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ERROR ESTIMATES AND STEP-SIZE CONTROL
FOR THE APPROXIMATE SOLUTION
OF A FIRST ORDER EVOLUTION EQUATION (*)

Giinter LippoLD (1)

Communicated by V. THOMEE

Abstract. — Rigorous and computable error bounds are derived for the approximate solution
of a first order evolution equation by means of the implicit Euler method. All effects resulting
from space discretization, approximation of coefficients or truncation of iterative methods for the
nonlinear difference equations, respectively, are controlled step by step in a very simple manner.
Hence time and space discretization may be treated separately. The paper is completed by a pilot
investigation of a step-size control for a linear equation of parabolic type.

Résumé. — On déduit des majorations rigoureuses et computables de l'erreur pour la
résolution approchée d'une équation d'évolution du premier ordre par la méthode implicite
d’Euler. On controle pas-a-pas les effets résultant de la discrétisation en espace, de I'approxima-
tion des coefficients et de la troncation des méthodes itératives pour les équations aux différences
non linéaires dans une maniére trés simple. Alors on peut traiter séparément les discrétisations en
temps et en espace. Ce papier est complété par une investigation pilote d'un contréle des pas pour
une équation parabolique linéaire.

1. INTRODUCTION

It is the aim of this paper to derive rigorous and computable error bounds
for the approximate solution of a first order evolution equation by means of
the implicit Euler method.

The problem under investigation is specified as follows. Assume
V & Ho V' is a triple of real separable Hilbert spaces, V' is dense in A and
the duality pairing (.,.) of V and its dual V' is a continuous extension of
the scalar product (.,.) in H. |. - . = |-1,, are the norms in ¥, H and

V', respectively. This setting includes in particular the finite dimensional
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112 G. LIPPOLD

case where all spaces are identical sets, but equipped with different scalar
products and corresponding norms.

ForI =[0,1]let ¥ = L,(I,V), V' =L,(I,V'), =9 NCyl,H)
and # = {xe ¥ |x' € ¥'}. Provided with any. canonical norm, %  is a
Banach space and # o Cy(I, H), hence # o & (cf. Lions and Magenes
[9] or Gajewski, Groger and Zacharias [5]).

Let A be a continuous mapping of ¥ onto ¥’ which is strongly monotone,
ie.

(Au—Av,u—v ) = [u—v|3 forall w,veV. (1.1

If foe ¥’ and z; € H are fixed data, then there exists a unique solution
Xy € W of the initial value problem

x'+Ax = f,, er,} 1.2)

x(0) = z,

(¢f. [5] or [12)).

Since the work of Rothe [15], the implicit Euler method has been used to
prove existence and regularity of solutions of evolution equations (cf.
Raviart [13], Necas [12], Groger [6], Kacur [8] and the references quoted
there). Combined with some space discretization, it is the most popular
method to approximate the solutions of such equations.

The method may be treated simultaneously as a Galerkin method with
piecewise constant test and trial functions in ¥~ and as a collocation method
with piecewise linear trial functions in % . The first approach was
generalized by Ericsson, Johnson and Thomée [4] who have pointed out
that some methods which are based on subdiagonal Padé approximations of
higher order may be formulated in an equivalent way as Galerkin methods
with piecewise polynomial but discontinuous test and trial functions.
Axelsson [1] investigated the convergence of the 6-method which might be
regarded as a modification of the collocation approach.

Any reasonable space discretization of an evolution equation in infinite
dimensional spaces results in a system of ordinary differential equations
which then should be investigated within the same functional analytic
framework. For such a system the spaces of the triple V & H < V' are most
conveniently chosen as finite dimensional subspaces of the corresponding
spaces for the original equation. In contrast to the usual treatment of
ordinary differential equations, this introduces different norms on these
spaces. However, this is the appropriate way to derive results which are
valid uniformly with respect to the family of space discretizations. (For the
same reasons that require enhanced notions of stability and convergence for
the investigation of arbitrarily stiff systems, the justification of step-size
procedures for evolution equations cannot be derived from the results for
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ERROR ESTIMATES AND STEP-SIZE CONTROL 113

standard ordinary differential equations, ¢f. Sanz-Serna and Verwer [16] for
an instructive discussion of the problems which result from a straightforward
application of one-step methods in this field.)

In contrast to the fact, that the convergence of the implicit Euler method
has been extensively investigated even for rather general types of nonlinear
equations, there are only a few theoretical results for linear equations which
provide a sound theoretical basis for error estimation and adaptive choice of
step-sizes. Assuming some weak but non-trivial regularity concerning the
data and the solution of the problem, Johnson, Nie and Thomeée [7] proved
a priori and a posteriori estimates in L (/, H) for the discontinuous
Galerkin variant of the implicit Euler method (cf. [4]). In connection with
an adaptive space discretization of a highly regular problem, Reiher [14]
investigated a step-size control which is based on an estimate of the local
truncation errors by means of a comparison with the trapezoidal rule. In
both papers some rather restrictive uniformity conditions for the step-sizes
of the meshes had to be imposed.

In this paper the time discretization of equation (1.2) is treated by a
modified collocation method which covers a variety of approximations of
fo by means of piecewise constants (section 2). This collocation approach
has the advantage that x; is approximated by functions from some subspace
of # and all effects resulting from space discretization, approximation of
coefficients or truncation of iterative methods for the nonlinear difference
equations, respectively, are controlled in a very simple manner. Above all,
the time and space discretization of (1.2), including the corresponding error
estimates, can be treated separately. The investigation is restricted to time
independent operators only for simplicity of presentation.

The stability of the solution of (1.2) relative to variations of the data
yields a posteriori estimates of the approximation errors in & and #~ which
depend only on the amount by which the approximate solution fails to
satisfy (1.2) (section 3). Consequently, these estimates are comparatively
easy to compute. The reliability of the error estimates and the convergence
of the method are established by means of some a priori bounds for the
derivatives of the approximations for meshes with bounded step-size and for
rather general data. In some cases such bounds have already been
investigated by Groger [6]. Under fairly mild hypotheses on the data the
convergence of the method is of order 4} where 4, is the maximum step-
size of a mesh A. For sufficiently regular data the approximations converge
linearly.

The paper is completed by a pilot investigation of a step-size control for a
linear equation of parabolic type (section 4). The consequences of some
hypotheses are discussed by means of a constant coefficient diffusion
equation which is considered in various function space settings. In this way
some control procedures which have been used for a long time are put on a
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114 G. LIPPOLD

sound basis. Effectivity in the sense of not using an excessive number of
time steps will depend upon additional regularity of the data and the
solution of the problem and is not investigated in this paper.

2. THE IMPLICITE EULER METHOD

To define discrete-time approximations of equation (1.2) for given data
fo€ V' and z; € H, let ® be the set of all meshes

A={q g, =[] l<isny,O0=ty<---<t, =1} (2.1)
on I. For each A € O let

hy=t—t,_, for 1si<n, and h,= max &, 2.2)
l<i=<n,
(the dependence of the intervals and their characteristics upon A is often
suppressed in the notation below). The set ® is partially ordered by
refinement and so it is a directed index sequence with the minimal element
{I'} and lim s, = 0.
Ae®

Each A € ® determines the spaces

Zy= {xe Xlxlinearongq, forl <i <n,},

} (2.3)

¥a= {ye€ ¥ lyconstantonint (¢,)for | <i =<n,}
and an interpolation mapping p, of Cy(Z, V') onto ¥ . such that

Pay| )Ey(t,) for 1<i=<n, andall ye Cy(I,V"). 2.4)

mnt (g,

For Ae®, ye ¥ ,and 1 <=i=<n, let y' =y(s,-0).
If A is a mesh on I, then with any z, € ¥V and f, € ¥, the original
equation (1.2) is accompanied by the equation

X'+pAAx=fA, XE%‘A’}

x(0) =z,. 2:5)

The functions x € Z, are uniquely determined by their nodal values
x(t,) eV, 1=<i=<n, Therefore equation (2.5) is equivalent with the
uniquely solvable system of difference equations

(x(tz)-x(tx—l))/hz +Ax(t1) =flAs l=<i =Ry 7‘

(2.6)
x(ty) =z, .
Hence (2.5) admits a unique solution x, € & ,.
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ERROR ESTIMATES AND STEP-SIZE CONTROL 115

In the general case, the initial value z; will not be an element of V. Even if
zy € V, then, for practical reasons, z, has to be approximated very often by
some element z, of a finite dimensional subspace of V.

Special variants of the method result from special choices of f,. If
fo€ Co(I, V') and f = p, fo, then (2.5) is the original implicit Euler
method. It turns out that this choice is the most convenient one to deal with
arbitrary meshes A € ®. For obvious theoretical and practical reasons it is
also of interest to investigate equations {2.5) with slightly perturbed
fa such that

fa=pPafo+e, and |82|V,syhA for l<i<n,, 2.7

where vy = 0 is an external parameter which may be chosen depending upon
or independent of A € ®, respectively.
If foe WX, V'), then (2.7) implies, with C, = ||£5]| ./ ~/2 + v,

Ifa=Folly < 1T =pa) foll,. + Neally

np 1/2
= (Z h?J' 17815 dS/2) + [leall, 2.8)
9

i=1

sh,C,.

For a sufficiently smooth forcing function f,, (2.7) includes the variant
fi=f(t_+06h;) for 1 <i=<n, and some 6 € [0, 1]. Moreover, fa may
be the orthogonal projection of f, onto ¥7;. This modification of the
method is the most general one with respect to the assumptions on
fo and therefore it is the most preferred one in the literature.

There is an alternative interpretation of the fact that a fixed x, €
Z, solves equation (2.5) for some f,e ¥, which satisfies (2.7). If
g, is not a priori fixed but implicitely defined by means of x,, then
combining (2.5) and (2.7) for y =0 results in the system of difference
inequalities

l(x(ti) —x(ti—l))/hi + Ax(¢;) —f(ti)]V, svhy, ls=si=n,

(2.9)
x(ty) = z,

These inequalities determine a set of solutions. Any solution algorithm for
(2.9) will fix a unique x, € Z, and the corresponding f, € ¥";.
Especially, inequalities (2.9) cover all those algorithms which in a step by
step procedure solve the difference equations (2.6) with f, = p, f, approxi-
mately within some prescribed tolerance and in this way decouple the full
discretization of (1.2) with respect to time and space. The defects in the
difference equations may originate from different sources such as space
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116 G. LIPPOLD

discretization or an approximate solution of the nonlinear equations. (2.9)
may be realized in a comparatively easy way because it only involves
restrictions on the defects but not on the approximation of the exact
solutions of the difference equations.

Later on it will be necessary to restrict the investigation to a subsequence
0®, = ©® for some p =1 such that

Ae®, iff p>’=h;/h;_, for 2<i<n,. (2.10)

Even if p is of moderate size this is no serious restriction in practice. Almost
all realizations of a step-size control are provided with such a bound to
stabilize the control procedure.

3. ERROR ESTIMATES IN & AND %

It is convenient to define norms . || 4, |-

|y on & and #  such that

t 12
x|l 4 = max (|x(t)|fq/2+ J |x(s)|%,ds> forall xe%Z (3.1)
tel 0
and
xlly = C(llx" + Jx|| % + |x(0)|2)"* forall xe W, (3.2)

where J is the duality map, i.e. the canonical isomorphism from ¥V onto
V' such that |u|% = (Ju,u) = |Jul|3, for all ue V.

v
Evidently

‘ 12
|| x|l o = max <J (x' + Jx, xy ds + |x(0)|§1/2) forall xe . (3.3)
0

tel
Il- 4 is equivalent to any canonical norm on ¥  because

max (|| x|l .7,y XI5 + x50 <

= max (]x(t)|%,+ Jt |x'(s)|2, ds + Jl |x(s)|%,afs>1/2 (3.4)
0 0

tel

= max (2 ft (x’, x)y ds + |x(0)|% + Jt ((x", I X"y + (Jx, x)) a's)l/2
0 0

tel

' 12
= max (J |x' + Jx|2. ds + |x(0)l§,)
tel 0

= lIxlly = CIxN2 gy + x5+ WX'15)" forall xe#
and # o Co(I, H).
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ERROR ESTIMATES AND STEP-SIZE CONTROL 117

ll-1l 4 and ||. ||, are specially tailored to fit the structure of equation (1.2).

The strong monotonicity of A directly yields the stability of the solution of
(1.2) with respect to the forcing function and the initial value.

LEMMA 3.1:If fy, fo€ V', 2z, z, € H and x,, x, € W are the solutions of
the equations

' Ax = f.
X tAx=fi, xeW) i1, 3.5)
x(0) = z;
then
% —xlle=<I/f1- 12, + ‘ZI—ZZ|H/\/§' (3.6)

Proof : Let w = x| — x,. (3.6) follows immediately from (3.3) and (3.5)
via the estimate

t
Iwl% = maxf (W +Jw,wy ds+ |w(0)|%/2

tel JO

!
smaxf (X} — X5+ Ax; — Axy, w) ds + |zl—22|il/2
tel JO

t
:maxj (= Sow) dst |z —z]%/2

tel 0
< [Whg (Ifi = fall o + |20 — 22| 4/ V2) . O

LEMMA 3.2: If moreover A is lipschitzian and L' is a Lipschitz-constant
of A—J, then

[x =X, < (L+ L)Y f1 = fall o + |20 = 22 ,) - 3.7

Proof : With the same notation as above the assﬁmptions yield

||w||f”,sj (W' + Jw, J =N (x| — x5 + Ax) — Ax,)) ds
1

+ J <w’,J‘1((J—A)x1— (J—A)x))) ds + |z, -z, iI
T

SJ (W' +JIw, J7N(f1 = f2)) ds
T
LW Ly 12 =2l + 20— 22,
= wllylfi =Sl + L' | x = Xllg + 21— 22| ) -
Combined with Lemma 3.1 this proves (3.7). n|
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118 G LIPPOLD

Due to Lemmas 3.1 and 3.2 for any f,€ ¥’ and z;, € H the solution
xy of (1.2) is a priori bounded such that

1%l 4 =< /o= 401l . + | 20] /N2 (3.8)
In addition, if A is lipschitzian, then
%l , = Q+ L) fo- 40|, + |zl,)- (3.9)

THEOREM 3.1: Let xo€ W be the solution of equation (1.2) for some
fo€ V' and zy € H.

(@) If A is a mesh on I and x, € X , is the solution of equation (2.5) for
some fo€ V') and zy € V, then

% = Xollg < | (T = ps) Axs + (fa—FO| . + |ZA_ZOIH/\/§~ (3.10)

(ii) If moreover A is Lipschitz-continuous and L' is a Lipschitz-constant of
A —J, then

”xA—xo"Ws (A + L')([|( - pa) Axp + (fA—fo)”,/,+ |ZA—ZO|H)-

(3.11)
Proof : Because x, is the solution of the equation
X'+ Ax =T —pp) Axy+ o, xX€W,
x(0) = z,,
estimates (3.12-3.13) foliow directiy from Lemmas 3.1 and 3.2. 0O

Theorem 3.1 provides a convenient basis for error estimation and step-
size control for arbitrary meshes A on 7 as soon as the a posteriori bounds in
(3.10-3.11) can be traced back on a priori estimates for approximating the
data in (1.2), i.e. on | fa — foll . and |z4 — zo]

LEMMA 3.3: If A is Lipschitz-continuous with a constant L and A is a
mesh on I, then

||<1—pA)4x||,,,sL<z |
q

1=1

1/2 _
|x'|§,ds/3> < Lh,||x'||,/V/3 (3.12)

or, equivalently,

nA 1/2
||(I—pA)Ax||V,sL(Zh,|x(t,)—x(t,_1)|f//3) . (3.13)

for all A€ © and x € X,.
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ERROR ESTIMATES AND STEP-SIZE CONTROL 119

Proof : If x € &,, then actually holds

na

| (I —pa) Ax||i/, =y J | Ax(s) -—Ax(z,-)|2V, ds
qi

i=1

-2y f [3(6) = 2|2 ds = L7 3 121 Y133
q

i=1

i i=1

A
=L*Y h,?f |x'|2 ds/3 .
q

i=1 i

Bounding the step-sizes by their maximum completes the proof. O
LEMMA 3.4: Let foe Wi, V'),

() If A€ © and x, is the solution of equation (2.5) for fy = ps fo and
some z, € V', then

max (|| x4l gy 1360, 1< 1580, + 428 = £6 O],/ /B (3.14)

(i) If, in addition, zy€ V, Azy— fo(0) € H, |z, — zo|%, <h,and L is a
Lipschitz-constant of A, then

max [ || xg Ile(LH), ||x3||1,] = K, (3.15)
for Ko = || foll, + |Azo = fo(O)| , + L.
Proof : (i) Let v = x;. (2.5) implies
|17+ By o' 2 < [ (fo(t) = folte)) = (Azy — fo (O}, / 1y
and
[v’[i,-;—h,[vlﬁ,s I(fo(tz)—fo(fz_x))li,,/h1+ |vl—‘|§{ for 2=</<mn,.
Hence
4 1
o+ B hilo' = T 0ol = Folto )] /hi+
+ | Folt) = fo(te)) — (Azy — f4(0))|2./hy for 1<l<n,

and therefore (3.14) is valid.
(i) The additional assumption about z, yields the alternative estimate

[ 12+ B0 % = [ (Fo(t) = fot)) = (Azy — Az0) |7,/ +

2
+ |Azg = fo(0) |
vol. 25, n" 1, 1991



120 G LIPPOLD

which results in

max [[|xall, _, zy %l 1=
< 18]l + | 420 = £o(0)| ,, + | Azs — Azg) . //P1 -

Due to the Lipschitz-continuity of A4 this proves (3.15). O

Combining Lemmas 3.3, 3.4 and Theorem 3.1 results in a priori estimates
of the approximation errors for arbitrary meshes and the special choice
fa =pafo- As discussed in Section 2, there is a serious demand for similar
results in more general situations which are governed by condition (2.7).
Under some more restrictive condition than (2.7) and for subsequences of
meshes A which are inversely regular, i.e. sup 4,_;/h, is uniformly

2=1=xny
bounded, Groger [6] derived an a priori bound like (3.15). The step by step
realizations of (2.5) and inverse regularity assumptions are incompatible,
however.

LEMMA 3.5: If A€ ®, f, €V ), 21, z,€ V and x|, x, € X, are the
solutions of the equations

X'+ paAx =f,, x€ X, .
-1,2, 3.16
x(0) = z, Sfor i=1, (3.16)
then
max[”xl_lelcﬂ(l,H)’ pA(xl_)CZ)”,’/]s |'fl_f2”1/r+ IZI_22|H‘

(3.17)
Proof : Let w = x| — x,. (3.16) and the strong monotonicity of 4 imply
2
w2+ kw2, < h| £ = £+ Iwt D,

and therefore

! 1
w2+ Y b w2 < T A 15+ (w5
=1 J=1

= “fl_f2||i,,+ |zl—22|il for 1<l=<n,,

such that (3.17) is valid. O

LEMMA 3.6: Let foe Wi(I,V').

() If Ae®, and x, is the solution of equation (2.5) for some
fa€ YV 4 which satisfies (2.7) and some z,€V, then, with
M, = |foll, + A+p),
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ERROR ESTIMATES AND STEP-SIZE CONTROL 121

np 172
(z h?J |x;|§,ds) < hy (M, + |Azy — fo(0)],.//h) - (3.18)
1=1 q:
(ii) The additional assumptions of Lemma 3.4 (ii) imply that

ny 12
(Z h,zj |x,g|2Vds) <h,K,, (3.19)
=1 9

Jor K, =Ko+ (1 +p)v.
Proof : Let X, be the solution of (2.5) for f, = p, foand let w = x, — X,.
Then
lPawlly =< fa=pPafoll, <havy

as a consequence of Lemma 3.5 and (2.7). Because of

o , 12 n ) 12
Zh,f |x[A|Vds) s(Zh,ZJ EA Vds)
=1 q, =1 q,

np 5 1/2
+ (Z htlw(tz)_w(tzal)ly)

=1

<hs| %], + A +p)|Pawl, »

(3-18)-(3.19) follow immediately from Lemma 3.4. O

THEOREM 3.2: Let A be Lipschitz-continous with a constant L. Let

Xo €W be the solution of equation (1.2) for some zy€ H and
fO € W21(I’ V,)‘

() If Ae ®, and x, € X, is the solution of equation (2.5) for some
[ A
fa € ¥ 4 which satisfies (2.7) and some z, € V, then

% ~ Xoll y < a LM, + |Azy — £o(0)],,.//11) /~/3
+hy Cy+ |2a— 2| 1/ V2. (3.20)

(i) If moreover zy € V, Azy— fo(0) € H and |z, — zoli, < h,, then

Ixa = Xoll y < ha(LK, /N3 + C) + |2y — 20] /2. (321)

Proof : (3.20)-(3.21) result from a straightforward combination of
Theorem 3.1 (1), Lemmas 3.3 and 3.6 and estimate (2.8). O

vol 25, n"1, 1991



122 G. LIPPOLD

The same hypotheses support similar estimates of [|x, — xol| .. For fixed
values of v and p, some additional assumptions concerning the initial values

and the size of the initial step mn A yield various estimates of the order of
convergence relative to A,.

COROLLARY 3.1: If, in addition to the assumptions of Theorem 3.2 (i),
hy<cihy, zpe V, |za — 20|, <3, and |z, —zo|2s2hA, then

% — Xoll 5 = /e (L(My + ¢, Az — £(0)] . + Ley ) //3+ Cy+ 1)
(3.22).

COROLLARY 3.2: If the assumptions of Theorem 3.2 (ii) hold and
|z — ZOIHshl \/E, then

s — Xoll y <ha(LK,/~3+Cy+1). (3.23)

Except for (3.22), Theorem 3.2 and its corollaries hold without any
serious restrictions on the underlying mesh and without any a priori
regularity assumptions concerning the solution x; of the original equation
(1.2). For vy =0 the bounds are independent of p, thus they hold for
arbitrary meshes A € 0.

In fact, the bounds from (3.20)-(3.23) majorize the term on the right hand
side of (3.10). Hence the a posteriori estimates from Theorem 3.1 are
convergent with the same rate as the approximations themselves. Because
any bound involving the maximum step-size will be rather pessimistic, the
estimates (3.20)-(3.23) are mainly of theoretical interest.

With respect to a single mesh A € ® , the constant y may be regarded as a
free parameter. Defining 8 = yk,, the combination of (3.12) and (3.18)
reads as

1 —pa) Ax|| . < Lay (| fill . + |Azy — £o(O)] ./ /H) /3
+L(1+p)3//3. (3.29)

Thus, with an a priori information about L, for each fixed tolerance level
x >0 the bound in (2.9) can be chosen independently of 4, such that
| xa — xo]| g <K for appropriate meshes A € ©,.

4. STEPSIZE CONTROL FOR A LINEAR EQUATION

The most effective way to approximate the solution x, of equation (1.2)
within a prescribed tolerance is the simultaneous step by step construction
of an appropriate mesh A and the solution x, (defining f,) under control of
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ERROR ESTIMATES AND STEP-SIZE CONTROL 123

the estimates (3.10)-(3.11). Because the evaluation of the a posteriori
bounds of Theorem 3.1 in no way is a trivial task for general nonlinear
equations, the investigation is subsequently restricted to the most simple
linear case.

Assume A is linear and symmetric and f; is a constant. Without loss of
generality let 4 = J such that the constants L and L' in the estimates of
Section 3 are 1 and 0, respectively. In particular

na 12
” I —-pra) Ax||1,, = (z hi|x(ti) '_x(ti—l)li,/?’) 4.1

forall Ae®andxe X,.
Based on this equality, various step-size control algorithms can be derived
in a straightforward way.

ALGORITHM 4.1 :

0. Let k =0and 0 < h; < 1.

1. i=0. tp=0. Choose ug€ V such that |uy— zo|, < /2.
2.i=i+ 1.

3. Choose u; € V such that |(u; —u; _1)/h; + Au; —fo|V,s k/2.

4. k= [ ld(max [1/2, \/h;/3|u; —u; _,|,/x])] (integer part).

5. If k<—1, then h; = 2¥ h; and goto 3.

6. t;=1;,_+h; If t; <1, then h;,; = min [2¥h;, 1 — ¢,;] and goto 2.
7. ny =1i.

8. Stop.

The same arguments as in the proof of Lemma 3.6 combined with
estimate (3.14) now prove that Algorithm 4.1 is always finite. Especially, if
again X, denotes the result of the exact implicit Euler method on the same
mesh A € @ 5, then

il —u |, <h| %], + (1 +V2)k/2 for 1<isn,. (42)
If x, € X, is defined by x,(¢;) = u; for 0 <i <n, then
1% = Xoll y =< | (T =Pa) Axa|l . + [1fa = Folly + 40— 20|
= (\/rp+ 1Dk, 4.3)

Algorithm 4.1 approximately equidistributes the terms in the sum of (4.1)
(error per step control). Though this strategy is known to be optimal for
more regular problems, it lacks from the fact that n, cannot be determined
in advance. At least under the assumptions of Lemma 3.4 the step-sizes are
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uniformly bounded from below by a multiple of «, hence
| xa — %o ”W = 0(+/x) for k small enough.

The alternative error per unit step control is justified only within the
setting of Lemma 3.4, recalling the argumentation from the proof of (3.14)
and (4.2). Some estimates like (3.14) seem to be necessary to prove the
algorithm to be finite (in fact the generated approximation x, must be
bounded in Cy(Z, V')).

ALGORITHM 4.2 :

0. Let xk =0, and 0 < h; < 1.

1. i =0. % =0. Choose ug€ V such that |uy—zo| , <« /2.
2.i=i+1

3. Determine u, € V' such that (u, —u, _)/h, + Au, = f\.

4. k= [-ld(max [1/2, |4, ~u, 1],/ (3 x/2)D)] (integer part).

5. If k<—1, then h, = 2% h, and goto 3.

6. t,=1t, 1 +h,. Ift, <1, then h, ., =min [2*h, 1 —,] and goto 2.
7. ny=1.

8. Stop.

For each tolerance level k > 0 this algorithm stops after a finite number of
steps and determines a mesh A € @ ; and some x, € X, with x,(¢,) = u, for
0 <i = n, such that

[ xa —Xolly < | (T —pa) Axa|l . + |0 = 20| =k 4.4

Obviously the realization of any of these algorithms depends on the
availability of some algorithms which perform the determination of the
u, eV for 0 =i <n,.

Examples :

Some specific aspects concerning a realization of the implicit Euler
method, in particular of Algorithms 4.1 and 4.2, are discussed for the
diffusion equation

x,—div (a.gradx) + cx = foon Q x I
x=00ndQ x17 4.5)
x(.,0) = zyon Q,

where Q < R™, 1 =m <3, is a bounded, simply connected and polyhedral
domain, a, ce L (), a(w)=a;=0, c(w) =0 for all w € Q, zy € L,(Q)
and foe (W5(Q))".

1. Let Hy= L,(Q), H| = V%(Q) and H_, = H|. The scalar products
(<5 2)o» (> -)1 and the duality map 4 € L (H,, H_,) are defined by
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(u,v)y = J wv do forall u,ve H
0

(w,v) = (Au,v), = [ (a.graduTgrad v + cuv) dw (4.6)
v

forallu,ve H,.

Then H; & Hy & H_ is an appropriate triple of Hilbert spaces and equation
(1.2) for

W = {xeLz(I,Hl)|x’eL2(I, H—])} cZ =Ly(I,H))NCy(, Hy)

is the weak formulation of (4.5).

The implicit Euler method is determined by (2.6), thus resulting in a
system of elliptic boundary value problems. With respect to Algorithm 4.1 it
is advisable to solve these equations approximately by means of an adaptive
conforming finite element method. That is, the selection of u; in step 3 is
carried out by a feedback algorithm which successively produces meshes on
Q and the corresponding finite element solutions of the i-th difference
equation from (2.6) until the stopping criterion of step 3 is satisfied.
u, is constructed by a similar algorithm based on information about
z;. General principles for such methods originate from BabuSka and
Rheinboldt [2] (¢f. Lippold [10] and references for specific topics on
adaptivity as well as Bietermann, BabusSka [3] and Reiher [14] for
applications in the field of parabolic equations).

On the other hand, the bounds from Theorem 3.1 can also be used within
the classical approach starting from a primary space discretization. Then the
resulting evolution equation in finite dimensional spaces is approximately
solved by the implicit Euler method, e.g. by Algorithm 4.2. The combined
effects of space and time discretization, numerical integration etc. are
supervised via (2.9) and (3.10)-(3.11), applied for the original equation.

2. Let Hy=A'Hy= {ue H||a.gradue H(Q,div)} and let
A e L(H,, Hy) be the restriction of 4 to H,, i.e.

Au=~-div (a.gradu) + cu forall ue H,. @.7)

A canonical scalar product (., .), on H, is determined by
(u,v); = (Au, Av), forall u,ve H,. 4.8)
Now H, o H| & H, is the space triple under consideration. By definition
(v,u),= (v,Au), forall veH,, ueH,, “4.9)

hence A is the duality map of H, onto H,,.
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If fo € L,(Q) and z, € H;, then the equation

x'+Ax=fopx€W,
4.10
x(0) = z,, } ( )

now for
W = {xe Lz(l, Hz)'xl € Lz(I, Ho)} c .%‘ = L2(I, Hz) ﬂ Co(I, Hl)’

fits into the general setting of equation (1.2). Theoretically all arguments
from the preceding example remain valid. From a practical point of view,
however, the space discretization by means of conforming finite elements in
H, will cause serious difficulties at least for m > 1. Thomée and Wahlbin
investigated the primary space discretization of (4.10). Motivated by the
underlying space triple the method was called an H; Galerkin method.

3. An alternative choice is the investigation of (4.5) in the triple
Hys H_; & H_, where H_, is the dual of H, in the triple H, Hyo H_,
too. Using the duality map A* of H, onto H_,, i.e.

A*u,v), = (u,v), forall w,ve H,, (4.11)
0 0 0

and W = {xe€ Ly,(I, Hy)|x' € L,(I, H_,)}, equation (4.5) can be written
in a very weak form as

' * g
x'"+ A x_fo,xe"llf,} @.12)
x(0) = z,.

There is a wide variety of numerical methods which attack the space
discretization of (4.12), one of them is the H_,; Galerkin method due to
Wheeler [18].

An interesting topic is the combination of the conforming finite element
approximations in H,; from the first example with the error estimates in this
very weak formulation. The defects in (2.9) or step 3 of Algorithm 4.1,
respectively, now are bounded in H_,, i.e. the accuracy of the solutions of
the difference equations is measured in H; At the same time the step

control is based on the values \/PT, |u,——u,~_1|H0 or |u,-—u,-_1|H0,

1 <i =< n,, respectively, thus confirming an approach which, motivated by
physical reasoning, has been used for a long time in the numerical analysis
of parabolic differential equations.

Based on some more restrictive assumptions already mentioned in the
introduction, Johnson, Nie and Thomeée proved in [7] that bounding the
terms |u; — u; 4| Hy 1 < i =< n,, results in an optimal step-size control for an

error estimate in L ([, H;) (Theorem 3.1 only provides an estimate in
Ly(1, Hy)).
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In fact there 1s a sequence (H})r of spaces which are defined together with
the corresponding scalar products by means of the subsequent integer
powers of A The choice of examples 1 to 3 1s 1n correspondence with the
needs for most applications
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