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A TRIANGULAR MIXED FINITE ELEMENT METHOD
FOR THE STATIONARY SEMICONDUCTOR DEVICE EQUATIONS (*)

J.J.H. MiLLER (}) and S. WANG (V)

Communicated by R TEMAM

Abstract — A4 Petrov-Galerkin mixed finite element method based on triangular elements for
a self-adjont second order elliptic system arising from a stationary model of a semiconductor
device 1s presented This method 1s based on a novel formulation of the corresponding discrete
problem and can be regarded as a natural extemnsion to two dimensions of the well-known
Scharfetter-Gummel one-dimensional scheme Existence, umgqueness and stabiuity of the
approximate solution are proved for an arbitrary triangular mesh and an error estimate 1s gven
for an arbitrary Delaunay triangulation and 1ts Dirichlet tesselation No restriction s required on
the angles of the triangles in the mesh The associated hnear system has the same form as that
obtained from the conventional box method with an exponentially fitted approximation to the
coefficient function on each element The evaluation of the termmal currents associated with the
method 1s also discussed and 1t 1s shown that the computed terminal currents are convergent and
conservative

Résumé — On présente 1c1 une méthode d’éléments fimis nuxte, de type Petrov-Galerkin,
basée sur des éléments triangulares, pour un systéme elliptique auto-adjoint du second ordre,
émanant d'un modéle stationnaire pour des semiconducteurs Cette méthode est basée sur une
nouvelle formulation du probléme discret correspondant et peut étre considerée comme une
extension bidimensionnelle naturelle de la methode bien connue de Scharfetter-Gummel
L’existence, l'umcuté et la stabilité de la solution approchée sont établies pour un maillage
triangulan e arbitraire et une estimation de l'erreur est donnée pour une triangulation de Delaunay
arbitraire et sa tesselation de Dirichlet Aucune iestriction n'est imposée sur les angles des
triangles du maillage Le systéme assocte a la méme forme que celle obtenue par la traditionnelle
« box-method » avec une approximation du coefficient de type exponentiel sur chaque élément
On discute ausst l'evaluation des courants a travers les terminaux associes a cette méthode et on
démontre que les courants calculés sont convergents et conservatifs

(*) Recerved December 1989, revised February 1990
(Y) Numerical Analysis Group, Trinity College, Dublin 2, Ireland
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442 J. J. H. MILLER, S. WANG

1. INTRODUCTION

The stationary behaviour of semiconductor devices in two dimensions can
be described by the following coupled system of nonlinear second-order
elliptic partial differential equations [24].

eV =meY—pe Y- N (1.1
V. (p"n el‘bvn) = R(d’: M, p) (12)
V. (ke ¥Vp) =R(¥,m,p) 1.3)

with appropriate interface and boundary conditions. Using Gummel’s
method [13] and Newton’s method we can decouple and linearise the
equations of this nonlinear system so that at each iteration step we have to
solve a set of three linear equations of the form

V. (@) Vu)+ G(x)u=F(x) inQ (1.4

with the boundary conditions u |, = y(x) and Vu.n |, =0, where
Q cR? 30 = 30, U 8Qy is the boundary of Q, 8Q;, N 3Q, =, n denotes
the unit outward normal vector on 3Q, ae C%Q), a =a(x) = ay =0,
Ge H'(Q)NCYQ), G;=G(x)=G,=0 and Fe L*Q). Here a,
a;, Gy and G| are constants.

In what follows we consider only homogeneous Dirichlet boundary
conditions y(x) = 0. For the inhomogeneous case we can subtract a special
function satisfying the boundary conditions and reduce the problem to a
homogeneous one. We assume for simplicity that 8 is polygonal.

To solve (1.4) with the given boundary conditions the box method [17, 8,
19] is often used. Analyses of this method can be found for example in [21,
4, 16 and 14]. More recently Markowich and Zlamal [18], presented a
triangular finite element method for the solution of (1.4). Brezzi et al. [5, 6,
7] also presented some mixed finite element methods for the solution of
(1.4). However, their methods are based on triangulations having acute
angles only. In this paper we present a triangular finite element method for
(1.4) under milder restrictions on the triangles. This method is based on a
novel discrete formulation. The formulation of the method is discussed in
the next section. The existence and uniqueness of the discrete solution are
proved for an arbitrary triangular mesh in Section 3. In Section 4 we give an
error estimate for the approximate solution under mild restrictions on the
mesh. Finally, in Section S it is shown that the terminal currents computed
by the method are convergent and conservative.

In what follows L2(Q) and W™?(Q) denote the usual Sobolev Spaces
with norms || . ||, and || . ||, respectively (cf. for example [1]). The inner
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A PETROV-GALERKIN MIXED FINITE ELEMENT METHOD 443

product on L?() and (L*Q))? is denoted by ( ., .) and the k-th order
seminorm on W™?({)is denoted by | . |, » The Sobolev space W™ 2(Q) is

denoted by H™({)) and the corresponding norm and seminorm is denoted
respectively by || . ||, and || . ||,. We put L?(Q) = (L*(Q))* and H},(Q) =
{ve H'(Q):v|,, =0}. Weuse | . | to denote absolute value, Euclidean

length or area, depending on the context.

2. THE PETROV-GALERKIN MIXED FINITE ELEMENT FORMULATION

As in Miller et al. [20], by the introduction of a new variable
f=aVu, we get from (1.4) a first order system of PDEs in the variables
[f, u]

Vu—a 'f=0 2.1
~V.f+Gu =F. 2.2)

The corresponding variational problem is

PROBLEM 2.1: Find a pair [f,u] € L>(Q) x Hy(Q) such that for all
[0, v] € L*(Q) x Hp(Q)

(Vu,q)- (@ '£f,q)=0 (2.3)
(£, Vo) + (Gu, v ) = (F,v). (2.4)

The existence and uniqueness of the solution to Problem 2.1 have been
proved (see, for example, [22]).

To discuss the finite element approximation to Problem 2.1 we first define
some meshes on . Let G denote a family of triangulations of

G = {Th:0<hSh0}

where T}, denotes a triangulation of (} with each triangle ¢ having diameter
h, less than or equal to 4 and A is a positive constant which is smaller than

the diameter of Q. For each T, € G, let X, = {x,}iv" denote the set of all

vertices of 7}, and E, = {e,-}I]vE the set of all edges of 7,,. We denote by
p, the diameter of the incircle of ¢.

DEFINITION 2.1: The family of meshes G is regular if there exists a

constant oy > 0, independent of h, such that

max — <o; Vhe (0, h,].
teT, P:

We assume henceforth that G is regular.

vol. 25, n° 4, 1991



444 J J H. MILLER, S WANG

DEFINITION 2.2 : T, is a Delaunay triangulation if, for every t € T}, the
circumcircle of t contains no other vertices in X, (cf. [10]).

DDEFINITION 2.3: The Dirichlet tessellation D, corresponding to the
triangulation T, is defined by D, = {D,}IIVV where

D, ={x:|x—x|<|x-—x|,x€Xj#i)} 2.5)

for all x, € X, (cf. [11]).

We now construct two new meshes associated with the triangulation
T;.
For each x, € X, we define the open region (x,) consisting of the union
of all the triangles ¢ € 7}, with the common vertex x, and an open region
b(x,) =« Q(x,) constructed as follows : for each 7 — Q(x,), choose a point
p € t arbitrarily and connect it to the midpoints of the two edges of ¢ sharing
x,, as shown in figure 2.1. (We remark that p € ¢ is not necessary. However,
for simplicity, we assume it does. We also assume that the same
p et is chosen for each vertex of z) The domain within the resulting
polygon is b(x,). For the sake of convenience, we sometimes denote
b(x,) simply by b. The set of all such b(x,) is denoted by B} which we regard

as a dual mesh to T;,. We put 8" = {B/:0 <h=<h,}.

X

JA%N

The region Q(x)
~—— The region b(x)
_____ The region Qfe)

Figure 2.1. — The regions ©(x), b(x) and £(e) for the vertex x and edge e.

With each edge e, € E, we also associate an open region {(e,) by
connecting the two end-nodes of e, with the two chosen points in the two
triangles sharing e, generated during the construction of B}. This is shown in
figure 2.1 by dashed lines. The corresponding quadrilateral mesh is denoted
by BE. We remark that Bf is determined uniquely by B/, and vice versa, and
that BF divides each e 7, into three triangles t,, f,, 1. We put
B = (B0 <hs<h,).
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A PETROV-GALERKIN MIXED FINITE ELEMENT METHOD 445

DEFINITION 2.4 : The family of meshes Bt is regular if there exists a
positive constant o,, independent of h, such that for any i, j € {1,2,3},
i#j

la] + 1]
V>0, Yhe (0,h]. (2.6)
teT, ltl

Regularity of %% is equivalent to the condition that for all ¢ € 7}, and the
chosen point p € ¢, the minimal distance between p and the vertices of ¢ has
a positive lower bound. Note also that regularity of #* implies that there is
a positive constant o3 independent of 4, such that

_[b(x)]
n— "> g, Vhe (0,h,). 2.7
x, €X, |Q(X,)|

We remark that if 7, is a Delaunay triangulation and the point
pet is chosen to be the circumcentre of ¢, for each ¢t € 7),, then the
corresponding mesh B) coincides with the Dirichlet tessellation dual to
T,, i.e. B = D,,.

Corresponding to the three meshs Bf, T) and B}, we now construct three
finite-dimensional spaces L, c L}(Q), H,c Hy(Q) and L, < L*(Q) as
follows. Without loss of generality, we assume that the edges and vertices
are numbered so that {e,}11w is the set of all egdes in E, not on
390, and {xl}iv is the set of all nodes in X, not on 3Qp.

For the mesh corresponding to Bf we define, for each i =1, 2, ...,
N, a piecewise constant vector-valued function with domain Q by

e, ifxe Q(e)

13

ql(x) =
0 otherwise

where e, is the unit tangential vector along the edge e,. Obviously we have
(q,-q,) =5,|Q(¢)|, where 3, is the Kronecker notation. We take
M
L, = span {q,},.
Next, letting {$,}) " be the conventional piecewise linear basis functions
for T,, we define H, = span {d>,}11v.
Finally, to construct L, we define a set of piecewise constant basis
functions ¢,, (i =1,2,..., N ) corresponding to the mesh B,f/ as follows :

1 ifxeb(x)
¥, (x) = :
0 otherwise
We then define L, = span {\p,}‘:v.

vol 25, n° 4, 1991



446 J J. H MILLER, S WANG

We introduce the mass lumping operator L : C °(Q) — L*(Q) such that
for any u e C°%Q)

La)(x) = ¥ u(x)¥,(x) ¥xe . (2.8)

x5 EXp

Using the three finite dimensional spaces we now define the following
discrete Petrov-Galerkin problem.

PROBLEM 2.2: Find a pair [f,u,]€L,x H, such that for all
[qh’ vh] € Lh X Lh

(Vuh’ qh) - (a_lfh’ qh) =0 (29)
A(f, v,) + (L(Guy),v,) = (F,v)) (2.10)

where F is a (quadrature) approximation to F and A(.,.) denotes the
bilinear form on L, x L, defined by

A, v,) =—- Y J £, mas vo(vs|,) ds. (2.11)
ab

bsB,f/

Here v, |, denotes the restriction of v, to b, ¥,(v[,) denotes the continuous
extension of v|, to @b and ny is the unit outward normal vector on

80.
N

M
Letf, = % f.q, u,= ) u &, where {f, }1” and {u,}jlV are two sets of

=1 =1

constants. Substituting these into (2.9) and taking q;, = q,, we get

N

f’(a_lq” q]) - Z ul(Vd.)l’ q]) =0

1 1=1

Mk

3

(i

for each j = 1, 2, ..., M. This linear system of equations has the solution

1 Up—u,y
fj=—__—1——J J _] = 1,2, ...,M

q, Iejl

1 1

IQ (ej) I n(ej)
For the evaluation of aj‘1 we refer to the Appendix. Thus we have

where a a”'dx and u, = u,(x,), k = 1, 2 (see fig. 2.2a).

M
1 Up—uy

f, = Z ——l—lel—‘h- (2.12)

|=1al_

MZ2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



A PETROV GALERKIN MIXED FINITE ELEMENT METHOD 447

€
%}2
g]
le
(a)
ejk
/ Xk
(413
X;
(b)
Figure 2.2. — Alternative notation for edges and their end-points.

Substituting (2.12) into (2.10) and letting v, = §,, we obtain

M -
-2 —1“——*J Q- Ny ds + (L(Guy), 4) = (F,4)) (2.13)
3b(x)

for each j = 1,2, ..., M. From its definition (see fig. 2.1) we know that
0b(x,) consists of a finite number of segments. Clearly 3b(x) N Q(e,)
consists of at most two segments which we denote by b, ; and
ob, , if x, 1s an end-point of e, Therefore, from (2.13), we have for
j=12, .., N

2 -~
Z €, 'nl_],klablj,kl + (L(Guh)a ll’j) = (Fa l“’]) (214)

=14 |et| k=1

where n,; , denotes the unit vector normal to 8b,, ,. It is easy to see that
le,.m,, | |8b, ;| is equal to the length of the projection of 8b,, , onto the
line perpendicular to e,. This length is actually the distance from the chosen
point p € t; to e, ie. the height of the triangle Q(e,) N ¢, with base
e,, where ?;, denotes the triangle having e, as one edge and containing
b, x- From the formulae for evaluating the area of a triangle we have

2 2|Q(e)|
Z |ez’nzj,k“ablj,k| =—.
I=1 Iel|

Finally, with the notation in figure 2.25, taking into account the sign of each
e .n, ; and using (2.14) and (2.15) we find that for all j =1, 2,..., N

(2.15)

Lzlﬂ(ejkﬂ u, —u

L

k -~
+Gjuj|b(xj)| = (F,lbj) (2.16)
ker, Gk |ejk| |ejk|

where I, = {k:e, € E,} is the index set of neighbouring nodes of

x, and G, = G (x).

vol 25, n° 4, 1991



448 J. . H. MILLER, S. WANG

The coefficient matrix of (2.16) is a symmetric, positive definite M-
matrix. The latter property follows from the fact that it is a diagonally
dominant matrix with all diagonal elements positive and all nonzero off-
diagonal elements negative (see, for example, [25, § 3.5]). When T}, is a
Delaunay triangulation and Bj is the Dirichlet tessellation dual to
7,, the term 2|Q(ejk)|/|ejk| in (2.16) is the length between the circum-
centres of the two triangles sharing e; and |b(x;)| = |D;|, where
D; is defined in (2.7). Therefore the expression (2.16) coincides with that
obtained from the conventional box method with an inverse-average
approximation to the coefficient function a.

3. EXISTENCE, UNIQUENESS AND STABILITY OF DISCRETE SOLUTIONS

In this section we prove that Problem 2.2 has a unique solution and that
the solution is stable. Instead of proving directly that the mixed Problem 2.2
has a unique solution we consider an equivalent problem for which the
existence and uniqueness of the solution can be established by standard
finite element analysis.

Let I1, be the operator from VH, = {Vu,:u, € H,} to L, determined by
(29) with @ as a parameter. Introducing the bilinear forms
A(uy, v,) = A, Vu,, v,) and B(uy, v,) = A(uy, ;) + (L(Guy),v,) on
H, x L,, we define the following problem :

PROBLEM 3.1: Find uj, € H), such that for all v, € L,
B(uy, vy) = (F,v,) . (3.1

We say that problem 2.2 is equivalent to Problem 3.1 if the following two
conditions hold :

(1) If [f,, u,] is a solution of Problem 2.2, then u,, is a solution of Problem
3.1.

(ii) If u, is a solution of problem 3.1, then [II, Vu,, u;,] is a solution of
Problem 2.2.

THEOREM 3.1 : Problem 2.2 is equivalent to Problem 3.1.

Proof : Assume that u,, is a solution of Problem 3.1. From (2.8) and the
choice of L, we know that there is an f, e L, such that for all
q, €L,

(Vuy, q;) — (@™ ', 9,) =0

i.e. f, = II, Vu,. Making use of the definition of B(u,, v,) and the above
equality we know that (3.1) reduces to (2.10) and therefore [II, Vi, u,] is a
solution of Problem 2.2.

M2AN Modélisation mathématique et Analyse numérique
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A PETROV-GALERKIN MIXED FINITE ELEMENT METHOD 449

Conversely, if [f,, u,] is a solution of Problem 2.2, elimination of
f, in Problem 2.2 yields Problem 3.1, as shown in the previous section. O

LEMMA 3.2 : Assume that that BE is regular. Then there exist constants
C,, C,=0, independent of h, such that for any u, € H,
CillVuplly =< 114 Vuy ||, < Cof| Vuyl, - 3.2)

Proof : From Section 2 we know that for any u,e H,, II, Vu, =
M

Y (Vu,.e,) |e’ q,- Thus
=1

|| Vu,, — 10, Vu,,||§: |V — (Vuy, . e,) e, |* dx
Q(e,)

»

L.

|Vuy, . e |? dx
Q(e,)

~

—
(3

il
M'g \\Mg \\ME

[Vu,|® cos? e, , dx

1V Q(e)

i

[

where e} denotes the unit normal vector to e, such that Vu,.e; =0 and
Vu,.et

|Vuh|
t € T, we have

cos 0, , = . Since Vu, is constant in each ¢ € 7,, summing over

[Vuy = T, Va, |2 = 5 | Vaty | [cos® 0, | 11| + cos? 6, 5| 1] + cos® 0 5|13 ]]
teTy

< af Vu,,”g (3.3)

where ¢, #, and ¢; are the three triangles which form a partition of ¢,
e, e, and e, are the three edges of ¢ and

cos® 0, | |t;| + cos® 8, 5|2, + cos 8, 5|13
o = max .

teTy |t|

Since A% is regular, from (2.6) we know that, for all te T, the
h, ty, t3 satisfy |¢] = || + || + |#] and

|2,
masza<l

where o is a positive constant, independent of 4. Furthermore, since for
eachi=1, 2 3

cos’ 0, , <+

vol. 25, n° 4, 1991



450 J. J. H. MILLER, S. WANG

where 0 <y < 1 is a constant, independent of %, and y < 1 for at least one

ie {1,2,3}, it is easy to see that a < 1. Thus (3.3) implies (3.2). 0
When restricted to H),, the lumping operator L and its inverse

L~ are linear and bounded. This is established in the following lemma.

LEMMA 3.3 : Assume that BE is regular. Then there exist positive constants
C, and C,, independent of h, such that for all u, € H,

Cillunlly= 1L @n)lly= Calluall, - G4

Proof : See [15, p. 23] or [4]. O
Define a functional on L, by || ¢, , = VL™ '(vy) |, for all v, € L. We

have the following lemma.

LEMMA 3.4: Assume that B* is regular. Then | . |, , is a norm on

L, and there exists a positive constant C, independent of h, such that
1oally = Cllvall, , Jor all v, € L.

Proof : It is easy to see that the triangle inequality is satisfied by
I~ Iy, and [[av,|l, , = |a||vs]|, , forallv,e L, and all a € R. We now
prove that if |v,|, , =0, then v, =0.Infact,if |uv,[, , =0 for a
vy € Ly, from its definition we have | VL™ '(v;) |, = 0. Since L~ '(v;) € H,,
we have |[L~'(v,) |, =0 (generalised Friedrichs’ inequality, see, for
example, [12, p.25]) and so !!L‘l(vh)!!0=0. Using (3.4) we obtain
[vsll, = 0 and thus v, = 0. Thus ||. ||, ,

Furthermore, since L~ '(v,) € H,, for all v, € L,, we have

is a norm.

loall, . = IVL7 @D = C L7 @) = CIL™ @]l = C ol

where C denotes a generic positive constant, independent of 4. In the above
we used the generalised Friedrichs’ inequality and Lemma 3.3. O

The existence and uniqueness of the solution to Problem 3.1 is contained
in the following theorem :

THEOREM 3.5 : Assume that B~ is regular. Then Problem 3.1 has a unique
solution and the solution is stable.

Proof : In fact the existence and uniqueness of the solution to Problem 3.1
has already been established since we have shown that the coefficient matrix
of (2.16) is a symmetric and positive definite M-matrix. To prove the
stability, we need to verify only the following coercivity inequality (see, for
example [2])

sup | B(uy v)| = agaf|uy ||, Vu, € H, (3.5)

vy € Ly, |log 1,2 <1

M?AN Modélisation mathématique et Analyse numérique
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A PETROV-GALERKIN MIXED FINITE ELEMENT METHOD 451

where a is a positive constant, independent of 4, u,, v, and a, and constant
ag is the lower bound of a defined in Section 1. In what follows we use C to
denote a generic positive constant, independent of 4, u,, v, and a.

If u, = 0 then clearly (3.5) holds. When u, # 0 we put 7, = L (u)/ %V,

where v,, = || Vi, ,. Then |7, ||1)L =1 and

A(uy, 0,) = A (”h’ L) )

YVu,

L Z J‘ HaVuh.nabL(uh)ds
ab

Y
“h e BhV

= L Z uh(;cb) J Ha Vuh N LY ds (38)
b

“hpe Bl

where x, is the mesh node contained in . Summing (3.8) over 95, =
U (36 N Q(e,)) we obtain, using arguments similar to those in the
beB,ﬁl

derivation of (2.16)

_ B | ,
A(up, 0y) = — z (U —u,) J I1, Vu, . g, ds
ah,

Up 1 =1

121 (- 1,0)°2|0(e)]

yuz:lal_l |e,| |e,|
2l% 5 (_> 10|
Yu =1 |el|
2 aq
= T8, Vae ||
Uy
2
[ Ven
B2a0C—
”Vuh”()

?41001“"11”1

where n;, denotes the unit vector normal to 8b, chosen so that the angle
between ny, and e, is smaller than /2. In the above we used (3.2) and the

generalised Friedrichs’ inequality (see, for example [12, p. 25]). It follows
that for all u;, € H,

sup |B(ulu vh)' = ’Z(uh’ Eh) + (L(Guh)a Eh) =0aqp A ||“h||1
vn € Ly Jl vglfo <1

vol. 25, n° 4, 1991



452 J ¥ H MILLER, S WANG
since G =0 and

(L(Guy), 1) = = (L(Guy). L)) = - ¥, G, ullb,] =0

Up Up -1

where u, = u,(x,) This completes the proof of the theorem 0O
From Theorems 3 1 and 3 5 we have

COROLLARY 33  Assume that B i1s regular Then Problem 22 has a
unique solution

We comment that Problem 3 1 can be regarded as a generalised finite
element method which 1s closely related to a mixed finite element method
For details, we refer the reader to, for example [3]

4 ERROR ESTIMATE

In this section we give an error estimate for the approximate solution to
Problem 2 2 We first state the following lemma

LEMMA 41 Assume that T, is a Delaunay triangulation and that
B! 1s the corresponding Dirichlet tessellation Then there exist positive
constants C| and C,, mdependent of h, such that for all w, € H;, and all

v,e L,
||L(W]Z)-—Wh||0$clh|whll (4 l)
and
i(Gwh_L(Gwh)’ vh)i =
sCzh”vhllo(IGWhh"‘ |(Gwh)1|,+ IIGIIszlIthIl) (42)

where (Gw ), denotes the Hj,-interpolant of Gw,

Proof For the proof of (4 1) we refer to [9] or [15, p 23] We now prove
(42)
For any w, € H,, we have
|(Gwh — L(Gw,), Uh)| =
= ! (Gw), — (Gw ), vy) + (L((Gwy)) — L(Gw,), v,)
+ ((Gw)r — L((Gwy)p), v,) |

for all v, e L, Since (Gw,)(x,) = (Gw,); (x), Vx, € X, using (4 1) we
have from the above equality

| (Gw, — L(Gw,), v4)| <
< [(Gw), — (Gwp)Lv)| + | ((Gw,); — LUGW)1), v,)|
SChHUh”O |(GWh)1|1+ |(GWh* (Gw ) Uh)| 43)

M?AN Modelisation mathematique et Analyse numerique
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Using Cauchy-Schwarz inequality we have

I(Gwh - (Gwy)p ”h)] =

f (Gwy — (Gwy)) v, dx

XET;,

12 12
< <J |Gwh—(Gwh),| dx) (Jvf,dx)
157‘;, t

1/2
<ch( 3 lowi-@warl},) "l

teTy
2 2 172
sCh< T (Gwil?,+ |Gwh]2,t)> 1541l
teTy
< Ch(|Gwal, + |Gw, )04, @.4)

In the above we used the estimate
|GWh— (Gwh)1|0’tsCh(|Gwh|1’t+ |GWh|2’t) Vte Th'

For any w, e H, we have |Gw,|,=< |G| 2o |w,l,. Substituting this
estimate into (4.4) and then the result into (4.3) we obtain (4.2). O
Let T and a, be defined for each ¢; € E,, by

T o, = |ab|j fds, ob, _Q(e)ﬂ(uab) 4.5)

bEBh

1- = ~1
aglgy= | —— a dx) . 4.6)
e ( || Jae

Define the norm || . ||, = (a~'.,.)" The error estimate for the solution to
Problem 3.1 is given in the following theorem :

THEOREM 4.3 : Let u and u, be the solutions of Problems 1.1 and 3.1
respectively. Assume that T, is a Delaunay triangulation and that B is the

corresponding Dirichlet tessellation. Then there exists a positive constant
C = C(|Q)), independent of h, such that

||u,l—u,”1<— <”f—aA Vu,” +Gyllu—ug, + "I:‘—F”o

+h(Guy| + [Gupil, + 16 el ) @)
If=full, <200 -]+ [laV(u-un], (4.8)
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where u; is the H,-interpolant of u, f' is the interpolant of f in L, and
ay and G are respectively the lower bound of a and the upper bound of G, as
defined in Section 1.

Proof : In what follows we let C = C(|Q|) denote a generic positive
constant, independent of 4. Take v, € L, such that ||v, = 1. Multiplying

(2.2) by v, and integrating by parts we get

I,

A, v,)+ (Gu,v,) = (F,v,). 4.9

Letting f; = I1,(Vu;), where II, is the operator defined in the previous
section, we have from (2.10) and (4.9)

A, — 1, 0,) + (L(Guy) — L(Guy),v,) =
= A —f,v,)+ (Gu— L (Gu;),v,)+ (F—F,vy)
=A{f -1f,v,)+ (Gu— Guy,vy)
+ (Gu; — L(Guj),v,)+ (F-F,v,). (4.10)

By the definition of B(.,.), from (4.10), using the Cauchy-Schwarz
inequality we obtain

| B(uy, —unv)| = |[A0Ef—fLv)| + | (Gu - Gu ,v,)]
+ |(Guy = L(Gu), v)| + | (F = F,v))|
= |A(f——f,,vh)| + |(Gu,—L(Gu,),vh)|
+ C(Gyllu—ul,+ [F—Flo- @4.11)

In the above we used Lemma 3.4. The first term on the right side of (4.11)
can be written in the form

A —1,v,) =~ Z J (f—1;).nyv,ds.
y v ab

be By

Summing over 3b, we get

M
AR —f,0,)=— Y (vy—v,) [ (f—1£7) . ny, ds
1=1 v 3b,
M _
== ¥ oo )(F1)|, .nplon| @412

1=1
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where ny, denotes the unit normal vector on 8b; such that e;.n;, >0 and

v;; G =1, 2) denote the nodal values of v, at the two end-points of the edge
e;, as shown in figure 2.2(a). Since 7}, is a Delaunay triangulation and
B/ is the corresponding Dirichlet tessellation we have ny, = e; We get from

@.12)
-2|Q(e,-)|

M
A -fLv,) =3 (vi2_vil)(f_f1)|n(e)'ez e ]
1=1 ' i

Using Holder’s inequality we obtain

|48, —fr0,)| <

A= \? 12
o5 (g

=1 €;

172

M _ 2
) (Z <(f_f’)|n(e)'ei> |Q(ei)|)
=1 !
=2 1L VL= o) | || (F = a4 Vup) ||,
=C ”vh||1,L||f—aA Vu]”o
<C |f-a, Vu,”o (4.13)

since f; = I1,(Vu;) = II,(a, Vu;). In the above we have made use of
Lemmas 3.2 and 3.3. Substituting (4.13) into (4.11) and using Lemma 4.2
we obtain

|B(uy, —up,v,)| <C (||f_a,, Vup|| + Gillu—upl,+ [|F - Fl,+
+h(|Guyl + | (Gup|, + G yaollur] D) - (4.14)

Since (4.14) holds for all v, € L;, ||v,|, , <1, using the inf-sup condition
(3.5) we finally obtain

aoailuh—uzllls sup |B(uh_“1’vh)|
vpe Ly |[vall1,z <1

=<C (nf—aA Vu,“o+ Gillu—us,+ | F - I:"HO
+h(lGu1l1 + |(Gu1)1|1 + “G”WZ,m”ulnl)) .

From the above inequality (4.7) follows immediately.
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Since f, — f/ € L,, using (2.3) and (2.9) we have
(@' -1, —f) = (@@ -0, — )+ (@' T 1), £, - 1)
(V(uy—u), £ =) + (@ '(F— 1), " — ) .
Using Cauchy-Schwarz inequality w obtain from the above equation
I — £, < I =)l + [laV(u—up],- (4.15)

Finally, (4.8) follows from the triangular inequality and (4.15). We thus
have proved the theorem. O

We comment that (4.8) tell us nothing about the convergence of
f, to f. This 1s because even f is constant, the first term on the right side of
(4.8) becomes

M M

_ 2 _

IE=FI2=a5' ¥ |- E.e)el’=a5' Y Gt V|0
=1 1=1

where e denotes a unit vector perpendicular to e, Thus, clearly,

£ — £ , does not converge to zero as h — 0. This shows that (4.8) does not

imply that ||f —f, || converges to zero as 4 — 0. Nevertheless, as we will see
in the next section, the computed terminal currents are convergent.

5. EVALUATION OF TERMINAL CURRENTS

The evaluation of terminal currents is of importance in practice. It is often
the final goal of device modelling. We now discuss a method for evaluating
terminal currents with the finite eiemeni method prescated previcusly.
Since in this section we are concerned only with the current continuity
equations we have G =0. Furthermore, for simplicity, we restrict our
attention to a device with a finite number of ohmic contacts and so
3Q), is a finite set of separated segments.

N, .-
For any c € 8Q2, let {xf}l denote the nodes on ¢. In what follows it is

necessary to make some assumptions about the construction of the meshes
T, and B/. These are contained in the following assumption.

ASSUMPTION 5.1 : Assume that T) is a Delaunay triangulation such that for
each contact c € 38}y, the end-points of ¢ belong to the set of vertices
X, of T, and B} is the Dirichlet tessellation dual to T).

Let ¢¢ be a piecewise constant function satisfying

1 xe Qb(xf)
¥(x) = ! 5.1

0 otherwise .
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Multiplying (2.2) by ¢¢ and integrating by parts we have

—ff.nds—

Thus the outflow current through ¢ is

[ W f.nds = (F,¥°).
ab\ (3b N c)

beB;f/

Jc=jf.nds:— J Yf.nds — (F,¢°). (5.2)
c ab\ (3b N ¢)

bEB;E/

Replacing f by the finite element solution f, and F by the quadrature

approximation F in (5.2), we obtain the following approximate outflow
current through ¢

Jg’:Jf,,.ndh_ ZJ' U, nds— (F, 4% . (5.3)
4 ab\ (3bN¢c)

bEBhV
From (5.3), (5.1) and the argument used in the derivation of (2.14), we
obtain

Ne

J=73 [J f,.nds— J Fdx]
S L asenn @ven 0o b(x)

_ 5 2 Q)] “j—“k’_J
- Z L Z 1 (xS

S0 | kel g ec Gk leji | lejk

F dx} (5.4)

)

where I; is the index set of neighbouring nodes of x; as defined in Section 2.
The convergence and the conservation of the computed terminal currents
are established in the following theorem.

THEOREM 5.1: Let [f, u] and [f,, u,] be the solutions of Problems 2.1 and
2.2 respectively. Let J, and J* be respectively the exact and the computed
outflow currents through c € 9Q,. Under Assumption 5.1, there exists a
constant y = 0, independent of h, such that

[Je= 2L = Il (T = aa V|| + || £ = E]),) (5.5)

where T and a, are defined in (4.5) and (4.6) respectively. Furthermore

% Jf:—j Fdx. (5.6)
Q0

cedfdp

vol. 25, n” 4, 1991



458 J ¥ H MILLER, S WANG

Proof : The following proof of (5.5) is similar to that of (4.7). Let y
denote a generic positive constant, independent of 4. From (5.2-3) we have

Jo-Jl=-Y J W —1).nds+ (F-F, ). (5.7
ab\ (8bNc)

bEB},’

Since ¢ is constant on ¢, summing over d8b,, we obtain (5.5) as follows :

e —J¢| =< f W —1,).nds | + |(F-F, )
be BY b\ (3bnNc)
M _ 2 || .
= | ¥ =¥ (F-1,) f——— | + |(F = F,¥°)
ey e, le, |
oW - ) |2 172
sz[z (_——2|e| ‘ ) |n(e,)|] x

< £ (=0l o) 10|

”F_ F”o"“’cuo

+

= 2 | T (VL Q) ||| = ay V) || + | F = E| 1 ¢°1],

¢ /= Il pad o
<2y 190, , (1T —aq V|, + |7 = 7)) -

In the above we used Holder’s inequality and Lemmas 3.2, 3.3 and 3.4.
To prove (5.6), we first notice that

A(fy1) =

bsB;f/

J f,.nds =0 (5.8)
ab\ (8b M 32 )

since, for all e, € E,, f, is constant in each subregion Q(e,). Summing (5.3)
over all the contacts we have

Y A-- YT whd- (e
b Blr ab\ (8b Nc)

cedp cedlp
-- 3 J Ut,.nds — (F,¥)
bsB,f/ b\ (8bNc)
= A, ¥) — (F,¥) (5.9)

where ¢ = Z ¢¢ and A(,.) is the bilinear form defined in Section 2.

cedlp
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From (5.8) and (5.9) we obtain

Y M= AW -1 - (Fb-1)— (£, 1)
=—J Fdx .
a

In the above we used (2.10) with G =0 since $y—1e L, O

6. CONCLUSION

A Petrov-Galerkin mixed finite element approach based on a novel
formulation was used to approximate the self-adjoint system of second
order elliptic PDEs describing a semiconductor device. The existence,
uniqueness and stability of the approximate solution were proved for an
arbitrary triangular mesh and an error estimate was obtained for an
arbitrary Delaunay triangulation and corresponding Dirichlet tesselation.
No restrictions need to be imposed on the angles of the triangles in the
mesh. The resulting linar system coincides with that obtained from the
conventional box scheme with an inverse-average approximation to the
coefficient function. In the case of the semiconductor continuity equations
this is in fact an exponentially fitted approximation to the coefficient
functions. The evaluation of the approximate terminal currents associated
with the method was discussed and the computed terminal currents were
shown to be convergent and conservative. This method may be applied to
the case of non-Delaunay triangulations if we introduce areas and lengths
with negative weights. However the coefficient matrices of the resulting
linear systems may not be M-matrices. We will discuss this further in a
forthcoming paper.
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APPENDIX

Evaluation of the coefficients in the linear systems arising from the
discretisation of the continuity equations

In this appendix we discuss in detail the evaluation of a;; 'in (2.16). From
the definition we have

1
I(e = j ald Al
ey) = lﬂ( ol Jacew x (A1)

where, by definition, {1(e,) is the union of the two triangles obtained from
the construction of the mesh B/ in Section 2 (cf. fig. 2.1). We omit the
subscript jk in (A.1) and assume that Q(e) = ¢; U #,, where e € E, is an
edge of the mesh and ¢, and ¢, are two triangles. Thus we have

— 1 -1
I(e)_———ln(e)| Q(e)a (x) dx

1 2 1
a7 2 14l (TJ

where x = (x, x,) and dx =dx;dx,. In the case of the continuity
equations (1.2-3) a(x) 1s equal to ., ¥ and p, e *™ respectively. There-
fore, if we assume that p, and p, are constant, from (A.2) we see that we
need only to evaluate integrals of the form

a”'(x) dx ) (A.2)

1) = I_i_l J RICE (A3)

where ¢ is a triangle with vertices x, (i = 1,2, 3 ) and ¢ (x) = + ¥ (x). Since ¥
is the computed solution to the Poisson equation, we assume that s is linear
on tand Y(x,) = ¥, (i =1, 2,3). Let s = s(x) be the linear transformation
from ¢ to the reference triangle 7 with vertices (0, 0), (1, 0) and (0, 1) in the
(51, 2). Using this transformation (A.3) can be written 1n the form

1
| ] det (/)
= —];—-j‘ ed)(s) dsl dSZ
| 77

1(?) (A.4)

1(1)

Il

j det (J) e*® ds, ds,
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where J = 8(x;, x5)/3(s,, 5,) is the Jacobian of the transformation which is a
matrix with constant entries and det (.) denotes the determinant. Since
& (x) is linear, $(s) is also linear and

$(s) = xp+ &y Sy + %y 5 (A.5)
for some constants o; (i = 1,2, 3 ). Substituting this into (A.4) we obtain

. 1 1-s8
I(1) :j dslj e Mgy,
0 0

]

. 1
_€¢ J e“lsl(e“Z(l_sl) —1)ds,
[£5) 0
I A SRS
a Qy o — 0y ay
e” @ n-1 -1
= - (e?B™ (o) —ay) — B~ (o)) (A.6)
2

where B(x) is the Bernoulli function defined by
X
Bx) {x/(e 1) x#0
1 x=0

Since Y(x) is linear and $(x;) = ¢; (i =1,2,3) we have

)=+ (=) s+ (3 =) s, (A7)
Furthermore, since If | =1/2, from (A.3)-(A.7) we obtain
Tl gy o 2 % B — b) — ¥ B (s — AS
o J;e x R (e (b —3) —e (U —¥y)) (AB)
l —\b(x)d :# “I»’:B—l _ _ _\l’lB—l _ .
H J: e X T .(e W —,) —e (b —¥y))
(A.9)

Substituting (A.8) (or (A.9)) into (A.2) we obtain an expression for the
coefficient aﬁcl in the linear system arising from the electron (or hole)
continuity equation. This expression is a function of the nodal values of .
We remark that when the absolute values of the differences between the
nodal values ¥; (i =1,2,3) are small, it is necessary to use Taylor
expansions about zero to obtain accurate evaluations of the right-hand sides
of (A.8)-(A.9).
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