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MODÉLISATION MATHEMATIQUE ET ANALYSE NUMÉRIQUE
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THE RUNGE-KUTTA LOCAL PROJECTION
P1-DISCONTINUOUS-GALERKIN FINITE ELEMENT METHOD

FOR SCALAR CONSERVATION LAWS (*)

Bernardo COCKBURN (}) and Chi-Wang SHU (2)

Commumcated by J DOUGLAS

Abstract — In this work we introducé and analyze the model scheme of a new class of
methods devised for numencally solving hyperbohc conservation laws The construction of the
scheme is based on a Discontinuous Galerkin fïnite element space-discretization, combined
suitably with a high-order accurate total variation diminishing Runge-Kutta time-discretization,
and a local projection which enforces the global stabihty of the scheme The resulting scheme
vérifies a maximum pnnciple, is total variation bounded in the means, linearly stable for
CFL E [0, 1/3], and formally uniformly second-order accurate in time and space Moreover, it
converges to a weak solution We give extensive numerical évidence that the scheme does
converge to the entropy solution, and that the order of convergence away from singulanties is
optimal, i e , equal to 2 in the norm of Lœ(L^c)

Resumé — Dans ce travail nous introduisons et analysons le schéma modèle d'une nouvelle
classe de methodes pour résoudre numériquement les lois de conservation hyperboliques La
construction du schéma est basée sur une discrétisation en espace par éléments finis discontinus et
sur une discrétisation en temps par un schéma de Runge Kut ta d'ordre élevé à variation totale
décroissante Le schema obtenu satisfait un principe du maximum, est à variation totale bornée
en moyenne, linéairement stable pour CFL e [0, 1/3], et formellement du second ordre en temps
et en espace De plus il converge vers une solution faible Nous montrons numériquement que le
schéma converge vers la solution entropique, et que l'ordre de convergence en dehors des
singularités est optimal, c'est-à-dire égal à deux pour la norme de L^^L^)
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338 B. COCKBURN, C.-W. SHU

1. INTRODUCTION

This is the first of a series of papers in which we introducé, analyze and
test a new class of explicit methods devised for numerically solving the
conservation law :

ètu + div ƒ (M) = 0 , in (0, T) x V ,
(1.1)

u(t = 0)=uQ, on^ 7 ,

where ^ c Md, u is a m-valued function, and any real combination of the
d 3/i

Jacobian matrices Y g,- — has m real eigenvalues and a complete set of

eigenvectors. The schemes of this new class are devised to combine the
ability of the finite element methods to handle complicated geometries and
boundary conditions, with the uniform high-order accuracy in time of
Runge-Kutta methods, while verifying maximum principles, and achieving
convergence to a weak solution.

In this paper we shall restrict ourselves to the one dimensional scalar case
(d = m = 1 ) with periodic boundary conditions (Le., ^ is a circle). The
function u0 will be taken in BV{^), the set of functions on <g of finite
bounded variation. In this setting we shall define and study our model
scheme, the so-called Runge-Kutta Local-Projection Discontinuous Galer-
kin P 1 (RKAUP *-) method. We have chosen to work in a periodic setting in
order to avoid the problem of the numerical treatment of the boundary
conditions. This setting might appear to be too restrictive, however, it
allows us to siinplify the présentation and focus on the essential ingrédients
of the method. Moreover, the principles on which the model scheme is
constructed can be extended to the cases in which d m => 1 and
*ë is an arbitrary subset of Md. This extension will be developed in the series
of papers we initiate with this work.

The RKAUP ^method is an explicit conservative scheme that displays a
convenient local maximum principle and has the property of being total
variation bounded in the means (TVBM). At the same time, it is linearly
stable under the mild condition CFL ^1 /3 , and formally second-order
accurate in the £°°(0, T; Z,^c)-norm even in the présence of extrema and
sonic points. We prove the convergence in L°°(05 T; L 1(<^)) of a subsequ-
ence of the séquence of approximate solutions generated by the method to a
weak solution of (1.1). We also give extensive numerical évidence that the
scheme does converge to the entropy solution — the only weak solution
with physically relevant meaning — and that the order of convergence away
from singularities is optimal ; Le., equal to 2 in the L°°(0, T ; £ ^J-norm.

Historically, the RKAUP l-method has been originated from two sources.
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GALERKIN FINITE ELEMENT METHOD... 339

One of them is the AILP0/* ̂ scheme for scalar conservation laws introduced
and analyzed recently by Chavent and Cockburn [3], In this fini te element
method the approximate solution is piecewise-constant in time and piecewi-
se-linear in space. It is determined by using the weak formulation of the
explicit Discontinuous Galerkin Method, introduced by Chavent and
Salzano in [4], and a local projection based on the monotonicity-preserving
local projections introduced by Van Leer [10]. This local projection, the
ATI^-projection, guarantees a local maximum principle and the TVDM
(total variation diminishing in the means) property. It was proven that these
properties, together with the conservativity of the scheme, ensure the
convergence of a subsequence to a weak solution, and extensive numerical
évidence showing that the scheme converges to the entropy solution at a
rate of O(h) in the norm of L°°(0, TiL1^)) (even in the présence of
discontinuities) was given. Unfortunatelly, any attempt to obtain higher-
order accurate extensions of the AUP °P ]-scheme staying in the framework
of this fmite element technique leads naturally to implicit schemes. And it is
very well known that implicit schemes do not perform as well as explicit
ones for this kind of problems (on this respect we want to bring the reader's
attention to the explicit-implicit version of the Piecewise Parabolic Method-
scheme ; see [7]).

The other source is the efficient Runge-Kutta techniques that enforce
total variation diminishing (TVD) high-order accurate time-discretizations
of scalar conservation laws introduced by Shu and Osher [12]. They use the
method of lines ; i.e., first, they discretize the équation in space by using a
fînite différence non-oscillatory technique. The équation satisfied by the
approximate solution can be then written in ODE form : — uh = Lh{uh).

at
Then the latter équation is discretized in time by using a suitably chosen
Runge-Kutta technique. This is done in such a way that the local truncation
error of the resulting scheme is formally O({At)r + hr) whenever Lh{u)
approximates - 9x/"(w) with an O(hr) error ; see [12]. These Runge-Kutta
techniques are essentially ODE-discretization techniques which do not
increase the total variation of the spatial part, and so are absolutely
independent of the type of discretization used in space as well as of the
dimension of the space variables. As long as the spatial dimension is bigger
than one, fmite différence approximations of Lh are difficult to obtain when
the domain has a complicated geometry. Ho wever, this is not the case if a
fini te element discretization technique is used. It is then very natural to
combine the above mentioned Runge-Kutta technique with the fînite
element space discretization of the P°P ^scheme. The RKAYLP ̂ scheme is a
realization of this idea. It is obtained in three steps :

1) the conservation law is discretized in space by using the exphcit
discontinuous-Galerkin fini te element used by Chavent and Salzano [4].

vol. 25, n° 3, 1991



340 B COCKBURN, C-W SHU

An ODE of the form —uh = Lh{uh) is thus obtained ;

2) the latter ODE is discretized in time by using a suitably chosen TVD
Runge-Kutta technique as indicated by Shu and Osher [12] ;

3) a TVBM extension of the TVDM AHh-projection introduced by Chavent
and Cockburn [3] is then used in order to render the scheme stable and
the séquence of approximate solutions compact in L0 0^, T; L l(<$)),
without compromising the accuracy of the method.

An outline of the paper follows. In § 2 the discretization of the scalar
conservation law in space is obtained. In § 3 the time discretization is
constructed. In § 4 the Àlï^-projection is studied. In § 5 the RKAUPl-
method is defmed and its stability, formai accuracy and convergence
properties are proven. In § 6 numerical results are shown. Some concluding
remarks are given in § 7.

2. THE SPACE-DISCRETIZATION

First, let us introducé some notation. As usual, the set
{xi + 1/2} l = 0 nx_ x is a partition of the circle <6. Note that x1/2 = 0. For
commodity, we defïne xnx + y2 = ^1/2- We define àxt = xl + ^2 — xt __ 1/2» dénote
by It the interval (xt _ 1/2, xt + l / 2) , and set h = sup {AxJ. By I(ala..., a m)

1

we shall dénote the closed interval [min {au ..., a m } 5 max {au ..., a m] ].
To discretize the équation (1.1) in space we use the Discontinuous

Galerkin method as used in [3, 4], We proceed in two steps. First, we
introducé the fini te dimensional space V h. A function uh is said to belong to
Vh(<%) if uh e BV(<g) H L\<ë) and :

(2.1a) On each element II a *ë, uh is linear : uh\ e Pl(It) ; Le.5

where

9°(J) = 1 , and <pl(s) = 2 s ? V^ = (x-xl)/Axte ( - 5 , 5

(2.1^) The trace of uh in each dlt is chosen as follows :

uh(Xi + 1/2) — ^h, 1 + 1/2 »

ƒ (ÉA,, + 1/2) = fG(uh(Xi + 1/2 + 0 ) , WA(X, + 1/2 - 0 ) ) ,

where ƒG dénotes the Godunov flux associated to the function ƒ.
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GALERKIN FINITE ELEMENT METHOD... 341

The Godunov flux associated to the function h, hG, is a consistent two-
point numerical flux, i.e., hG(w, w) - h(w), defmed by

hG(w, v) = * ( £ ) , w i t h %e I (w,v):
(2 .2)

A ( c ) ) . s i g n ( w - u ) ^ O , V e e ƒ ( w , t > ) .

See Osher [9], and Brenier and Osher [1] for further details. Note that :

(2.3)

M?= f <p°(s(x))uh(x)dx/Axl = f u
J ƒ, J 7(

«7 = 3 f (P
I(j(x))MA(jc)dx/AA;=6 f

J/, JA

Now, s e t V A « O = {vh: [0,T] x V ^>R\vh(t) e Vk(<ë), Vr e [0,7*]}.
The approximate solution, uA, will be taken in the space VA(^) 5 and will be
determined as the unique solution of a weak formulation that we dérive as
follows. Multiply (1.1) by <p, integrate over the domain It, and formally
integrate by parts to get :

(2.4)

where T?̂  is the outward unit normal to blt. In order to compute numerically
intégrais over It use the quadrature rule :

(2.5)

where xz / = x, + 07 Ax|5 / = 1, ••-, L. In this way, uh e V^ will be
determined as the unique solution of :

(2.6) W e (0, D , V<p e P ' ( ƒ , ) :

satisfying the initial condition uh{t = 0) = Ph(uk), where Ph is the
L2-projection into the space Vh(V). Roughly speaking, by using the
variational formulation based on (2.4) we force the approximate solution

vol 25, n° 3, 1991



342 B COCKBURN, C -W SHU

uh to be an approximation to a weak solution of (1.1) ; and by using the
définition of its trace as in (2.1b) we are forcing uh to behave like the
entropy solution of (1.1).

We can characterize our approximate solution uh as the unique solution of
an ODE initial-value problem as follows.

PROPOSITION 2.1 : Let uh be the approximate solution defined above.
Then uh is the unique solution of the initial-value problem :

?Luh(t) = Lh(uh(t)) , in (0, T ) ,

(2.1a)
= 0) = UOih

where the operator Lh is given by

Lh{u): BV
(2.1b)

and the degrees of freedom of wh are given by

*, = - <JG{u{xï+1/2), u (xT+1/2)) - ƒ G(M(X,+_ 1/2), U (X

(2.7c) w, = - 3 ((ƒ G(M(x,+
+1/2), u (x-+ 1/2)) + ƒ G(u(x^ 1/2), u {x;_ 1/2)))

compare mis with équations (2.1) in [3j.

Proof : Assuming that (2.7c) is correct, the operator Lh is Lipschitz and so
the initial-value problem (2.1a)-(2.1b) has a unique solution. Now, let us
prove (2.1c). By the inversion formulae (2.3) we have :

•>, = wh(x)dx/Axt

= [ Lh(uh)(x)dx/àxt

= - f ƒ ( & ) « » , (set cp a l i n ( 2 . 6 ) ) ,
Ui,
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Similarly, from (2.3),

l)wh(x)dx/(Axl)
2

xl)Lh{uh){x)dxl{Lxlf

l = 6 (x~xt)

= 6 f (x-

= 6 j (x~xl)^uh(x)dx/(Axl)
2

Z^.fiu^M.WiAXt)2]^- f f(ïh)[3/Axl]nx,
i = i Ja/,

(set <p(x) s 6(x - x,)/(Ax,)2m (2.6) ) ,

This complètes the proof. D

The operator Lh(.) is the discretization by the discontinuous Galerkin
method under considération of the nonlinear operator — 3x/(. ). If the
function u is continuous, and the quadrature rule (2.5) used in (2.7c) is
exact, then it is easy to see that Lk(u) is nothing but P (̂— ^xf(u)) — t n e

L2-projection of - 9x/"(w) on the finite element space Vh(
<ë). In fact,

Lh(.) is a second-order approximation of - d^/(.)5 as we prove next.

PROPOSITION 2.2 : Assume that u is an element of W3'™^), that
f' belongs to R/2'0O(C(w))5 where C(w) dénotes the range of u, and that the
quadrature rule (2.5) is exact for polynomials of degree two, Then, there is a
constant C such that

Proof: For x e It we have

- 3;/(«(*)) - Lh(u)(x) = ex(x) + e2(x) ,

where

Mx) - Lh(u)(x) .

Set ÜA = P A ( - dxf(u)). Then, proceeding as in the proof of the preceding
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344 B COCKBURN, C-W SHU

Proposition, and taking into account the continuity of u, we obtain :

r L

In this way, if we set wh = Lh(u), and £"z(^) = \|i - Y
J/, / = i

have :

Mx) - Lh(u){x)

x, /) Ax,, we

x [2(x-x,)/AxJ

- 12(x - x,) I" J ƒ (M . ƒ (w Ax,

Now, using the theory of interpolation, see for example Ciarlet [5], we
obtain easily

assuming that the quadrature rule (2.5) is exact for polynomials of degree k.
By hypothesis we can take k = 2. This proves the resuit. G

Note that if the quadrature formula (2.5) is exact only for polynomials of
degree one Lh(u) becomes only a first-order accurate approximation of

of course, if ƒ ' = Cst.

3. THE TIME-DISCRETIZATION

Let {tn}n = l nt be a partition of [0, T], set At" = f + ] - tn, and let the
CFL-number be defïned by

CFL= sup ^
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where C(u0) dénotes the convex huil of the range of the initial data

Let us introducé the operator Hl :

HZ
(3.1)

We now discretize the ODE (2.7a) as indicated by Shu and Osher in [12] :
(3.2a) Set uh(t = 0) = P A (K 0 ) ;
(3.26) For n = 0,..., nt - 1 obtain uh(t

n+ ') from uh{tn) as follows :

(1) Compute w h(f
 + l) = Hn

h(uh{tn)) ;

(2) S 1 ± I 1

Note that the timestep sizes are not necessarilly equal. Note also that at each
time step, uh(t

n+l) is obtained from uh{tn) by simply applying twice the
operator H%. This makes the algorithm very easy to code.

As it is very well known, this time discretization of the ODE (2.7a) is
formally second-order accurate. This fact, together with Proposition 2.1,
allows us to say that the method (3.2) is formally second-order accurate.

Let us we assume that Ax(- = h, that Atn ~ At, and that f'(u) = Cst. In
this case the operator H%, in this Subsection written simply Hh, is linear. The

Z,2-stabüity of the itérative procedure defined by (3.2), uh{tn + x) = - [Id +

Hh o Hh](uh(t
n)), is a necessary condition for its stability. Indeed, if the

method is Z,2-unstable it is then automatically ZAunstable, V/?e [1, oo].
The reciprocal of this statement is not necessarilly true ; see Geveci [6]. In
what follows we display the necessary and sufficient condition under which
L2-stability is achieved.

An itérative procedure uh(t
n + 1) = A(uh(t

n)), uh(0) = Ph(uQ) is said to
be L2-stable if there exists a constant C independent of the discretization
parameters and the initial data u0 such that

for every tn G [0, T\, The itérative procedure un(t
n + l) = Hh(uh(t

n))9 which
is formally second-order accurate in space and only fïrst-order accurate in
time for any fixed CFL-number, was proven to be L2-stable if and only if the
extremely restrictive condition CFL = O(h1^2) is satisfïed ; see [2, 3]. In our
case the scheme is formally second-order accurate both in time and space,
and we have a much more satisfactory result (see fig. 3.1a) :
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346 B. COCKBURN, C.-W. SHU

PROPOSITION 3.1 : Letfbe an affine function of u. Then, the method (3.2)
is L1-stable if and only if CFL ss 1/3.

We shall omit the proof of this resuit, for it is long and tedious. The
interested reader can see [2, 3] to have an idea of the main lines of it, in the
simpler case treated therein.

Let A be the symbol of the operator Hh, and let T be the curve in the
complex plane of its eigenvalues, The stability condition CFL = O(h1^2)
reflects the fact that, for any CFL r> 0, there is a part of F that lies outside
the unit disk and that its farthest point is at a distance of O (CFL3) from it.
This part of F lies in a neighborhood of z = 1 (the fact that the point
z = 1 lies in F reflects the fact that the scheme is consistent). In our case

sé = F(A) = - [Id+ A2] is the symbol of the new operator - [ld +

Hh o Hk] and the curve of its eigenvalues isF(F) = - [ l + F 2 ] . Note that the

transformation F leaves the point z = 1 invariant, and that, by the preceding
resuit, for CFL =s= 1/3, F(T) lies entirely in the unit disk. Roughly speaking
F pushes F into the unit circle, thus improving the stability of the scheme ;
see figures 3.la and 3.15. We can then say that the application of the
Runge-Kutta technique has a stabilizing effect.

Although we have JL2(^)-stability of the method under a very mild CFL
condition in the linear case, this does not ensure its L2(^)-stability in the
nonlinear case. In order to render the scheme not only Z,2(#)-stable but
Lm(<é>) n i?F (^)-stable, without compromising its formai second-order
accuracy, we are going to use the AÏI^-projection.

4. THE LOCAL PROJECTION AIÏA

The Au/,-operator we are going to use is a simplified TYBM version —
inspired on the TVB-technique introduced by Shu, [11] — of the
All^-projection used by Chavent and Cockburn, [3]. Consider the function :

{#i, if I ai I ^ Mh ,

m{aÏ3 a2, ..., a n) , otherwise ,
where M is some positive parameter, and m is the well-known minmod-
function :

(4.11?) m (aua2i ..., a n) =

s * min \at\ , if sign (at) = sign (a2) = • • • = sign (an) = s ,

0 , otherwise .
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Figure 3.1a. — The curves T and F(T) = i [1 + T2] with CFL = 1/3.

0.7 0 8 0 9 1.Û 1 1

Figure 3.1&. — The curves T and F{T) = i [1 + T2] with CFL = 1/9 near z = 1.

We define the operator AD,, as follows :

AIlh:Vh(<g)-+Vh(<ë),
(4.1c)
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348 B. COCKBURN, C.-W. SHU

where, the degrees of freedom of w£ are defmed by :

w? = wt ,
(4Ad)

w^ = m(wh wt + y — wi9 wt — wt _ x) .

The parameter M is a nonnegative real number whose purpose is to prevent
the Alï^-projection of destroying the second-order accuracy of the scheme.
This parameter is strongly related to the second derivative of the initial data
uö, and will be estimated later. It was set equal to 0 for the AHP°PX-
scheme ; see [3].

The following result is a straightforward conséquence of the définition of
the Aü/j-operator (4.1). We use the notation introduced above.

LEMMA 4.1 : The AUh-operator is a projection

satisfying the following global properties :
(2) w? = wh ;

(3) f wf = f wh ;

Note that

\ w? = \ wA* = [ wh = f
J<g ù<ê J<ë J%

Thus, the AII^-operator is a conservative (3), (local) projection (1), that
leaves invariant the means (2). Properties (4) and (5) allow us tq control
AUh(wh) only in terms of wh. This is the key fact that will allow us to obtain
the compactness of the séquence of approximate solutions generated by the
RKAUP ^scheme, as we shall see later.

Next, we show that when the solution of the conservation law is smooth
enough, the application of the AIlA-projection does not destroy the already
achieved accuracy of the scheme. We state this property in the following
way :

LEMMA 4.2 : Let u be an element of C2(<ë). Let Ph be the L2~projection
into Vh(^), Then, there exists an h0 = ho(u) => 0 and an Mo = MQ(u) such
that if M^M0: -

Proof : Let us assume that u e C 3 (^ ) , the extension of the proof to the
case under considération is straightforward. Let x be an arbitrary point of
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#, set wh = Ph(u) and wjf — AUh(wh). By using Taylor expansion we can
easily fmd that

Ax.- , ! + Ax.- 1

If 3^(x) ^ 0 it is clear that for h small enough wt will lie in the interval
7(0, wt — Wj_i) O /(O, w,: + ! — wt) for i = 1, .„, nx. In this case we shall
have w* = w ; see (4.1).

Now let us consider the case dji(x) = 0. Set 3C = {x e ^ : â wCx) = 0,
ôx^( x) ^ 0} a n d ^A = O : t n e interval /(xyï x) is covered by at most v
intervals Iu where x e 3F}. From the above expressions we see that for h
small there is a constant independent of h, c0, such that max \wj\ =s

co-h
2 sup 19^(x) I. Thus, in order to have wf = Wj for j G ï^ it is

enough to take Mo = c0- sup |8XJÏM(X)|. This proves the result. D
2 { x e â T }

We end this Section by noting that if the solution of (1.1) is always
smooth, the absolute values of its second derivative at its extrema never
increase. In this way if Mo = M0(u0) is such that AIih(u0 h) = uOh it is
reasonable to expect that AIYh(uh(t

n)) = uh(t
n) for n = 1, ..., nt.

5. THE

We can now defïne the RKAUP !-method as follows :

(5.1a) SetMA(t=0)=PA(M0);
(5.1&) For n = 0,..., nt - 1 the approximate solution uh(t

n+ l) is obtained
from ui as follows :

(1) Compute wh{t^x) = AUh(H
n

k(uh(t
n))) ;

(2)

Compare with algorithm (3.2). The stability'and convergence properties
of this scheme are based in the following key result.

LEMMA 5.1 : Let uh be any element of the space Ch

and suppose that h.nx^C Q\W\. Then, for C F L G [0, 1/2] :

where C = 8 C o . C F L . M. \<g\.
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350 B COCKBURN, C-W SHU

Proof. Set wh = H%(uh). The means of wh are given by :

wt = üt - (A^/A^)C/f+i/2 - ƒ f-1/2) •

In order to rewrite this équation adequately, note that as uhe C
ATlh(Vh(V)) we have that üt = P|M((wJ ; see (4.1c). Then, if we set

r( = ^ - S, ,

we have that | r( | =s /z2 M. Now, we rewrite this équation as follows :

where

Ar fG(ül + i - KI + I, w ,+ w J - / G ( w , -

^ _ Ar riü, - al9 üt + al)-f°(ül - g„ g,_
A x ' ( « i - i + «1-1) - («i + ",)

\ Ü,.i-Ü,l

ul_x~u

We only have to follow [3] in order to obtain :

•8 max (A" B?)

for CFL e [0, 1/2]. Finally, as max {̂ f, 5,"} « CFL, max { \r, \ }

and «x ^ Co | * | A ~l the resuït follows. D
Let {uk(t

n)} 0 rtr be the séquence generated by the RKAUP ^method

(5.1). Let us define its Q Mnterpolate, denoted again by uh, as follows :

THEOREM 5.2 : Suppose that CFL e [0, 1/2], *Aaf «x . /i === C 01 * |, and
that nt .h^C XT. Let {uh} h^0 be the séquence of Q}-interpolâtes of the
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approximate solution defined by the RKAT1P l-method (5.1). Then

, W e [0 ,7* ] ,

C =max { 8 C 0 Q . C F L . M . 7\ \<g\,2 M. \<g\ . h} . In other
words, the scheme is TVB.

Proof : It is enough to prove these inequalities for t — tn. Since

uh(t
n + l) = ™? = A n „ K ) , with w„ = I«A(f") +1-H"h(Anh(H"h(uh(

the second inequality is obtained easily from the first one :

The first one is obtained as follows :

- ^ 2 > by ( 5 ) , L e m m a 4 . 1 ,

- A 2 > by (2 ) , L e m m a 4 . 1 ,

by Lemma 5.1, and (2), Lemma 4.1,

again by Lemma 5.1,

2 C' . A

"ol + C'. C , . r, by hypothesis .

The result follows from the fact that C" = 8 C o . CFL. M.
Lemma 5.1. D

; see
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COROLLARY 5 3 : Suppose the hypothesis of the preceding Theorem are
verified. Then, there is a subsequence of the séquence {uh} hi$ generated by
the RKATÎP x-method (5.1) which converges to a weak solution of (1.1).

Proof : By Theorem 5.2 there is a subsequence {w*'}^0 that converges in
L^iQ, T; Ll{<ê)) to a function w* E L°°(0, T; Ll{^) n BV(<$)). Let us
think of the functions üh as already known parameters that tend to 0 in
L°°(05 T; Ll(*$)), and let us consider the scheme (5.1) as a scheme only for
the means üh. It can be easily seen that this scheme is a conservative scheme
whose numerical flux is consistent with f Thus, as %-•&*, by
Theorem (5.2), the limit «* must be a weak solution of (Ll) by the well
known Lax-Wendroff Theorem [8]. This proves the resuit. D

6. NUMERICAL RESULTS

In this section we test the i^AIIP ^method in six different problems (Ll)
for which we can calculate the exact solution. Our test problems are defined
by giving the circle ^ (that we identify with the interval [0, / )), the fmal
time T, the nonlinearity ƒ, and the initial data u0 on O, ; see table 6.1. Their
corresponding exact solutions are displayed on figure 6.1. On table 6.2 we
defïne the sets <êï on which the entropy solution u can be considered
smooth, They have been obtained from # by subtracting subsets that
contain discontinuities of either u or dji.

TABLE 6.1

Définition of the test problems.

Problem

1
2a)
2b
2c J
3

4

5

6

<e

[0, 1)

[0, 1)

[0, 1)

[0, 1)

[0,2)

[0,2)

T

-0.15
f 0.15 1

( 0.55 j
0.1

0.15

0.5

0.5

ƒ(«)

u

u2/2

1 u2

2 M
2 + (1 -uf

u

w ( l - w )

i ir
2u2

+ (1 = W ) 2

uo(x)

- M + - sin (4 TT.Y) J

2 ( 2 + s i n ^ 2 T F A ^ )

- M + - s i n (4-ÏT.V) \

f 1, iï\E (0.4,0.6),
lö , otherwise.

fl , if.Y£ (0.5, ].5),
10, otherwise.
fl, if .xe (0.5, 1.5),
[O, otherwise.
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TABLE 6.2

Définition of the domains (€f on which u{T) is smooth.

353

Problem

1
2a
2b
2c
3

4

5

6

<ê'

[0, 1)
[0, 1)

[0, 0.04] U [0.14, 1)
[0, 0.09] U [0.19, 1)

[0, 1)

[0, 0.5] U [0.6, 0.7] U [0.8, 1)

[0.05, 0.45] U [0.55, 0.95] U [1.05, 1.95]

[0, 0.75] U [0.85, 1.75] U [1.85, 2)

Singularities of u (T)

none
none

shock appears near x = 0.08
shock near x — 0.14

none

two contact dise, at x = 0.55, 0.75

Jstationary shock at A" = 0.5,
1 two dise, of 3 xu at x = 1,2.

two shocks near x = 0.8, 1.8

The quadrature rule (2.5) used in these computations is the three-point
Gauss rule. Although Corollary 5.3 ensures the convergence of the method
lor CFL e [0, 1/2], Proposition 3.1 guarantees L 2-stability only for CFL e
[0, 1/3] in the linear case. This is why we are going to perform our
computations with CFL = 1/3. On table 6.3 we display the L ^ ^

TABLE 6.3

Ll-errors and orders of convergence for CFL = 1 / 3 . The quantity ex is equal to
||w(T) - uh(T) \\L\,<g,y eind ax is the corresponding order of convergence. For all the

tests we have taken Ax = —— . The sets <ê' are defined in table 6.2.
200

Problem

1
2a
2b
2c
3

4
5
6

No pro

] 0 4 . 6 > !

0.57
0.21
0.09
0.02
0.87

21.4
7.20
248

jection

a,

1.97
1.96
2.01
2.00
1.94

1.00
1.13
0.002

M =

104 .c ,

1.28
0.34
0.30
0.02
1.25

0.0004
6.19
0.39

, 0

a.

2.24
2.11
2.25
2.00
2.06

0.99
0.99

M. h2 =

1 0 4 . ^

0.57
0.21
0.09
0.02
0.87

0.0004
6.19
0.39

1.97
1.96
2.01
2.00
1.94

0.95
0.99
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Figure 6.1. — The entropy solutions u(T) of the test problems.
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and on table 6.4 the Lc0(<^/) ones. Details of how the discontinuities are
captured are shown on figures 6.3, 6.4 and 6.5.

In table 6.3, some of the results corresponding to problem 4 have not
been included, for in this case a superconvergence, that is far from being
typical, is observed. This is due to the facts that, on <%', we have
bxu = 0, Vw 3= 1, and that the approximate solution does not oscillate !
When the projection is not used, strong oscillations away of the discon-
tinuities appear. They travel faster than the discontinuities. See figures 6.2.

The results on table 6.3 and table 6.4 show that Z^-second-order accuracy
has been obtained for test problems 1, 2 and 3, regardless of the values of
M. Uniform second-order accuracy away form discontinuities has also been
obtained. Notice that for M small enough the All^-projection is not equal to
the identity, and its application produces loss of accuracy only near the
extrema. In fact we can notice that :

1) the influence of the ÀÏI^-projection appears only in the présence of
extrema because in problem 2c (for which the entropy solution does not
have extrema but two smooth monotone régions between the shocks) the
results are independent of the value of M (the value of M for problems 4,
5 and 6 is zero) ;

2) this loss of accuracy is indeed of a local character. Consider the
problems 1, 2a, b and 3, which are the only ones with a solution with
extrema. Note, on tables 6.4 and 6.5, how the loss of accuracy is greater

TABLE 6.4

L^-errors and orders of convergence for CFL = 1 / 3 . The quantity eœ is equal to

|| u(T) — uh(T) || oof ̂ ,y and aoo *s *ne corresponding order of convergence. For all the

tests we have taken Ax = —— . The sets <ê' are defined in table 63.

Problem

1
2a
2b
2c
3

4
5
6

No pro

10*. * y

1.56
1.28
1.22
0.15

10.5

199.4
24.15
1966

jection

1.94
1.98
2.04
1.81
1.95

1.16
1.82
0.08

Mi

10\,x

10.1
5.04
6.51
0.15

10.5

0.05
16.41
2.63

= 0

L55
1.24
1.71
1.80
1.95

___

0.96
1.06

M . h2 =

ltf.c,

1.56
1.28
1.22
0.15

10.5

0.05
16.41
2.63

1.94
1.98
2.04
1.81
1.95

0.96
1.06
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1.0
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0 .2

0.0
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'JA

1 J -

-

-

i

Figure 6.2a. — Test problem 4 without the AE^-projection : f linear, CFL = 1/3, Ax =
-i

. (The solid Une represents the exact solution, and the dashed one the approximate solution.)200

1
i

i . i

; \

-

Figure 6.2ft. — Test problem 4 with the Al^-projection : f linear, CFL = 1/3, Ax = .

when M = 0, and how in this case the order of convergence is lowered
dramatically for the Lœ norm while the order of convergence for the
Ll norm remains the same. (This cannot be seen for problem 3 because
the maximum error is attained not at the extrema but at some points
between them at which the function | djd \ becomes very big !) ;

3) for « big » values of M the All^-projection reduces to the identity.
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Figure 6.3a. — Test problem 5 : f concave, CFL = 1 A AJT = —— . (The solid Une

represents the exact solution. A O is placed at (xI + iflt ub(xJ + l^)) every five éléments.)

Figure 6.3b. — Test problem 5 : Zoom on figure 6.3a. (The soÜd Une represents
the exact solution. The dashed line joining the O represents the approximate solution

In problems 4} 5 and 6 (for which the initial data présents a discontinuity)
we see that the introduction of the Aü^-projection (i) improves the accuracy
of the method and (ii) enforces the convergence to the entropy solution.
The most dramatic case is, of course, problem 6 (the nonlinearity ƒ is
nonconvex) for which the scheme without projection does not converge to
the entropy solution.

vol. 25S n° 3, 1991



358 B. COCKBURN, C.-W. SHU

•Figure 6.4a. — Test problem 2c : / convex. CFL = 1/3, Ax = ——.
zUU

-0.2 -

~°*0.13Û 0.Ï3S D.140 D.145 0.150

Figure 6.4*. — Test problem 2c : Zoom on figure 6.4a.

All these calculations have been redone for CFL = 1/6 with identical
results. The influence of the decrease of CFL-number was negligible.

7. CONCLUDING REMARKS

In this paper we have introduced, analyzed, and tested numerically the
RKAIÎP ^method, which is the model scheme of a new class of schemes
devised to solve numerically hyperbolic conservation laws (1.1). The
scheme is constructed as follows :
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0.5

0.6

0.4

0.2

0.0

-

-

-

\ :

<

i i i

-

-

Figure 6.5a. — Test problem 3 : ƒ nonconvex, CFL = 1/3, kx = .

Figure 6.5b. — Test problem 3 : Zoom on figure 6.5a.

1) the Discontinuous-Galerkin Method, as employed in [3, 4], is used to
discretize in space the conservation law,

2) a TVD time discretization [12] is used to discretize the so-obtained
ODE,

3) a local projection which enforces stability without destroying the already
achieved accuracy is applied at each intermediate stage of the Runge-
Kutta method.
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We proved that the resulting scheme vérifies a maximum principle, that it
is total variation bounded in the means, formally uniformly second-order
accurate, and that it converges to a weak solution. Without the projection,
the scheme is linearly stable if CFL =s 1/3.

Our numerical results indicate that, for CFL ^ 1/3, the RKAT1P ̂ method
is a stable method that converges to the entropy solution, even for
nonconvex nonlinearities ƒ. In smooth régions of the entropy solution the
method was found to be uniformly second-order accurate away from the
discontinuities when the initial data was smooth, and was able to capture
shocks, essentially, within a single element. The method is easy to code, and
its construction does not depend on the type of nonlinearity ƒ under
considération.

The three principles with which our model scheme has been constructed
can be also used to define numerical schemes in a more gênerai setting.
Higher-order versions of this method, as well as extensions to the
nonperiodic case, Systems and the multidimensional case, constitute the
object of work in progress.
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