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POSTPROCESSING SCHEMES
FOR SOME MIXED FINITE ELEMENTS (%)

Rolf STENBERG (})

Communicated by J. DOUGLAS

Abstract. — We consider some mixed finite element methods for scalar second and fourth
order elliptic equations. For these methods we introduce and analyze some new postprocessing
schemes. It is shown that by a simple postprocessing, performed separately on each element, one
can obtain a considerably better approximation for the scalar variable than the original one.

Résumé. — Nous considérons quelques méthodes d’éléments finis mixtes pour des équations
aux dérivées partielles scalaires, elliptiques, du second ou du quatriéme ordre. Pour ces
méthodes, nous introduisons et analysons quelques techniques nouvelles de postraitement. On
montre qu'un postraitement simple, effectué séparément sur chaque élément, permet d’obtenir
une approximation bien meilleure sur la variable scalaire.

1. INTRODUCTION

The purpose of this note is to discuss some mixed finite element
approximations of two model problems; the Poisson equation and the
biharmonic equation. For some problems of these types, mixed methods
have been applied with considerably success.

Equations for which the Poisson equation can be taken as a prototype
arise in some geophysical problems (c¢f. e.g. [7, 18] and the references
therein) and problems in semiconductor physics [13], and for these two
applications very good results have been obtained with the mixed methods
of the Raviart-Thomas-Nedelec (RTN) [14, 15] and Brezzi-Douglas-Marini
(BDM) [2, 4] families.

The standard mode! problem for fourth order elliptic equations is the
biharmonic equation which arise as the equation for the deflection of a thin
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152 R. STENBERG

elastic plate. The other main application of the biharmonic problem is the
stream function formulation of Stokes and Navier-Stokes equations. For the
approximate solution of the biharmonic equation some mixed methods were
among the very first successful finite element methods introduced [10, 11].

In some recent papers F. Brezzi and co-workers [1, 4] discussed some
mixed methods for the afore-mentioned problems. They considered a
technique of implementing the methods where Lagrange multipliers are
utilized in order to impose interelement continuity of some of the variables.
The advantage of this technique is that by using local condensation
techniques the final linear system to be solved is positive definite. In
addition, they showed that this new Lagrange multiplier can be exploited in
some postprocessing methods for producing better approximations for some
of the original variables.

In [6] a similar postprocessing method for the Hellan-Herrmann-Johnson
(HHJ) family [10, 11, 12] for approximating the biharmonic equation was
developed.

In this paper we will first introduce an alternative to the postprocessing
methods of [1, 4] for the BDM family. Then we will develop an analog
postprocessing procedure for the HHJ methods. Our postprocessing ap-
proach is rather general (and natural) ; it can be used for all methods in the
RTN, BDM and HHJ families. In addition, it does not require that the
methods have been implemented by the Lagrange multiplier technique of
[1]. In [17] we introduced the corresponding postprocessing scheme for
some mixed methods for the linear elasticity problem.

Our exposition will be rather brief, since most of the estimates we will
need for our analysis are found in [2, 3, 4, 8]. Our notation will be the
established one, ¢f. [5]. For the specific mixed methods we will mainly use
the same notation as in [2, 3, 4, 8].

2. SECOND ORDER ELLIPTIC PROBLEMS

Consider as the model problem the Poisson equation with non-homo-
geneous Dirichlet boundary conditions :

—Au=f inQ,
u=u, onl,

Q2.1

where Q is a bounded domain in R¥, N =2, 3, which for simplicity is
assumed to have a polygonal or polyhedral boundary I
For the mixed approximation the equation is first written as an elliptic
system :
q+gradu =0 inQ,
divg=f inQ, 2.2)
u=u, onl.
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POSTPROCESSING SCHEMES 153

Next, one introduces the variational formulation

(g.p)— (divp,u) =— (up,p-n), peH,

2.3
(diva,v) = (f,0), veV, @3)

and then the finite element method
(gpp)— (divp,u,) = — (up,p-n), peH,cH, .4

(divg,,v) = (f,v), veV, cV.
Above we have used the notation

H = H(div; Q) = {pe [LX(D)]"|divpe L*(Q)},

V =L*Q), (u,v)=J uv dx ,
Q

(P,Q)=J p-qdx, <{u,v) = J uv ds .
Q

r

n stands for the unit outward normal to T.
For clarity of exposition we will perform our analysis for the triangular or
tetrahedral BDM family. The extension to the other mixed methods of [2, 4,

14, 15] is trivial. Hence, we let G, be a regular partitioning of Q into closed
triangles or tetrahedrons and define the finite element spaces as [2, 4]

H, = {peH| plye [P(D]Y, Te 'r;,,}, (2.5a)

Vi

(ue V| u|,€ Pp_((T), TeB,)}, (2.5b)

where P;(T), ] =k, k — 1, [ =0, denotes the polynomials of degree / on 7.

In [2, 4] quasioptimal error estimates have been derived for the above
method. The analysis of [2, 4] relies on the existence of two special
interpolation operators II,: H - H, and P,: V — V). Here we only recall
the properties of P, :

(divp,u— P,u)=0, peH,, ueV, (2.6)
and
||u—Phu|[0sCh'lu|r if ueH'(Q) for O<sr=<k. 2.7

For the finite element spaces at hand the operator P, clearly cointides with
the L%projection from ¥ onto V.

Let us also remark that the analysis can be performed without the explicit
construction of the operator I1,. This is easily seen from the following line of
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154 R STENBERG

arguments consider, for a given index k, the pair (H,, V;,) as defined in
(2 5). Then there 1s a corresponding method (Hj, ¥,) in the RTN-famuly
such that 17,, = ¥V, and H, « H, [14, 15]. Now, 1t 1s well known that the pair

(H,, V,) 1s stable, 1.e. 1t satisfies the Babuska-Brezzi condition with an

apropriate choice of norms, e g. the mesh dependent ones introduced 1n
[16]. Hence, the pair (H,, V) 1s also stable with respect to the same norms
and as a consequence one can perform an error analysis as in [16, Theorem
3.1]. Recalling the mesh dependent norm |. ||, , as defined 1n [16]

lal, = lal2+ ¥ hrf lq-n|%ds
aT

Te Ty
for
qe {peH|p-ne L*@WT), Te G}

the error estimates obtained are the following.

THEOREM 2.1 : Suppose that the solution of (2.1) satisfies u € H'(QL) with
r = 3/2. Then we have

”q—qh”o’hsChﬂqls, s=mm{r—Lk+1}, 2.8)

and

lw —unll, < Ch'(lal, + |u|), [ =mm {r—1,k} 29

For a convex region Q we have
l#—uyll,<Ch'(lal,_, + |u],), {=mn{rk}, (2.10)

and
Ch**'|q|,, s=mm{r—1Lk+1} for k=2,(2.11)

iy <
o = Py ull < Ch|q|, for k=1 @2 12)

If we win addition have f € V,, then the estimate (2.11) also holds for
k=1

Proof All the above estimates except the last result are essentially
derived 1n 2, 4].

Hence, let us prove that (2.11) 1s also valid for £k = 1 when f € V,, To this
end, let (z, w) € H x V' be the solution to

(Zsp)_(dIVP:W)ZO, pGHa

2.13
(dwvz,v)= (u,—P,u,v), veV ( )
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POSTPROCESSING SCHEMES 155

Due to the convexity of 2 we have
lzll, + Iwll, < Cllup— Pyul,. 2.19)

Now, let (z,, w,) be the mixed finite element approximation to (2.13). By
choosing v = u, — P, u, p =4q — q, in (2.13) we obtain in the usual manner
lun — Prully = (divz,up— Pru) + (2,9 -q,)
— (div (g —4q,), w) — (@ —qp2;) + (divz,, u—u,)
+ (div (@ —4q,), Ppw)
=(z-2z),q9-q,) — (div(g—q,),w— Pyw)

+ (div(z—2z,),u,— Pyu) + (divz,, u— P,u).
Now, the last two terms above vanish by virtue of (2.6) and the definition of
z;,.- Next, consider the term (div (q —q,), w — P, w). Since we assume that

divq = f € V,, we note that also this term vanishes. Using (2.14) and (2.8)
we thus obtain

luw— Pyulll = (2= 2 a—an) < ||lz—24]|ola — aull,
= Chiz| la—aully = Chlluy,— Pyul lla —a.l,
which together with (2.8) proves the assertion. H

Remark 2.1: For the lowest order method in the RTN family the
assumption f € ¥, yields the estimate

up — Pyul|,< Ch?|q],.
The estimate one gets without this assumption is [1]

lun — Ppully< Ch?|ull,.
Hence, by assuming f € ¥, the maximal convergence rate is not improved,
but the regularity requirement on the exact solution is relaxed. W

Remark 2.2 : The assumption f € V), does not seem to be a severe
restriction since in practice we often have f = 0. Also, if f ¢ V,, it is often
possible to find a vector field q, such that div q; = f. Then one can use the
mixed method to approximate q —q, W

Remark 2.3 : In the case when one can neither assume that f € V), nor
find a field q, with div q;, = f, the lowest order method can be modified with
the technique elaborated in [16]: each T € B, is subdivided into N
subtriangles or subtetrahedrons by adjoining the center of gravity of T with
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156 R STENBERG

the vertices. Let G, , be the finer triangulation so obtained. The modified
method is then defined as

H, = {peH| p| e [C(DI",Te B, ple PR, Ke By o)
Vh: {UE Vl u|TEP1(T),TE Bh}

This method is easily proved to be stable and to satisfy the « equilibrium
condition » which implies the existence of a projection operator P, with the
properties (2.6) and (2.7). Hence one obtains the error estimates

||q—qh||0’hsChs|q|S, s=min {r — 1,2},
lu—uyll,< Ch'(lal, + |u|,), I =min{r—1,2}.
For a convex region () we get
lu—us|,<Cr'(lql,_,+ |u|,), ! =min{r,2}
and, in particular,
ﬂu,,—Phu[|0sCh‘+l|q[s, s=min {r —1,2}.

This modified method does not seem to be substantially more costly to
implement than the original lowest order BDM method, since when
implemented e.g. as suggested in [1] the size of the linear system to solve is
not increased. W

Let us now define the

POSTPROCESSING METHOD

Let
Vii= {ve LX(Q)| v| € P, (T), Te G}

and define the approximation ujf € V ¥ to u separately on each T € G, as the
solution to the system

J grad u jf - grad v dx = J
T

fvdx+f q,-nvds
T

oT
Voe (I-Qp) ViFly, (2.16a)
Qruf =Qru,, (2.16b)

where either Qr = P,|,. or Qr is the L%projection from L*T) onto

Py(T). m
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For this new approximation we obtain the following error estimate.
THEOREM 2.2: If ue H'(QY), r > 3/2, and Q is convex, then we have
flu—uill <
Ccht'(lql,+ |u|,, ), s=min{r—1,k+1}, for k=2, (2.17)
Ch(|q|,+ |ul,), for k=1. (2.18)

If we in addition have f € V,, then (2.17) is also valid for k = 1.

Proof : Let #i € V }* be the L-projection of u and define v € ¥ }* through
v, = —-Qp)@ —u;) for each T € G,

|U|iT= J grad (( — Q)(é — u;¥)) - grad v dx
T

= J grad (7 —ujf)-gradvdx — J grad (Qp(ii —ujfF)) - -gradv dx .
! g (2.19)

Next, using (2.16a) we obtain

J grad (ii —u;t)-grad v dx = J grad (ii —u)-grad v dx +
T T

+J (q-n—q,-n)vds (2.20)
aT

~ 172 —_
= ‘“"”|1,T|v|1,r+h7] ”q'“—qh'nuo,aT'th/zuvuo,aT'
By scaling and the fact that (/ — Q) w =0 if we Py(T), we get
h ) vllg op < Clol, 1 (2.21)

and
||U||0’TsChT|U|1,T. (2.22)

Combining (2.19)-(2.21) gives

Ivll,TS |u~ izll’T+h}/zllq'n_qh'n”o’aT

2.23
+|Qr@—-up)|, . @29

Hence, (2.22) and the inverse estimate

|QT(ﬁ—u,?‘)|l,TsChfl||QT(ﬁ—u,§")||0,T

vol. 25, n" 1, 1991



158 R. STENBERG
give
(-0 - u,j")“O’T = |lvlly 7=
Chr(lu— |, p+hi?la-n—a,-nll )+ Q@ -uB)|, .. (229
A squaring and summation over all T'e G, yields

1T - Q@ -up)|,=<

el (£ - att,)" e anaienly,f + s - al,

Te Ty

(2.25)
By the definition(s) of QO+ and (2.165) we have

|l r(i —u;:")“(, = "QT(Phu—“h)"OS | Pyu—uyl,- (2.26)

Hence, the final estimates follow from (2.25), (2.26) and the estimates of
Theorem 2.1. W

Remark 2.4 : The estimate one gets for a nonconvex domain Q, is
o — uifll, < CR(Jul, + lq],), s=min {r—1,k+1},

and this estimate is also valid for k. =1. W

In this section we will introduce and analyze a postprocessing scheme for
the HHJ family for approximating the biharmonic equation.

In the presentation we will have the application to the plate bending
problem in mind (for an account of the application of the method for the
Stokes and Navier-Stokes equations we refer to [9]). Hence we consider the
problem

3.1)

Here ¢ denotes the deflection of a thin plate due to the transverse loading g.
D denotes the bending stiffness of the plate :

3
p__ Ed®
12(1 - ¢?)

M?AN Modélisation mathématique et Analyse numérique
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POSTPROCESSING SCHEMES 159

where d, E, o are the thickness of the plate, the Young modulus and the
Poisson ratio, respectively. The unit outward normal to I is in this section
denoted by v = (v, v,).

For simplicity we will assume that the boundary I’ is polygonal and that
the plate is clamped along T'.

If g € H %(Q) then there is a unique solution y € HZ(Q) to (3.1). It is
also well known that the regularity of the solution ¢ depends on the
singularities arising at the corners of Q. For instance, if all interior angles of
Q are less or equal to m, i.e. if Q is convex, then we have

lel;<Clgl_,, (3.2)

provided that g € H~!(Q). In the sequel we will assume that Q is convex so
that this estimate is valid. For the estimates for the lowest order method we
in addition have to assume that g € L%(Q).

In the HHJ method one does not directly approximate (3.1). Instead (3.1)
is written as the system

1 azlll
D(I—_O_ZS {(1 + 0') uz_/ _USU(ull + uzz)} + m = 0,
i’j = 1’29 an’
2 az
o Lg-0 inq, (3.3)
9x, 90X

Here the symmetric tensor u = {,}, i,j = 1,2, has the physical meaning
of bending moments.

The variational formulation of (3.3), upon which the finite element
method is based, can be stated in different ways; c¢f. [3, 8]. They all,
however, lead to the same discretization and hence we will turn directly to
that. For the index k, k=1, and for a regular triangular paritioning
By, the finite element spaces are defined through

Wy = {be Hy(Q)| Y| Pr(T), Te Ty}, (3.40)
and
Vi={we ¥ | u,|,€ Pr_(T),i,j =1,2,T€ G}, (3.4d)
where
V= {“ € [LZ(Q)]ZXZ| Uy = Uy, u,lee HI(T), i,j =12,
T € G,, M,(u) is continuous across interelement boundaries }.

vol 25, n°1, 1991



160 R STENBERG
Above and in the sequel we denote
M, (ll) — Z ul] 1 j
Ly =1

and M, (ll)— Z U, v, 7,

Ly =1

where T = (7}, T5) = (v5, — v;) is the unit tangent to 87 for Te€ G, The
approximate method is now defined as follows: find (¢, u,) e W, x V,
such that

a(uh,V)-i-b(V,llI;,):O, VGV;‘,

(3.5)
b(u, @)+ (9,.9)=0, oeW,,

where

a(“’V)_D(l—orz),z’ j {Q+0)u, —od, (uy +up)} v, dx,
_ 2 ‘P dp
b(u,cp)_Teth[ ,,Z= j 3}1--6— x+LTMw(u)§;ds}

and

(g"p)=J. g‘PdX-
Q

For the error analysis of the method we refer directly to the papers [3] and
[8].

The analysis of [3, 8] relies on two special interpolation operators
3, H Q) - W,and I1,: ¥, - V,. For the analysis of our postprocessing
scheme we will need the properties of 3, and therefore we recall its
definition. For ¢ € H*(Q) given, 3, ¢ is defined through

J(q;—z,,q;)qu:o, Vge P,_3(T) and VTeT,, (3.6a)
T
J W—-3,b)qds =0, VgqeP,_,(T') and YT e€l,, (3.6b)
-

(b -Z,¥)(a) =0 VaeJ,, (3.6¢)

where I, and J, are the sets of all sides and vertices of G, respectively.
3, has the following properties for ¢ € H'(Q), r=2,

bV, U—3,¥)=0, veV;, 3.7)

M?AN Modélisation mathématique et Analyse numérique
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and

I =25 ]|, < CR |14,

3.8
for j=0,1 and / =min{r,k+1}. (3-8)

In this section the mesh dependent norm ||.||, , is defined through

2
||V||(2),h= Z {”Uij”§+ Z hTJ |Uij|2dsl' (3.9)
T

41 =1 Te By

Since only the component M,(v) is assumed to be continuous along
interelement boundaries, v;|,, is here defined as the limit of v; when

approaching 37 from the interior of 7.
Note that the definition of the norm ||. ||, , is now slightly different from

that given in [3]. However, one easily checks that the following estimates
still hold. For some of the estimates for the lowest order method we now
need the assumption g € L*(Q).

THEOREM 3.1 : Suppose that the solution of (3.1) satisfies ¢ € H'(§}) with
r = 3. Then we have

lu—uyl,, = Ch®|¥lls,, where & =min{r—2,k}, (3.10)

Chs_lll\l!"s for k=2 where s=min{r,k+17},
”4’*‘1’h”1s Ch||¢||3 for k:l,

3.11)
and
I = bl =<
Ch}llllllls_,rl for k=2 where 5=min{r—-1,k+1}
Ch¥(||¥]l;+ llglly) for k=1. m (3.12)

For the analysis of our postprocessing method we will need an additional
estimate which can be derived by adapting the arguments given in [3] and
using the property (3.7) of %,, cf. [6, THEOREM 4.2].

LEMMA 3.1: For ¢y € H'(Q), r =3, we have

s — Zp ]|, =
Cr|¥, for k=2, where s=min {r—1,k+1},
CR(| ¥l + Iglly) Sfor k=1. m (3.13)

vol. 25, n" 1, 1991



162 R. STENBERG

Before introducing our postprocessing scheme we recall the that the normal
shear force along an edge 7" € [, is given by

dAy _ 1

Q=-D— (1+o)a

(up +up) =Q,@). 3.149

Hence, from the finite element solution (u,, ¥,) we can calculate an
approximation to the shear force

1 0
(uypn + up ) - (3.15)

Q,(u;) = '(—1':-&—5 I

(Note that for the lowest order method this « approximation » vanishes.)
Now, let us define our

POSTPROCESSING PROCEDURE

Let
Wi = {¢€ LY(Q)| ¢| € P, ((T), Te By}
and
Ar(¥, @) =
2 2. 2 2 2
o {A¢A¢_(1_G>(g;gx2+%g_;;_za)ggxza%)}dx_

The improved approximation $jf € Wi to ¢ is now calculated separately on
each T € B, through the conditions

i (a) = by(a), Vae,NT, (3.16a)
Ar(¥i, @) = J ge dx +

T

+ JT {M(“h) + M, (“h)__ Q, (“h)<P} ds, (3.16b)

Vee Wi|, with ¢(a)=0 for acJ,NT. A

Remark 3.1: Since ¢ in (3.16b) vanishes at the vertices of T € G, the
concentrated forces at the corners do not have to be calculated and the
condition is equivalent to

Ar(W, @) = j

g dx + f (.00 22— v, o) @,
T aT ov

Voe Wy|, with ¢(a)=0 for aeJ,NT,

M?2AN Modélisation mathématique et Analyse numérique
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where

oM,
Vv(uh) = Qv(uh) + +_fuh)

is the approximation to the « effective (or Kirchhoff) shear force »

OM,, (u)
Vv(u) = Qv(u) + _aT— .

The error estimate for the new approximation ¢ will be given in the
following norm

12
5 v -l

Ter
TeT,

"‘b_d’}:""l,h = (

For the error analysis of the higher order methods we assume that
e H(Q) with r=7/2, which implies that the shear force Q, is in
L*(3T) for T € B,. (When this assumption is not valid, one can apply the
estimate for the lowest order method.)

THEOREM 3.2: For the postprocessing scheme (3.16) we have the
Sfollowing error estimates.
For k=1 and ge L*(Q):

1o =6l , < CHwl, + gl - (3.17)
For k=2 and b€ H'(Q) withr =7/2:
||1b—¢v,j"||1’h < Ch*|¥|l,,, where s=min {r—1,k+1}. (3.18)

Proof : Let Q,, be the Lagrange interpolation operator onto the space of
continuous piecewise linear functions :

{(fec@)]|flre P\(T), TeB,}.

Further, we denote by § € Wj* N C (Q) the Lagrange interpolate to .
First, using (3.6¢) and (3.16a) we obtain

[2s@—w) ||, = 12sGu¥ =], , =
04z — ‘th)"] < ClZ, 6 —¥|,. (B.19)

Next, let us estimate ||(I — Q,,)(q? —4F) ||1 e For convenience let us denote

z=U~-0Q h)(ll~.v — ¥iF). Since Q) z = 0, standard interpolation theory gives
Izl - = ||Z—Q;,z||1’7,s Chr|z|y - (3.20)

vol. 25, n° 1, 1991



164 R. STENBERG

Now, the exact solution (Y, u) of (3.3) satisfies
AT(‘/’ﬁ ‘P) =

j g¢dx+J {M(u) + M, (u)a“’ 0, (u)(p} ds, ¢ HXT).
T orT
Using this, (3.19b) and recalling the definition of z we get
Ap(z,2) = Ar(b — i, z) = Ar(b — ¥, 2)
+ LT {Mv(u —u,) g_i_ + M, (u—u,) ; —Q,(u—u,) z} ds. (321)
Let us estimate the terms in (3.21). Since 0 < 0 < 1/2 we have
C|z|2T\AT(z z) (3.22)

and
A7(d =4, 2) < C ¥ =¥, |z, - (3.23)

Further, Schwarz inequality and a scaling argument yield

j {Mv(u—uh)%+Mw(u—uh)a—€} ds =<
oT ov o7

C (hTJ. (le(U—uh)|2+ IM,,,(u—uh)lz) ds)l/2
oT

Apr [ 1z 2 ez 2y 4\
\"7 J3T<|5? lae| ) %)
<C (th (| M,(u —up) >+ | M, (u—up)]®) ds) 2. 0z)y o, (3.29)
oT

To estimate the last term in the right hand side of (3.21) we treat separately
the cases £k =1 and k= 2.
For k=1 we have Q,(u,) =0 and since we assume that

D A%y = g € L*(Q) we can use a trace theorem [9, Theorem 2.5, p. 27] to
estimate as follows

—f Qv(u—uh)zds=—j Q,,(u)zds:DJ aA\bzdss
aT aT 9

ar 9V

aA
e R P T e LI SR ET

< Chy(I0ll5 7+ gl zly 7 (3.25)
where we in the last step used (3.20)

12, 8T
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For k£ =2 we assume that r > 7/2, and hence we get

12
_J O,(u—u,)zds < <h%J |Qv(u—uh)|2ds> (h;3j zzds)
oT aT aT

3 2 1/2
sC(hTJ |0, (u—uy)| ds) EI. (3.26)
oT

1/2

where we again used a scaling argument in the last step. Combining (3.20)
through (3.26) now gives

”Z”[,TsChT{|¢_{L|2T+ (hTJ. (|MV(U—uh)|2+
’ aT .
+ |Mw(u—uh)|2ds> 12 4 ET} 3.27)
with
Er=h(||¥ll; 7+ llglly ;) for k=1
and

1/2
ET=<h%J |Qv(u—uh)|2ds) for k=2.
aT

Recalling the definitions of z, M,, M,, and |. |, ,, (3.27) now gives

l}(z-Qh)(xB—w)||Lh<Ch,{( 5=l ,) s wly,
o (3.28)
with
E=h(I¥ls+ lglly) for k=1

and

1/2
E= ( y h%J |Qv(u—uh)|2ds) for k=2.
aT

Te By

Now, by local scaling arguments (cf. [4]) one can show that the following
estimate

1/2
( y h%J |Q,,(u—uh)|2ds) g
8T

Te Ty

Ch®|¥|ls,, with & =min{r—2,k},
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follows from (3.10). Hence, the asserted estimates follow from (3.19),
(3.13), (3.28) and standard interpolation estimates. W

Remark 3.1 : Note that when the method is used for the approximation of
Stokes and Navier-Stokes equations (c¢f. [9]), then the estimate above
contains a quasioptimal L%estimate for the postimproved approximation of
the velocity. W

Remark 3.2 : If the stronger regularity estimate

I¥lle=<Clgl,

is valid, then one obtains the following error estimate for the higher order
methods with k=3

¥ —bill,< Ch||¥]], with s=min{r,k+2},whenype H'(2). W

Remark 3.3 : In [1] it is shown that the lowest order method in the HHJ
family can be implemented as a slight modification of Morleys nonconfor-
ming method. It was also shown that the approximation for the deflection so
obtain converges with the same order as our postprocessed approximation.
Hence, at least in applications to the plate bending problem, the lowest
order HHJ method is most efficiently implemented as suggested in [1]. B
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