, (F) ” HY(D) =C ” F” H Q)"

Passing to a subsequence (which we for simplicity also index by /), we may
obtain that

R,(F) - Ry(F) weakly in H}(Q)

Qa7
S,(F) = A(Z,) VR, (F) - Sy(F) weakly in L,(Q),

M?AN Modélisation mathématique et Analyse numérique
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A HOMOGENIZATION RESULT FOR POLYGONAL NETWORKS 495

where the linear operators R, and S; satisfy

IRo(E) I 1y < C I F |l -1y and
(18)

" n
(RGP

CHiE HY(9)>
(in order to show that one may take the same subsequence for all
F e H 1(Q) we first verify, by a diagonalization procedure, that (17) holds
for a dense, countable subset of H~!(Q) and then we apply a density
argument). Let P, denote the orthogonal projection Hé(Q) -
P, « H{(Q), then it is clear that
h

(19) sup M_ sup M:“P;‘F”,

vhepho | Vo @ VeH\D) (RGP

where Pj*: H'(Q) - H~'(Q) is the dual of P,. Due to the fact that the

matrices 4 (¥,) are uniformly bounded away from 0 it follows from (16) and
(19) that

(20) “PI:k F ” H-l(n) =sC ” Rh(F) “H FON
By insertion of ¥* = R,(F) into (16) and use of (20) we now get

(1) | P F||§,_ < C(F, R,(F)) .

()

Since the triangulations I, have meshsize approaching 0 it is well known
that
P F - F weakly in H ~'(Q) forany F € H~'(Q);

because of (17), (21) and the weak lower semicontinuity of the norm it now
follows that

(22) I F 1)< C(F. Ro(F))
or
(23) IE 1l g1y = C | Ro(F) ||H1(n) :

R, is therefore an isomorphism H~!'(Q) - Ry(H"'(Q)), and the latter
space is a closed subspace of H}(Q), due to (18) and (23). If G € H~(Q) is
such that G anihilates Ry(H~(Q)), then (G, Ry(G)) = 0 and using (22)
we get that G = 0 ; it follows that Ry(H~'(Q)) = H}(Q). We may therefore
conclude that

(24) R, is an isomorphism from H~!(Q) onto H}(Q) .

LEMMA 5: The limiting operators Ry and S, depend on the particular
subsequence of networks, W,, which has been extracted, but they are
independent of the choice of minimal triangulations.

vol. 25, n® 4, 1991



496 M VOGELIUS

Proof : Let X, and i,, denote two minimal triangulations of the network
N,. If V" is an element in PU}0(T,), 1.e. piccewise linear respective to the
triangulation I,, then we let " denote the element in P!'»°(T,) which

agrees with V' at all the vertices. From the very definition of the matrices
A(Z,) and 4(3T,) we get

J (A(F,) VR,(F), V™) dx
Q

(25) =J (A(T,) VR, (F), V¥V ") dx
Q
=(F, V", vrie pO(T)).

Let ﬁh denote the analog of the operator R,, only corresponding to the

triangulation I~,,. R, (F) satisfies
J (A(T)) VR, (F), Vi) dx
Q

= (F, 7"y vYv'e PIO(T,).

We thus have

— <F, Vh_ ﬁ'h)

(26) < C||F|l 2 | Vit I L)

sC'h ||F||L2(n) ” vh- vt ” H'(Q)

<sC"h|F| LYQ) " vt ”Hl(ﬂ) s

where we used Lemma 3 for the next to last estimate, and Lemma 4 for the
last estimate. Based on (26) we conclude that

27 HI/?;.(\F/) - Eh(F)“ @y = Ch ||F||L2(n) .

By Lemma 3 and Lemma 4

| R(F) = RaCE) || 20
(28) < Ch | Ry(F) | ey

<C'RIF| gy -

M?AN Modélisation mathématique et Analyse numérique
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A combination of (27) and (28) yields

(29) “Rh (F) - R,(F) ” = Ch||F|l 1yq, -

LX)

We assume thai 4;‘ form a seyucnee for wiuch 1\,,\1 ) — 1\0\1 ) wc:uuy in
H}(Q). Through extraction of a subsequence from ¥, we may assume that

R,(F) > RO(F ) weakly in H}(Q). From (29) it now follows that
Ry(F) = Ry(F) for any F € L%(Q). By continuity the same identity holds
for all Fe H'(Q). Since the limit is independent of the particular
subsequence of 5’,,, it furthermore follows that ﬁh(F ) converges to

Ry(F) along the entire sequence. This shows that R, is independent of the
choice of minimal triangulations.

We now proceed to show that the limit S is also independent of the choice
of minimal triangulations. Our verification of this fact furthermore provides
a construction of the desired limiting conductivity 4. Let x, ¥ € CP(L),
with x =1 on supp (¥), and let x,, { =1, 2 denote the two coordinate
functions in R2. With W" = R,(R; '(x(x) x,)), we evaluate

L (A(Z,) VR, (F), VW) ¥ (x) dx
(30) = L (A(TY) VR(F), V(W] §)) dx

- L} (A(Z,) VR, (F), Vi) Whdx .
According to Lemma 2 there exist ¥ e P{'+%(Z,), such that

J (A(Z)) VR (F), V(W] §)) dx
Q

Jﬂ (A(Z}) VR, (F), VV'") dx + O (h|| R, (F)| e,

H'(Q) ' H (n)

(31)
- J (A(T,) VRY(F), VWV ") dx + O (|| F|| 4-1qy) and
Q0

V * converges towards ¥ (x) x, weakly in H Q).

For the derivation of the last statement we use that x = 1 on supp (). We
also have

f (A(Z,) VR,(F), V¥V Mydx = (F, V" .
0
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Use of this i1dentity in connection with (31) now gives that

(32) J (A(Z,) VR,(F), V(W §)) dx converges to (F, y(x) x,) -
]

A the same time

J (A(Z,) VR,(F), Vi) W!dx converges to
o
(33)
J (So(F), V) x(x) x, dx .
Q

Combining (30), (32) and (33) with the fact that V.Sy(F) = - F (and
mtegration by parts) we conclude that

J (A(Z,) VR, (F), VW) y(x) dx converges to
Q
(34
J (SO(F)>V(X(X) xz))ll’dx= J (SO(F))t¢dx
Q o

By interchanging the roles played by R,(F) and W in the preceeding
argument we get

f (A(Tp) VR,(F), VW) b(x) dx

Ja
(35) = JQ (A(Z,) VW), V (R, (F) b)) dx
_ L (A(Z,) VW, V) R,(F) dx .
According to Lemma 2 there exist e P'+°(T,), such that
L (A(Z)) VWL,V (Ry(F) %)) dx
36 = L (AT VWLV dx + O A W oy 1 RA D 0
- [ @) TV et OKIFI ). and

V" converges towards Ry (F) ¢ weakly in H}(Q) .
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We also have

~

| 4@ YT dx = (Re ) x), V)
o
Use of this identity in connecuion with (36) now gives that

J (A(Z,) VW! V (R, (F) ¥)) dx converges to
(37) ?
(R '(x(x) x,), Ro(F) &) .

At the same tume
j (A(Z,) VW V) R, (F) dx converges to
Q

(33)
L (So(Ry '(x(x) x,)), Vi) Ro(F) dx .

Combining (35), (37) and (38) with the fact that V. Sy(R; "(x(x) x,)) =
— Ry '(x(x) x,) (and integration by parts) we conclude that

J (A(Z,) VR, (F), VW™ y(x) dx converges to
Q

(39)
J (So(Ry '(x(x) x,)), VRo(F)) b dx .
0

Given o cc O select x € C(Q) so that x =1 in a neighborhood of
® and define a matrix values function by

(40) rowiof A = Sy(R; '(x(x) x,))inw .

It is not difficult to see that 4 |  is independent of the particular choice of x,

and therefore (40) provides a well defined 4 (on all of ), see [16, 17]. The
matrix A can easily be shown to be symmetric, uniformly positive definite
and uniformly bounded in Q. Due to (34) and (39)

So(F) = AVRy(F)in w,

and since w cc ) may be selected arbitrarily it follows that Sy(F) =
AVRy(F) in Q. For any F € H™'(Q) we therefore have

So(F) = AVRy(F) and

(41)
V.(AVRy(F)) =—FinQ, RyF)=00n3Q.
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If we had made a different choice of minimal triangulations ¥,, then after
possibly extracting a subsequence we would obtain limits EO = R, and

S, and a matrix valued function A such that for any F € H1(Q)
So(F) = A VRy(F) and
(42)
V. (AVRy(F)) =-FinQ, RyF)=00naQ.

Since R, maps onto all of Hj(Q) it follows directly from (41) and (42) that

(43) j (AVV,VW)dx‘:J (AVV,VW)dx YV, We HN{Q).
0 Q

Select complex ¥ of the form ¥(x) e®+%%) and complex W of the form
P(x) e CEHEY) with e CP(Q) and ¢, £ € R2 Then

VYV = §(x) e @D+ iE) + e EHED VY ()

VW = d(x) eTHEO(= L4 ig) + e TR V()
so that
(44) (AVV, VW) = - (x)’e?'EDNA(x) L, ) + 0(|L]) as |{] >,
and

45y (AVV, VW) = —$(x)? > ENA(x) L, L)+ 0(JL]) as |{| » .

By insertion of (44) and (45) into (43), division by |§|2 and passage to the
limit in |{| (for a fixed direction e = {/|{|) we get

J (A(x)e,e)\p(x)zeﬂ(%»x)dx’:J (A(x) e, e) b(x)? e ®&D gx .
R? R?

It now follows, through inversion of the Fourier transform, that
(A(x) e, e) Y(x)’ = (A(x) e, e) Y(x)* Vye CP(Q), ceR?.

Therefore A = A and Sy(F) = A VRy(F) = A VRy(F) = S,(F). Since the
limit S, is independent of the particular subsequence it furthermore follows

that A(f,,) VR,(F) converges towards So(F) along the entire sequence
%,. This completes the proof of Lemma 5. O
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2.1. Remark

There is a certain arbitrariness in the way the matrices A(X,) are

4 : FAllnen +lan
constructed. By a slight extension of the proof of Lemma S it follows that

R, and S; are also independent of the particular choice of (cancelling)
conductances corresponding to edges which are in I, but not in
N,. It is furthermore of no consequence for the limiting operators
R, and S, whether we distribute the conductances, corresponding to edges
in N, equally on neighboring triangles or in some other ratio.

For later use it shall be convenient to have the following lemma :

LEMMA 6: Let M, be a subsequence of networks for which the limits in
(17) are attained. Let X, be a minimal triangulation of M,, and let
U be in CP(Q). Then

[ (A(Z,) VR, (F), VR,(G)) & dx converges to
Jo

J (AVRy(F),VRy(G)) ¥ dx
Q

for any F, Ge H~'(Q).

Proof : The proof follows the exact same lines as were used to derive (34)
(or (39)); it shall for reasons of brevity not be given here. O
We are now in a position to give a proof of Theorem 1.

Proof : Since the boundary value ¢ is in H'?*%(3Q) there exists
We H'**(Q) such that W|,, =& and | W], <C bl pe- (1, 11]).
Let W"e PU110(T,) denote the piecewise linear interpolant of W. Then

" Wh” Hl(ﬂ,) =C " 4) n HI]2+£(BQ)
(46) W"(x,) = &(x,,) atall vertices of T , on 3
W, — &in L*(Q).

The function U’ = U" — W" satisfies
Ule P{%(Z,), and
J A(Z) VU,f’VV"dx:—J A(Z,) VW VvV hax
O Q

Ve PYT,).
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Therefore || U!

n=Cl wh|| g <C'[|&| gr-- and consequently

h
" U ” Hl(ﬂ) = C ||¢ " H1/2+s(an)
[ 4(Z,) vU"|

LX) = ”d’" H'2+530) -
By extraction of a subsequence we may obtain that

U" - U°weakly in H'(2), and

A(Z,) VU" 5 £¥ weakly in L(Q)

for any ¢ € H'?*5(3Q) .
Here we are relying on a similar diagonalization procedure, and density
argument as that which was used to derive (17). One may also show that
U° and £&° are independent of the choice of minimal triangulations and the
particular conductance assignment strategy. We shall not give the proof of
that here (since it is nearly identical to the proof of Lemma 5); we only
briefly outline the steps that lead to an equation for U’ Let ¥,
e CP(Q), with x=1 on supp (¥). Let x,, i =1, 2 denote the two
coordinate functions in R? and define W = R, (R; '(x(x) x,)). Performing
the same calculations as in (30)-(34) we get

47 j (A(Z,) VU, VR, (R; '(x(x) x,))) ¥ dx converges to J (£%), b dx.
o Q

Interchanging the roles played by U” and R, (Ry "{(x{x) x,)) and performing
the same calculations as in (35)-(39) we get

~

J (A(Z,) VU" VR, (Ry '(x(x) x,))) ¥ dx converges to
(48) !

J (So(Rg ' (x(x) x,)), VU®) p dx .
Q
Let A denote the matrix valued function defined by (40). The statements
(47) and (48) show that £° = 4 VU in Q, and therefore
V.(AVU) =V.£°=0inQ.
Since U"[,, = W"| , — ¢ in L(3Q) it follows that

U= ¢onaQd.

This verifies the first part of Theorem 1, except for the inequalities
CYmun < A =< Cvy,,. These inequalities follow immediately from the inequali-
ties in Lemma 7 in combination with (13). Instead of providing a proof of
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these inequalities here, we refer the reader to the proof of Lemma 7 1n the
following section We now turn to the proof of the second statement about
convergence of the local power dissipation

Given any positive £, we can find smooth subdomains o’ and »” with
® cc wcc o tor which

~

J AVUL VU dx —e2< | (AVU° VU dx

(49) = (AVU° VU dx
v

< | (AVU°VU% dx + /2

v

Select 0=y =<1 and 0=y’ <1 in CF(Q), such that

o' cc{x.¢y'=1} csupp (') ccwand,
(50)
vocc {x =1} csupp (¢)cc w”

From (49) and (50) 1t follows immediately that
J (AVU° VU dx — ¢/2 < j A VU VU ' dx
® Q
(51) sJ (AVU°VU® ¢ dx
Q
= J AVU° VU dx + ¢/2

Let w;, be the union of all those polygons, associated with I, whose closure
lie strictly mnside o and let &, denote the union of all those polygons,
associated with M,, whose closure intersect @ Using (50) we get

J (AVU" VUM §' dx
Q

.
=< (AVU" VU") dx
v Wy

(52)

»

A VU" vU*) dx

I

v @y

~

(AVU" VU ¢ dx,

I

v
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for h sufficiently small. Performing calculations similar to those in (30)-(34)

(or (35)-(39)) it is not difficult to see that

A J(AVU",VU”)lp'dx’_,J (A VU, VU®) ¢ dx and
Q 1)

(53)
(AVU" VUM ydx — [ (4VU°, VU g dx.
Q v

Combining (53) with (52) and (51) we conclude that
(A VU" vU") dx

»

Jwy

(54) =< | (4VU*" vU" dx
v ay,

AVU°, VU dx + ¢/2,

v

" j (4 VU, VU dx — /2 <

<<

for A sufficiently small. Since ¢ is arbitrary and since
J (AVUL VUM dx< Y+, (Ul- Ul < j (AVU" VUM dx,
o @y, ’

X, X] € @

it follows immediately from (54) that the local power dissipation

Y V(U= U

X, X] € ©

N -

converges to
% J (A VU, VUO) dx

along the subsequence M,. This completes the proof of Theorem 1. O

2.2. Remark

As mentioned earlier, network geometries containing Wheatstone bridges
are not covered by our convergence analysis. Consider the single
Wheatstone bridge shown in figure 6a, with associated edge conductances

v;;- The condition

min {Yj; ¥3a Y23 Y14} = Y13 Y24

M?2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis

(55)



A HOMOGENIZATION RESULT FOR POLYGONAL NETWORKS 505

is necessary and sufficient in order that it be possible to replace the
Wheatstone bridge by a configuration, as shown in figure 65, without
changing the voltages at any of the nodes in the original network (including
nodes x; through x,;). New conductances for the edges of the graph shown in
figure 66 are found by inversion of the so-calied star-mesh transformation
[7]. These conductances are not unique. The condition (55) expresses the
fact, that the presence of diagonal edges has not changed the direction of
current flow along any of the edges on the boundary of the Wheatstone
bridge [9]. The configuration shown in figure 64 is included in our analysis,
and consequently so are Wheatstone bridges for which the edge conduct-
ances satisfy (55).

T2 T3 T2 z3

Z5

F3 T4 z T4

Figure 6a. Figure 6b.

Consider a rectangular array of Wheatstone bridges. If all the Wheatstone
bridges have horizontal and vertical edges of zero conductance (meaning
these edges are really not part of the network), then we have in effect two
disconnected networks, as shown in figure 7.

Figure 7.

If all the edges indicated by solid lines are assigned one conductance and
all the edges indicated by dashed lines are assigned another conductance,
then it is fairly obvious that a convergence result, such as that in Theorem 1
(with an appropriate interpolation) is no longer valid. It is not clear what
happens if all edges in the Wheatstone bridges are required to have positive
conductance, but one might speculate that if the horizontal and vertical
conductances are sufficiently small (so that (55) is violated) then there will
in general not be a limit, that can be characterized via a continuous
conductance equation.
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2.3. Remark

We chose here to perform the analysis within the framework of so-called
homogenization convergence. Very related techniques are associated with
the names of G- (and I'-) convergence [5, 6]. Once the problem has been
cast in a variational form, we could also have performed our analysis using
these techniques. The method of I'-convergence has recently been used to
find effective limits of periodically reinforced structures [2, 3]. These
structures are not discrete, rather they are modelled by continuous
equations, including thin, web-like areas of extreme strength (conductance).
The analysis is therefore entirely one of continuous problems. However, as
far as effective limits are concerned, one would intuitively expect that these
structures are quite related to geometrically periodic (discrete) networks
with edges of constant conductance per unit length.

3. TWO SIMPLE INEQUALITIES FOR A

To provide some characterization of the possible effective matrices A,
that can be attained, we prove two inequalities. The proof is extremely
simple, and no different from that found in [17].

LEMMA 7: Let X, be minimal triangulations corresponding to the
subsequence M, from Theorem 1, and let A denote the limit whose existence
is guaranteed by Theorem 1. If A* is a weak* limit of a subsequence of
A(Z,) in L®Q), and if (A™)"' 1s a weak* hmt of a subsequence of
(A(Z,))" " in L®(Q), then

Proof : Take x, ¢ € CP(Q) with x =1 on supp (¥), and consider the
expression

(56) J (A(F)) VIR, (F) — Ro(F)], VIR, (F) — Ry(F)]) ¥ dx
Q

with F € H~1(Q). Due to (17), (41) and Lemma 6 this expression converges
to

J (A7 VRy(F), VRo(F))\bdX—J (4 VR(F), VR(F)) b dx,
Q Q

along the subsequence, which corresponds to the weak* limit A*. Since the
expression (56) is non-negative it follows that

57 J (A VRy(F), VRy(F)) ¥ dx < J (A* VRy(F), VRo(F)) ¥ dx .
1) Q
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Insertion of F = z m; Ry '(x(x) x;) into (57) gives that

[ (An,n)¢d¥SJ (A" m,m) Ydx,
o [}

v

for any ¥ € C(Q). This immediately proves the second inequality of this
lemma.

The first inequality of this lemma may be derived in a similar fashion,
based on analysis of the limit of the expression

J (A(T) ' [4(T)) VR,(F) — A~ VRy(F)], x
0
x [A(Z,) VR,(F) — A* VRy(F)]) ¢ dx. O

In the following section we shall use Lemma 7 to partially characterize the
set of all possible effective matrices, 4, which correspond to locally
equilateral, triangular networks with (interior) conductances ranging be-
tween 2 w and 2 v.

4. A CALCULATION RELATED TO EQUILATERAL, TRIANGULAR NETWORKS

Consider a single triangle as shown in figure4. The edge e; has
conductance v;. Pick a coordinate system which has origin at x,, x-axis
parallel to e, y-axis parallel to e, and such that the triangle lies in the first
two quadrants. A simple computation gives that the matrix

3
4,= Y ¢y ¢/l
j=1
has the formula

A

|e1|2 ((Vl +v3) + (V2 + v3) r?cos? 0 — 2 y; 7 cos O
= X

R (Y2 + v3) r2cos O sin § — y5 7 sin 6

X

(V2 + v3) r?cos B sin 6 — y, 7 sin 0
(v2 + v3) r’sin® 0

with r = |e;|/|e;| and |7] =%|e1||e2|sine. Let A\, =\, denote the

eigenvalues of A4, ; they satisfy

2 1
AN+ N = — - -2 6) and,
1 2= 500 ((71+73)r+(72+73?r Y3 COS ) n
ANy =4V Y2+ Y1Y3+ Y2Y3) -
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We now specialize to the case of an equilateral triangle : |e,| = |e;| = A,
and 6 = w/3, and proceed to characterize the set of all possible matrices
A.. The equations above simplify to

N+ =4(v+v+ 3’3)/\/5 and ,
(58)
AN A =4(vi Y2+ Y1Y3+ Y2Y3) -

We assume that the edge conductances for a single triangle, v;, j = 1, 2, 3,
satisfy

O<ps=svy=sv.

In terms of an entire network this situation corresponds to equipartition of
the edge conductances in the network onto neighboris.~ triangles, with the
original network conductances of interior edges lying between 2 p and 2 vy
(and conductances of boundary edges lying between p and v). If two of the
conductances, v;, are in the set {, v} then there are, as far as eigenvalues
of A, are concerned, three possible cases :

® YI=K Yo=K h<Y3<Y,
(1) Vi =M Y2 =Y, W<Y3<Y,0r
(iii) YI=YY2=YsH=Y3=Y.

In case (i) the solution to (58) is Ay = 2(p + 2 7y3)/ \/3, A =2 V3 w. This is
the dashed horizontal linesegment shown in figure 8.
In case (iii) the solution to (58)is A = 2 /3 v, Ay = 2{(v + 2 v3)/ /3. This
corresponds to the dashed vertical linesegment shown in figure 8.
Consider now case (ii). Through multiplication of the first equation in

(58) by \/§ (¥1 + v>) and subtraction from the second equation we get
N = V3 + 1) o = VB3 +72) = — (v = ¥2) -

By inserting y; = w, Y, = vy and rearranging we get that \; and \, are related
by

N — /3 I (ke O A
2 (r+7v) DY T

This curve, which is a piece of a hyperbola, connects the point P =
Qe +27)V3,2/3p) to Q= (23v, 2(y+2r)/V/3). As v; de-
creases from vy to p the point (A, A,) runs from Q to P. This curve is also
shown (dashed) in figure 8.
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If none, or at most one, of the v, are in the set {p, v}, then we may
without loss of generality assume that p =y, <y, <y;<7vy, R<7vy; <
Yy <7VY3=7YOr p<vy <v,=<1vy;<vy. Consider the first possibility. Define a
parametrized family of conductivities vy;(s) by

Vi) =vi(=nr), v28) =v2—5, v3(8) =v3+s,

for 0 <s=<min {y,—w,vy—v3} (such that p<vy;(s) <v). Let \(s)
denote the corresponding eigenvalues. Then

N(s) + Na(s) = 4(v + v2 + v3)/ /3 and,
(59)
NG N(S) =4(viva+Yiva+ (va—8)(vs + s)) .

By differentiation of (59) with respect to s we get

(M) () + (A)" (s) =0 and,
(60) (D" () N(s) + M)A () =v2—v3—25<0,
for0 <s<min {v, — m,vy—v3},

and therefore
(61) [N(s) —Na(s)I(A2)" (5) <O for O <s <min {y, —p, ¥y —v3} -
Since \;(s) = N\, (s) it follows immediately from (60) and (61) that

(62) (A)' () <0, and (A))' (s) =~ (A" (s) =0
for0 <s<min {v, —p,vy—v3} -

When s reaches the value s,,, = min {y, — p, vy — v3} then the correspond-
ing point (A;(Smax)> M{(Smax)) lies on one of the dashed curves in figure 8.
From (62) it follows immediately that the points (A;(s), N\y(5)), 0 <5 < Spax
lie above and to the left of the point (A (Spax)s M(Smax))- We therefore
conclude that the point (A, N\y) = (A;(0), A\,(0)), which corresponds to
B=7v <7VYy<7vY3<vy lies in the shaded area of figure8 (or on the
linesegment 2 /3 p <A =N <2 \/5 v). A similar argument shows that
the points (A, \,), which correspondsto p <y, <=V, <Yy3;=YOrp <7y, <
Y, < Y3 <vy lie in the shaded area of figure 8 (or on the linesegment
2 \/3 B<X =N<2 \/5 v). All sets of eigenvalues corresponding to the
linesegment X\; = A, Dbetween the points (2 \/5 W, 2 \/5 p) and
2 \/3 v, 2 \/5 v) are most easily attained by choosing y; = v, = v; and
letting this common value range between p and v. It is also fairly easy to
show that, given any point in the shaded area of figure 8, it is possible to
pick conductance values p < vy; <y, so that this point corresponds to the
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eigenvalues of the matrix 4,. Through rotation of the triangle v we may
orient the orthogonal set of eigenvectors in any direction we desire. In
summary, the set of all possible matrices A, consists exactly of those
symmetric matrices whose eigenvalues \; < \, are in the set indicated in
figure 8.

Az

M

Figure 8.

For a given set of conductances p < y; < v, consider the cell T, shown in
figure 9a. It is not difficult to see that (with equipartition of the conductances
onto neighboring triangles) A(X) is constantly equal to A, where
A, is the matrix corresponding to the single triangle shown in figure 95 (see
(10) for the definition of 4 (I)). By building a network from.copies of the
cell shown in figure 9a (doubling the conductances of shared edges), we see
that any symmetric matrix whose eigenvalues lie in the set indicated in
figure 8 corresponds to an equilateral, triangular network with internal
conductances between 2 p and 2 y (and boundary conductances between p
and v).

n
Y2/ 27 ¥s
271
\ 27
Y3 2ys /72 T2 T
T T
Figure 9a. Figure 9b.

Let A denote the effective matrix (valued function) constructed in the
proof of Theorem 1. We shall derive a partial characterization of the
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constant effective conductances A arising from (globally) equilateral,
triangular networks (treating Q as if it has no boundary !). If we only require
that our triangulations be locally equilateral, than it is intuitively clear that
this partial characterization leads to an almost everywhere, partial charac-
tenzation of vanable effective conductances. Lei A{T,) be a sequence of
matrices for which U* converges to U° in the sense of Theorem 1. By
extraction of a subsequence, if necessary, we may assume that

A" =lim 4(ZT,), (A-) ' =lmA(I,)""

exist as weak™* limits in L®. According to Lemma 7 we now have

(63) A" <A<At ae..

Let \? = A% denote the eigenvalues of 4(T,). From (63) we immediately get
the bounds

(64) AN =A<\t ae.,

where \* is the weak* limit of \! and (A~)"! is the weak* limit of
(\4)~!. The hyperbola

(65) x1+4”—(2;:+—”=2ﬁ(v+u)

goes through the points P and Q, only it is convex, not concave as the
hyperbola in figure 8. That piece of the hyperbola from (65), which lies
between P and Q is shown in figure 10.

The eigenvalues N =\i of A4(ZT,) (with equipartition) satisfy the
inequality constraints corresponding to (the closure of) the shaded set in
figure 8. Consequently they also satisfy the weaker constraints

)\"32\/5;1., )\’1’52\/57 and ,

A2+
)\',+M+y)s2\/§(y+u).
2

Since the expression on the left hand side of the last inequality is linear in
M and (\3)~! it follows that the weak* limits A* and A~ continue to satisfy

)\‘22\/5;», ATt sz\/gy and ,
A +%y_)52\/§('y+p,)

almost everywhere .
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Az

A1

Figure 10.

From the inequality (64) it now follows that

The eigenvalues \ | = \, of 4 satisfy
)\222\/5;», )\152\/37 and,

)\1+%+_‘Y_)$2\/§('y+p,),
2

i.e., 4 has eigenvalues lying in (the closure of) the shaded set indicated in
figure 10. In summary : the constant effective conductances associated with
equilateral, triangular networks with infinitessimal edge length and with
(interior) edge conductances between 2w and 2+ are among those
symmetric matrices whose eigenvaiues iie in ihe set mdicated in figure 10,
and any symmetric matrix whose eigenvalues lie in the set indicated in
figure 8 may be attained as the effective conductance of such an infinitessi-
mal, equilateral, triangular network.

Eigenvalues on the hyperbola in figure 10 may be attained by means of
layering of networks which attain P (¢f. fig. 9a) with 90 degree rotates of
networks which attain Q (c¢f. fig. 9a). Unfortunately such layering does not
preserve the equilateral, triangular structure of the network. It is unclear
whether all the points in the set indicated in figure 10 may be attained as
eigenvalues for effective conductances of equilateral, triangular networks.

4.1. Remark

It is possible to perform similar calculations for networks consisting of
identical rectangles, or for networks that are made up of identical rectangles
all with the same diagonal edge added, but these shall not be presented
here. As seen from the example above the G-closure is in general a fairly
large set. It should be interesting to examine examples in which there is a
very restricted set of attainable limits. Such examples would necessarily
come about through restrictions on the microstructure of the network (e.g.
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through assumptions about periodicity or in the random case, stationarity).
The simplest of such cases, corresponding to a network of squares with two
possible edge conductances was analysed in [13], based on techniques
developed in [19]. For certain applications it should also be interesting to
understand exactly what restricuions lead o isotropic iimits.
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