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A TRIANGULAR MIXED FINIT E ELEMENT METHOD
FOR THE STATIONARY SEMICONDUCTOR DEVICE EQUATIONS (*)

J. J. H. MILLER f) and S. WANG (l)

Commumcated by R TEMAM

Abstract — A Petrov-Galerkin mixed fimte element method based on tnangular éléments for
a self-adjoint second order elhptic System ansing from a stationary model of a semiconductor
device is presented This method is based on a novel formulation of the corresponding discrete
problem and can be regarded as a natural extension to two dimensions of the well-known
Scharfetter-Gummel one~dimensional scheme Existence, uniqueness and stabihty of the
approximate solution are provedfor an arbitrary tnangular mesh and an error estimate is given
for an arbitrary Deîaunay triangulation and its Dinchlet tesselation No restriction is required on
the angles of the triangles in the mesh The associated hnear system has the same form as that
obtamed from the conventional box method with an exponentially fitted approximation to the
coefficient function on each element The évaluation of the terminal currents associated with the
method is also discussed and it is shown that the computed terminal currents are convergent and
conservative

Resumé — On présente ici une méthode d'éléments finis mixte, de type Petrov-Galerkin,
basée sur des éléments triangulaires, pour un système elliptique auto-adjomt du second ordre,
émanant d'un modèle stationnaire pour des semiconducteurs Cette méthode est basée sur une
nouvelle formulation du problème discret correspondant et peut être considérée comme une
extension bidimensionnelle naturelle de la methode bien connue de Scharfetter-Gummel
L'existence, l'unicité et la stabilité de la solution approchée sont établies pour un matllage
triangulatie arbitraire et une estimation de Verreur est donnée pour une triangulation de Deîaunay
arbitraire et sa tesselation de Dinchlet Aucune restriction n'est imposée sur les angles des
triangles du maûlage Le système associe a la même forme que celle obtenue par la traditionnelle
« box-method » avec une approximation du coefficient de type exponentiel sur chaque élément
On discute aussi Vevaluatwn des courants à travers les terminaux associes à cette méthode et on
démontre que les courants calculés sont convergents et conservatifs

(*) Received December 1989» revised February 1990
(*) Numencal Analysis Group, Tnmty College, Dublin 2, Ireland
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442 J. X H. MILLER, S. WANG

1. INTRODUCTION

The stationary behaviour of semiconductor devices in two dimensions can
be described by the following coupled System of nonlinear second-order
elliptic partial differential équations [24].

e V2^ = t\e*-pe-*-N (1.1)

V. ( X ^ V r O = JRC«U, Tl> P ) (1-2)

v . (M. /,e-*vP) = *Ok 'n ,p ) (1.3)

with appropriate interface and boundary conditions. Using Gummel's
method [13] and Newton's method we can découplé and linéarise the
équations of this nonlinear System so that at each itération step we have to
solve a set of three linear équations of the form

- V . (a(x) Vu) + G(x)u = F (x) in H (1.4)

with the boundary conditions u\dÙD = y(x) and Vu . n \dÜN = 0, where

H c R2, an = d£lD U bftN is the boundary of a, bflD n dClN = 0 , n dénotes

the unit outward normal vector on dO, a e C°(Ù), ax === a(x) 2= «0 > 0,

GsH\ft) r\C°(Ù), Gl^G(x)^G0^0 and F e L2(O,). Hère a0,

«Ï, Go and Gx are constants.
In what follows we consider only homogeneous Dirichlet boundary

conditions y(x) = 0. For the inhomogeneous case we can subtract a special
function satisfying the boundary conditions and reduce the problem to a
homogeneous one. We assume for simplicity that ôO is polygonal.

To solve (1.4) with the given boundary conditions the box method [17, 8,
19] is often used. Analyses of this method can be found for example in [21,
4, 16 and 14]. More recently Markowich and Zlâmal [18], presented a
triangular fmite element method for the solution of (1.4). Brezzi et al. [5, 6,
7] also presented some mixed fînite element methods for the solution of
(1.4). Ho wever, their methods are based on triangulations having acute
angles only. In this paper we present a triangular flnite element method for
(1.4) under milder restrictions on the triangles. This method is based on a
novel discrete formulation. The formulation of the method is discussed in
the next section. The existence and uniqueness of the discrete solution are
proved for an arbitrary triangular mesh in Section 3. In Section 4 we give an
error estimate for the approximate solution under mild restrictions on the
mesh. Finally, in Section 5 it is shown that the terminal currents computed
by the method are convergent and conservative.

In what follows L2{CL) and WniP(Çl) dénote the usual Sobolev Spaces
with norms || . ||Q and || . || v^miP respectively (cf. for example [1]). The inner
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A PETROV-GALERKIN MIXED FINITE ELEMENT METHOD 443

product on L2(Sl) and (JL2(Û))2 is denoted by ( ., .) and the k-th order
seminorm on Wtn'p(Sï) is denoted by | . \kp. The Sobolev space Wna(Sl) is
denoted by Hm(Sï) and the corresponding norm and seminorm is denoted
respectively by || . ||mand || . \\k. WeputL 2(û) = (£2(O))2 and Hl

D(Sl) =

|i? £ H1 (SI) : v \QÙD = 0} . We use | . | to dénote absolute value, Euclidean

length or area, depending on the context.

2. THE PETROV-GALERKIN MIXED FINÏTE ELEMENT FORMULATION

As in Miller et ai. [20], by the introduction of a new variable
î = a Vu, we get from (1.4) a fîrst order System of PDEs in the variables
[f,«]

Vu~a-lî = 0 (2.1)
-V.f+Gu =F. (2.2)

The corresponding variational problem is

PROBLEM 2.1 : Find a pair [f, u] e L2(Û) x if]>(O) such thaï for ail

(VW,q)-(a"1f,q) = 0 (23)
(f,Vt>)+ (Gu9v) = (F,v). (2.4)

The existence and uniqueness of the solution to Problem 2.1 have been
proved (see, for example, [22]).

To discuss the fïnite element approximation to Problem 2.1 we fîrst defîne
some meshes on O. Let 75 dénote a family of triangulations of SI

where Th dénotes a triangulation of O with each triangle t having diameter
ht less than or equal to h and h0 is a positive constant which is smaller than
the diameter of SI. For each Th E 15, let Xh = {xt}x

v dénote the set of all
vertices of Th and Eh = {ej j E the set of ail edges of Th. We dénote by
pt the diameter of the incircle of t.

DEFINITION 2.1 : The family of meshes 15 is regular if there exists a
constant o-j ̂> 0, independent of h, such that

ht

We assume henceforth that 7S is regular.

vol. 25, ne 4, 1991



444 J J H. MILLER, S WANG

DEFINITION 2.2 : Th is a Delaunay triangulation if, for every t e Thi the
circumcircle of t contains no other vertices in Xh (cf. [10]j.

D D E F I N I T I O N 2.3 : The Dirichlet tessellation Dh corresponding to the

triangulation Th is defined by Dh = {D^x
 v where

D, = {x: \x-xt\ < \X~XJ\,XJ e XhJ # z } (2.5)

for allxteXh (cf [11]J.

We now construct two new meshes associated with the triangulation

For each xt E Xh we define the open région H(xJ consisting of the union
of all the triangles t e Th with the common vertex xt and an open région
b(xt) c n(xz) constructed as foliows : for each ^ c= Xl(x(), choose a point
pet arbitrarily and connect it to the midpoints of the two edges of / sharing
x,, as shown in figure 2.1. (We remark th&tp e t is not necessary. Ho we ver,
for simplicity, we assume it does. We also assume that the same
p e t is chosen for each vertex of t.) The domain within the resulting
polygon is b(xt). For the sake of convenience, we sometimes dénote
b (xl ) simply by b. The set of all such b (xz ) is denoted by B% which we regard
as a dual mesh to Th. We put 0SV = {B%: 0 < h ̂  h 0 } .

Figure 2.1. — The régions

The région Ci(x)
The région 6(XI
The région Çl(e)

(x), b(x) and ft (e) for the vertex x and edge e.

With each edge er e Eh we also associate an open région n ( ^ ) by
Connecting the two end-nodes of ex with the two chosen points in the two
triangles sharing e{ generated during the construction ofB[. This is shown in
figure 2.1 by dashed lines. The corresponding quadrilatéral mesh is denoted
by Bfx. We remark that B% is determined uniquely by B[, and vice versa, and
that divides each t e Th into three triangles tu t2, t3. We put
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4 PETROV-GAXERKIM MIXED FINITE ELEMENT METHOD 445

DEFINITION 2.4 : The family of meshes $E is regular if there exists a
positive constant <r2, independent of h, such that for any i, j e {1, 2, 3 },

max lf|l + l'jl ^ a2 VA e (0, Ao] . (2.6)
tsTh l'l

Regularity of ^ ^ is equivalent to the condition that for all t e Th and the
chosen point/? e f, the minimal distance between p and the vertices of t has
a positive lower bound. Note also that regularity of ^^implies that there is
a positive constant a3 independent of A, such that

min | ^ 4 ^ <r3 VA G (0, Ao] . (2.7)

We remark that if Th is a Delaunay triangulation and the point
p e t is chosen to be the circumcentre of t, for each ? e Th, then the
corresponding mesh B[ coincides with the Dirichlet tessellation dual to
Tk9 i.e.B£=Dh.

Corresponding to the three meshs 2?jf, Th and Bjf, we now construct three
finite-dimensional spaces LA c= L2(H), / / ^ / ^ ( f i ) and LAc-L2(ft) as
foliows. Without loss of generality, we assume that the edges and vertices
are numbered so that {et} { is the set of all egdes in Eh not on

bflD and {xt}^ is the set of all nodes in Xh not on dflD.

For the mesh corresponding to Bf we defme, for each i = 1, 2, ...,
A £̂, a piecewise constant vector-valued function with domain Ù by

(
[O otherwise

where e( is the unit tangential vector along the edge er Obviously we have
(Qn %) = §tj l^ (^) |> where ôy is the Kronecker notation. We take
L̂  = span {qjf .

Next, letting {<!>,}! v be the conventional piecewise linear basis functions
for Th, we define Hh = span {<t>z}f.

Finally, to construct Lh we define a set of piecewise constant basis
functions \\fn (i — 1, 2, ..., TV ) corresponding to the mesh Z?A

K as follows :

We then define L;i = span {<!*,}f.

vol 25, n°4, 1991



446 J J. H MILLER, S WANG

We introducé the mass lumping operator L:C°(fl)i->I2(fl) such that

for any ue C°(Ù)

L(u)(x)= £ «(*,)*,(*) V x e Ô . (2.8)

Using the three finite dimensional spaces we now define the following
discrete Petrov-Galerkin problem.

PROBLEM 2.2 : Find a pair [îh, uh] e LA x Hh such that for all
[qh9 vh] G LA x Lh

0 (2.9)

A(fh, vh) + (L(Guh)9 vh) = (F, vh) (2.10)

where F is a (quadrature) approximation to F and A ( . , . ) dénotes the
bilinear form on LA x L/j defined by

(2.H)

Hère U/,|d dénotes the restriction of vh to b, 7o(l' U) dénotes the continuous
extension of v \ b to db and ndb is the unit outward normal vector on
db.

M N

Let fh = Y fi q,» «A = X «, 4>„ where {/,}f and {«,}f are two sets of
i = l ( - 1

constants. Substituting these into (2.9) and taking q̂  = qy) we get

for each j = l ,2, . . . ,M. This linear system of équations has the solution

«r1 Kl
where aj ' = a'1 dx and ujk = uh{xjk), k = 1, 2 (se&fig. 2.2a).

For the évaluation of a~ l we refer to the Appendix. Thus we have
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A PETROV GALERKIN MIXED FINITE ELEMENT METHOD 447

Figure 2.2. — Alternative notation for edges and their end-points.

Substituting (2.12) into (2.10) and letting vh = tyJ9 we obtain

(2.13)

for each j = ls 2, ..., M. From its définition (see fig. 2.1) we know that
) consists of a finite number of segments. Clearly bb(Xj) O O ( ^ )

j

consists of at most two segments which we dénote by dbtJ x and
if Xj is an end-point of et. Therefore, from (2.13), we have for

j = l , 2, ..., TV
3 2

(2.14)

where n(7 fc dénotes the unit vector normal to dbljk. It is easy to see that
| e ( . ntJ k | | dbljk | is equal to the length of the projection of dbl]k onto the
line perpendicular to et. This length is actually the distance from the chosen
point petk to eo i.e. the height of the triangle Çl(et) Pi tk with base
et, where tk dénotes the triangle having el as one edge and containing
<$bljk. From the formulae for évaluating the area of a triangle we have

(2.15)
\e.\

Finally, with the notation in figure 2.2b, taking into account the sign of each
e, . n y k and using (2.14) and (2.15) we find that for ail j = 1, 2, ..., N

•GJuJ\b(xJ)\ = (F,%) (2.16)

where I3 = {k : ejk e Eh) is the index set of neighbouring nodes of
Xj and Gj = G(Xj).

vol 25, n 4, 1991



448 J. J- H. MILLER, S. WANG

The coefficient matrix of (2.16) is a symmetrie, positive defmite M-
matrix. The latter property folio ws from the f act that it is a diagonally
dominant matrix with ail diagonal éléments positive and all nonzero off-
diagonal éléments négative (see, for example, [25, § 3.5]). When !TA is a
Delaunay triangulation and B[ is the Dirichlet tessellation dual to
Th, the term 2|XÎ(eyfc)|/|eyfc| in (2.16) is the length between the circum-
centres of the two triangles sharing ejk and |^(^,) | = | Z>y |, where
Dj is defined in (2.7). Therefore the expression (2.16) coincides with that
obtained from the conventional box method with an inverse-average
approximation to the coefficient function a,

3. EXISTENCE, UNIQUENESS AND STABILITY OF DISCRETE SOLUTIONS

In this section we prove that Problem 2.2 has a unique solution and that
the solution is stable. Instead of proving directly that the mixed Problem 2.2
has a unique solution we consider an equivalent problem for which the
existence and uniqueness of the solution can be established by standard
fïnite element analysis.

Let Ua be the operator from VHh = {Vuh : uh e Hh} to LA determined by
(2.9) with a as a parameter. Introducing the bilinear forms
Â(uhivh) = A(naVuh,vh) and B(uh,vk) = À(uh,vk) + (L(Guk),vh) on
Hhx Lh, we defîne the foliowing problem :

PROBLEM 3.1 : Find uh e Hh such that for ail vh € Lh

B(uk,vh) = (F,vh). (3.1)

We say that problem 2.2 is equivalent to Problem 3.1 if the following two
conditions hold :

(i) If [f;ï5 uh] is a solution of Problem 2.2, then uh is a solution of Problem
3.1.

(ii) If uh is a solution of problem 3.1, then [IIa Vuh, uh] is a solution of
Problem 2.2.

THEOREM 3.1 : Problem 2.2 is equivalent to Problem 3.1.

Proof : Assume that uh is a solution of Problem 3.L From (2.8) and the
choice of Lft we know that there is an ih e L^ such that for ail

i.e. ih = Ha Vuh. Making use of the définition of B(uh, vh) and the above
equality we know that (3.1) reduces to (2.10) and therefore [IIa Vuh, uh] is a
solution of Problem 2.2.
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A PETROV-GALERKIN MIXED FINITE ELEMENT METHOD 449

Conversely, if [fh, uh] is a solution of Problem 2.2, élimination of
fh in Problem 2.2 yields Problem 3.1, as shown in the previous section. •

LEMMA 3.2 : Assume that that 3SE is regular. Then there exist constants
Ch C2 > 0, independent of h, such that f or any uh e Hh

H0 « H Ü! V«A H 0 « C 2 | | V«A H0 . (3 .2)

Proof : From Section 2 we know that for any uh e Hh, IL Vuh =

(V«*-e,)| q,. Thus

||V«A-ntViiA||2= £ [ \Vuh-(Vuh.e,)e,\2dx
, . i Jn(e,)

- s ƒ
where ef dénotes the unit normal vector to et such that Vuh . e/- s= O and

cos Qh , = . Since Vuh is constant in each t e Tk, summing over

t e Th we have

|Vuh \2 [ c o s 2 h , i \ h \ + c o s 2 e M \ t 2 \ + cos2eA)3113\]

(3.3)

where /ls t2 and r3 are the three triangles which form a partition of t,
eu e2 and e3 are the three edges of t and

COS2 Qh ! I /j I + COS2 9A 2 I '2 I + COs2 ®h 3 \h I
a = max ' —i : .

Since ^ £ is regular, from (2.6) we know that, for ail t G Th, the
tu t2, t3 satisfy |^| = | tx \ + 112\ 4- | ^ | and

max —-V =£ a < 1

where a is a positive constant, independent of h, Furthermore, since for
each i = 1, 2, 3

cos2

vol. 25, n° 4, 1991



450 J. J. H. MILLER, S. WANG

where 0 === 7 ^ 1 is a constant, independent of h, and 7 < 1 for at least one
i G {1, 2, 3 }, it is easy to see that a < 1. Thus (3.3) implies (3.2). D

When restricted to Hh, the lumping operator L and its inverse
JL"1 are linear and bounded. This is established in the following lemma.

LEMMA 3.3 : Assume that 3èE is regular. Then there existpositive constants
Cx and C2, independent of h, such that for ail uh G Hh

| | 0 | | | | 0 . (3.4)

Proof: See [15, p. 23] or [4], D
Defîne a functional on Lh by || tfA || = || S7L~l(vh) || for all vk e Lh. We

have the following lemma.

LEMMA 3.4 : Assume that $E is regular. Then || . || l L is a norm on
Lh and there exist s a positive constant C, independent of h, such that
\\vh\\0^C\\Vh\\iiLfor ait vheLh.

Proof: It is easy to see that the triangle inequality is satisfîed by

H . y j L and II otvh y 1 L = | a | || vh \\ { L for ail vh e Lh and ail a e R. We now

prove that if || vh \\ { L = 0, then vh = 0. In fact, if || vh \\ 1 £ = 0 for a

vh e Lh, from its définition we have || VL~ l(vh) || = 0. Since L~\vh) e Hh,

we have ||Z,~ 1(vh) || = 0 (generalised Friedrichs' inequality, see, for

example, [12, p. 25]) and so \\L~l(vh)\\ö = 0. Using (3.4) we obtain

\\vh\\ = 0 and thus vh = 0. Thus ]| . ||j L is a norm.

Furthermore, since L~\vh) e Hh for all vh e Lhi we have

where C dénotes a generic positive constant, independent of h. In the above
we used the generalised Friedrichs' inequality and Lemma 3.3. •

The existence and uniqueness of the solution to Problem 3.1 is contained
in the following theorem :

THEOREM 3.5 : Assume that 3SE is regular, Then Problem 3.1 has a unique
solution and the solution is stable.

Proof : In fact the existence and uniqueness of the solution to Problem 3.1
has already been established since we have shown that the coefficient matrix
of (2.16) is a symmetrie and positive défini te M-matrix. To prove the
stability, we need to verify only the following coercivity inequality (see, for
example [2])

sup \B(uh9vh)\ ^aoal l i iAJI j VuheHh (3.5)
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A PETROV-GALERKIN MIXED FINITE ELEMENT METHOD 451

where a is a positive constant, independent of h, uh, vh and a, and constant
OQ is the lower bound of a defîned in Section 1. In what follows we use C to
dénote a generic positive constant, independent of h, uh9 vh and a.

If uh = 0 then clearly (3.5) holds. When uh ̂  0 we put vh = L(uh)/yu ,
where yUft = \\ S/uh || { Then || vk || = 1 and

Ai - x il L{Uh)A(uh, vh) = A\uh9

£j l a au n

TlaVuh.nibds (3.8)

where xb is the mesh node contained in b. Summing (3.8) over dbt =
(db n n (ej) we obtain, using arguments similar to those in the

dérivation of (2.16)

A(uh
1 M f

,vh) = — Y (".2-««i) nfl

lu , _ 1 '

2 M

0

2a0

I | V « A | | O

^ a 0 Ot || MA || t

where n ^ dénotes the unit vector normal to hbx chosen so that the angle
between n ^ and e, is smaller than TT/2. In the above we used (3.2) and the
generalised Friedrichs' inequality (see, for example [12, p. 25]). It follows
that for ail uh G Hh

sup \B{uh,vh)\ z*Â(uh9 vh)+ (L(Guh), v^zeaoaWuk^

vol. 25, ne4, 1991



452 J J H MILLER, S WANG

smce G 5= 0 and

(L(Guh), vh) = J- (L(Guh), L («„)) = — £ ( ? , u>\b, \ s* 0

where ut = uh (xt ) This complètes the proof of the theorem D
From Theorems 3 1 and 3 5 we have

COROLLARY 3 3 Assume that $E is regular Then Problem 2 2 has a
unique solution

We comment that Problem 3 1 can be regarded as a généralisée fïnite
element method which is closely related to a mixed fimte element method
For details, we refer the reader to, for example [3]

4 ERROR ESTIMATE

In this section we give an error estimate for the approximate solution to
Problem 2 2 We first state the followmg lemma

LEMMA 4 1 Assume that Th is a Delaunay triangulation and that
Bfr is the corresponding Dinchlet tessellation Then there exist positive
constants Cx and C2, independent of h, such that for all wh e Hh and ail

(41)

and
\{Gwh-L(Gwh),vh)\ ^

(4 2)

where (Gwh)j dénotes the Hh-interpolant of Gwh

Proof For the proof of (4 1) we refer to [9] or [15, p 23] We now prove
(4 2)

For any wh e Hh> we have

\(GWh-L(GWh),vh)\ =

= | (Gwh - (Gwh)„ vh) + (LttGw,),) - L(Gwh), vk)

for ail vh E Lh Since {Gwh)(xt) = (Gwh)r (x,), Vx; e X, usmg (4 1) we
have from the above equality

\(Gwh-L(Gwh),vh)\ «

« \(Gwh -{Gwh)j,vh)\ + \{(Gwh)I-LaGwh),),vh)\

«CA||oA||o |(GwA) / |1+ \(Gwh-(Gwh)hvh)\ (4 3)
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Using Cauchy-Schwarz inequality we have

\(Gwh- (Gwhh,vh)\ = (Gwh - (Gwh)r) vh dx

1/2

£ \Gwk-(Gwhh\2
0\ \\vh\\0

\t€Th ' /

tsTh

\x+ \Gwh\2)\\vh\\0.

In the above we used the estimate

\Gwh- (Gwh)T\Qt^Ch(\Gwh\lt+ \Gwh\2t)

(4.4)

For any wheHh we have | G M ; ^ | 2 ^ HGH^*» | |wA | | r Substituting this
estimate into (4.4) and then the resuit into (4.3) we obtain (4.2). D

Let f and aA be defïned for each et G Eh by

\bbt\
fds, dbf = n(e,-) n U9*) (4.5)

Define the norm || - ||a = (crl.,. )1/2. The error estimate for the solution to
Problem 3.1 is given in the following theorem :

THEOREM 4.3 : Let u and uh be the solutions of Problems 1.1 and 3.1
respectively. Assume that Th is a Delaunay triangulation and that Bjf is the
corresponding Dirichlet tessellation. Then there exists a positive constant
C = C ( | f t | ) , independent of h, such that

(4.7)

(4.8)

h{\GuI\x+

vol. 25, n" 4, 1991



454 J. J. H. MILLER, S. WANG

where Uj is the Hh-interpolant of u, î1 is the interpolant of f in LA and
OQ and G i are respectiveîy the îower bound of a and the upper bound of G, as
defined in Section 1.

Proof : In what follows we let C = C( |ft| ) dénote a generic positive
constant, independent of h. Take vh e Lh such that || vh || 1 L ^ 1. Multiplying
(2.2) by vh and integrating by parts we get

A(î9vh) + (Gu,vh)= (F9vh). (4.9)

Letting f7 = Iia{Vuj), where Ua is the operator defïned in the previous
section, we have from (2.10) and (4.9)

A{th - f7, vh) + (L(Guk) - L(Guj)9 vh) =

f7,t;A)+ {Gu~L{GuI)ivh)+ (F-F,vh)

= A(f- fj, vh) + (Gu - Guj, vh)

+ (Guj-L(Guj)yvk)+ (F-F,vh). (4.10)

By the définition of B(.,. )> from (4.10), using the Cauchy-Schwarz
inequality we obtain

\B(uh-ul9vh)\ ^ \A(f-fl9vh)\ + \(Gu-GuÏ9vk)\

+ \(Gu7-L(Gur\vh)\ + |(/-F,i? f c)|

^ |^(f-f /9i;A)| + \(Guf-L(Gur),vh)\

In the above we used Lemma 3.4. The first term on the right side of (4.11)
can be written in the form

A(f-fI,vh) = - £ [ (f-fI).nlbvhds.

Summing over dbl we get

A(i-fr,vh) = - £(» l2-o„) f (f-tr).n'dbids
i - l J 36,

| ' » â 1 | 9 * , | (4.12)
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where n'db dénotes the unit normal vector on bbt such that e f . n ^ => 0 and
V;j (j = 1,2) dénote the nodal values of vh at the two end-points of the edge
eh as shown in figure 2.2(a). Since Th is a Delaunay triangulation and
B[ is the corresponding Dirichlet tessellation we have n^ = e,. We get from
(4.12)

M 1
\

' kl

Using Hölder's inequality we obtain

\A(th-fl9vh)\*
1/2

X

1/2

- 110

(4.13)

since fT = ïla(Vuj) = Ill(aAVuI). In the above we have made use of
Lemmas 3.2 and 3.3. Substituting (4.13) into (4.11) and using Lemma 4.2
we obtain

h { \ G u I \ x + | ( G « / ) , ! , + H G 1 1 ^ . H « , 1 1 , ) ) . ( 4 . 1 4 )

a
(3.5) we fïnally obtain
Since (4.14) holds for ail vh G Lki \\vh\\ ^ 1, using the inf-sup condition

sup \B(uk-ul9vh)\

From the above inequality (4.7) follows immediately.
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Since fh - fJ e LA, using (2.3) and (2.9) we have

(a" \fh - f7), f A - f7) = (a" *(f* - f ), f* - f7) + (a- l(f - f7), f, - f7)

Using Cauchy-Schwarz inequality w obtain from the above équation

l l / | L / . (4 .15)
Finally, (4.8) follows from the triangular inequality and (4.15). We thus
have proved the theorem. D

We comment that (4.8) teil us nothing about the convergence of
ih to f. This is because even f is constant, the flrst term on the right side of
(4.8) becomes

M M

i = \ i = l

where ez
x dénotes a unit vector perpendicular to et. Thus, clearly,

|| f — f71| does not converge to zero as h -• 0. This shows that (4.8) does not
imply that || f — fh || converges to zero as h -• 0. Nevertheless, as we will see
in the next section, the computed terminal currents are convergent.

5. EVALUATION OF TERMINAL CURRENTS

The évaluation of terminal currents is of importance in practice. It is often
the final goal of device modelling. We now discuss a method for evaluating
terminal currents with the finite element method presented previously.
Since in this section we are concerned only with the current continuity
équations we have G == 0. Furthermore, for simplicity, we restrict our
attention to a device with a finite number of ohmic contacts and so
dD,D is a finite set of separated segments.

For any c e dfl£h let {xz
c} x

 c dénote the nodes on c. In what follows it is
necessary to make some assumptions about the construction of the meshes
Th and B^, These are contained in the following assumption.

ASSUMPTION 5.1 : Assume that Th is a Delaunay triangulation such that for
each contact c e d£lD, the end-points of c belong to the set of vertices
Xh of Th and B[ is the Dirichlet tessellation daal to Th.

Let i|/c be a piecewise constant function satisfying
Nc

1 x e

0 otherwise .
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Multiplying (2.2) by \\sc and integrating by parts we have

f • r
î.nds- £

Je b€Bv J

Thus the outflow current through c is

Jc=\î.nds = - £ f Vf-nds- (F, V) • (5.2)
Je beBv J db\ (96 n e )

Replacing f by the flnite element solution fh and F by the quadrature
approximation F in (5.2), we obtain the following approximate outflow
current through c

£ \ ¥h-nds- (F,*|ic). (5.3)
beBv JBb\ (dbDc)

From (5.3), (5.1) and the argument used in the dérivation of (2.14), we
obtain

Jf= I f f fh.nds~ [ Fdx]
j = i L J *H*j)\ (3è(xf) n c) Jb{xf) J

= y y _£-J_lifilJ *- F^X (5.4)
7-iL^W*/*1 1̂ 1 1̂ 1 J*(^) J

where Ij is the index set of neighbouring nodes of x as deflned in Section 2.
The convergence and the conservation of the computed terminal currents

are established in the following theorem.

THEOREM 5.1 : Let [f, u] and [fh, uh] be the solutions of Problems 2A and
2.2 respectively. Let Jc and J^ be respectively the exact and the computed
outflow currents through c e dQD. Under Assumption 5.1, there exists a
constant 7 :> 0, independent of h, such that

-aAVuh\\o+\\F-F\\o) (5.5)

where f and aA are defined in (4.5) and (4.6) respectively. Furthermore

£ £=-[ Fdx. (5.6)
cebSlD J &>
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Proof : The following proof of (5.5) is similar to that of (4.7). Let y
dénote a generic positive constant, independent of h. From (5.2-3) we have

I Bb\ (db nc)

Since i|/c is constant on c, summing over dbt, we obtain (5.5) as follows :

\J Jh\
\Jc~ Jc\

i = ï

r M

x I
L = i

+ \\F-

- e,

1/2

1/2

In the above we used Hölder's inequality and Lemmas 3.2, 3.3 and 3.4.
To prove (5.6), we first notice that

(5.8)

since, for all el e ^ 9 f;z is constant in each subregion n ( e j . Summing (5.3)
over all the contacts we have

bsBY Jhb\ (9 è n c>

= A (fh, \\t) — (F, \\J) (5-9)

where \\t ~ V i|/c and A(., .) is the bilinear form defïned in Section 2.
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From (5.8) and (5.9) we obtain

= - I F dx .

In the above we used (2.10) with G = 0 since \\t — \ e Lh. D

6. CONCLUSION

A Petrov-Galerkin mixed fïnite element approach based on a novel
formulation was used to approximate the self-adjoint System of second
order elliptic PDEs describing a semiconductor device. The existence,
uniqueness and stability of the approximate solution were proved for an
arbitrary triangular mesh and an error estimate was obtained for an
arbitrary Delaunay triangulation and corresponding Dirichlet tesselation.
No restrictions need to be imposed on the angles of the triangles in the
mesh. The resulting linar System coincides with that obtained from the
conventional box scheme with an inverse-average approximation to the
coefficient function. In the case of the semiconductor continuity équations
this is in fact an exponentially fîtted approximation to the coefficient
functions. The évaluation of the approximate terminal currents associated
with the method was discussed and the computed terminal currents were
shown to be convergent and conservative. This method may be applied to
the case of non-Delaunay triangulations if we introducé areas and lengths
with négative weights. Ho wever the coefficient matrices of the resulting
linear Systems may not be M-matrices. We will discuss this further in a
forthcoming paper.
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APPENDIX

Evaluation of the coefficients in the linear Systems arising from the
discrétisation of the continuity équations

In this appendix we discuss in detail the évaluation of aj^ in (2.16). From
the définition we have

\ (A.l)

where, by définition, £l(ejk) is the union of the two triangles obtained from
the construction of the mesh B% in Section 2 {cf. fig. 2.1). We omit the
subscript jk in (A.l) and assume that 12(e) = tx U t2, where e e Eh is an
edge of the mesh and tx and t2 are two triangles. Thus we have

(A.2)

where x = (jcl5 x2) and t/x = ^xj öfx2. In the case of the contmuity
équations (1.2-3) a(x) is equai to \xn e

1 ^ and (xp e"^(x) respectively. Thcre-
fore, if we assume that \xn and JJL̂  are constant, from (A.2) we see that we
need only to evaluate intégrais of the form

ƒ(*) =-L f e*(x)^x (A.3)
I* l J

where r is a triangle with vertices xz (Ï = 1, 2, 3 ) and <|)(x) = ± i|; (x). Since \\t
is the computed solution to the Poisson équation, we assume that i[/ is linear
on t and i|/(xz) = tyt 0* = 1, 2, 3 ). Let s = s(x) be the linear transformation
from t to the référence triangle i with vertices (0, 0), (1, 0) and (0, 1) in the
(s\, s2). Using this transformation (A.3) can be written in the form

I{t) = l- f det (J) e^s)dsl ds2

\i\ det (J) Ji

(A.4)
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where / = 8(JC1, x2)/d(su s2) is the Jacobian of the transformation which is a
matrix with constant entries and det (.) dénotes the determinant. Since
c()(x) is linear, <f>(s) is also linear and

<|>(s) = a0 + o^ Sj 4- <x2 s2 (A.5)

for some constants a, (i = 1, 2, 3 ). Substituting this into (A.4) we obtain

1(0=
Jo

a2 \ a \ ~ a2 a l

= — (e 2B-l(al-a2)-B-l(oil)) (A.6)
a2

where B{x) is the Bernoulli function defined by

x/(ex-l) x*0

1 x = 0

Since \|>(x) is linear and \Kxz) = *K ( l = 1, 2, 3 ) we have

Furthermore, since \t\ = 1/2, from (A.3)-(A.7) we obtain

(A.8)

01*1 -
(A.9)

Substituting (A.8) (or (A.9)) into (A.2) we obtain an expression for the
coefficient a~k

l in the linear System arising from the électron (or hole)
continuity équation. This expression is a function of the nodal values of *1*.
We remark that when the absolute values of the différences between the
nodal values i|/f (i = 1,2,3) are small, it is necessary to use Taylor
expansions about zero to obtain accurate évaluations of the right-hand sides
of (
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