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ERROR ESTIMATES AND STEP-SIZE CONTROL

FOR THE APPROXIMATE SOLUTION

OF A FIRST ORDER EVOLUTION EQUATION (*)

Gunter LlPPOLD (*)

Communicated by V. THOMÉE

Abstract. — Rigorous and computable error bounds are derived for the approximate solution
of afirst order évolution équation by means of the implicit Euler method. Ail effects resulting
from space discretization, approximation of coefficients or truncation of itérative methods for the
nonlinear différence équations, respectively, are controlled step by step in a very simple manner.
Hence time and space discretization may be treated separately. The paper is complétée by a pilot
investigation of a step-size control for a linear équation of parabolic type.

Résumé. -— On déduit des majorations rigoureuses et computables de l'erreur pour la
résolution approchée d'une équation d'évolution du premier ordre par la méthode implicite
d'Euler. On contrôle pas-à-pas les effets résultant de la discrétisation en espace, de l'approxima-
tion des coefficients et de la troncation des méthodes itératives pour les équations aux différences
non linéaires dans une manière très simple. Alors on peut traiter séparément les discrétisations en
temps et en espace. Ce papier est complété par une investigation pilote d'un contrôle des pas pour
une équation parabolique linéaire.

1. INTRODUCTION

It is the aim of this paper to dérive rigorous and computable error bounds
for the approximate solution of a first order évolution équation by means of
the implicit Euler method.

The problem under investigation is specifîed as follows. Assume
F t> H<+ F ' is a triple of real separable Hubert spaces, F is dense in H and
the duality pairing (., . > of F and its dual F ' is a continuous extension of
the scalar product (.,. ) in H, \.\v, [. | w |-1 K> are the norms in F, H and
F', respectively. This setting includes in particular the fînite dimensional
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112 G. LIPPOLD

case where ail spaces are identical sets, but equipped with different scalar
products and corresponding norms.

For / = [0, 1 ] let 1T = L2(I, F) , r i = L2(I, F ' ) , f = f n C0(I, H)
and HT = {xe f I x ' e f ' } . Provided with any. canonical norm, W is a
Banach space and if t» C0(7, H), hence HT c> 3f (cf. Lions and Magenes
[9] or Gajewski, Gröger and Zacharias [5]).

Let A be a continuous mapping of Fonto V' which is strongly monotone,
i.e.

{ A u - A v , u - v > 2== \ u - v \\ f o r a i l u,veV. (l.l)

If/0 G T̂ *' and zoe H are fîxed data, then there exists a unique solution
XQ e iV of the initial value problem

= ƒ„, xeiT, 1
x(0) = z0

(cf. [5] or [12]).
Since the work of Rothe [15], the implicit Euler method has been used to

prove existence and regularity of solutions of évolution équations (cf.
Raviart [13], Necas [12], Gröger [6], Kacur [8] and the références quoted
there). Combined with some space discretization, it is the most popular
method to approximate the solutions of such équations.

The method may be treated simultaneously as a Galerkin method with
piecewise constant test and trial functions in 'V and as a collocation method
with piecewise linear trial functions in W. The fîrst approach was
generalized by Ericsson, Johnson and Thomée [4] who have pointed out
that some methods which are based on subdiagonal Padé approximations of
higher order may be formulated in an equivalent way as Galerkin methods
with piecewise polynomial but discontinuous test and trial functions.
Axelsson [1] investigated the convergence of the 0-method which might be
regarded as a modification of the collocation approach.

Any reasonable space discretization of an évolution équation in infinité
dimensional spaces results in a System of ordinary differential équations
which then should be investigated within the same functional analytic
framework. For such a System the spaces of the triple V t» H u V' are most
conveniently chosen as fînite dimensional subspaces of the corresponding
spaces for the original équation. In contrast to the usual treatment of
ordinary differential équations, this introduces different norms on these
spaces. Ho wever, this is the appropriate way to dérive results which are
valid uniformly with respect to the family of space discretizations. (For the
same reasons that require enhanced notions of stability and convergence for
the investigation of arbitrarily stiff Systems, the justification of step-size
procedures for évolution équations cannot be derived from the results for
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ERROR ESTIMATES AND STEP-SIZE CONTROL \\3

standard ordinary differential équations, cf. Sanz-Serna and Verwer [16] for
an instructive discussion of the problems which result from a straightforward
application of one-step methods in this field.)

In contrast to the fact, that the convergence of the implicit Euler method
has been extensively investigated even for rather gênerai types of nonlinear
équations, there are only a few theoretical results for linear équations which
provide a sound theoretical basis for error estimation and adaptive choice of
step-sizes. Assuming some weak but non-trivial regularity concerning the
data and the solution of the problem, Johnson, Nie and Thomée [7] proved
a priori and a posteriori estimâtes in L^I.H) for the discontinuous
Galerkin variant of the implicit Euler method (cf [4]). In connection with
an adaptive space discretization of a highly regular problem, Reiher [14]
investigated a step-size control which is based on an estimate of the local
truncation errors by means of a comparison with the trapezoidal rule. In
both papers some rather restrictive uniformity conditions for the step-sizes
of the meshes had to be imposed.

In this paper the time discretization of équation (1.2) is treated by a
modified collocation method which covers a variety of approximations of
f0 by means of piecewise constants (section 2). This collocation approach
has the advantage that x0 is approximated by functions from some subspace
of ilT and all effects resulting from space discretization, approximation of
coefficients or truncation of itérative methods for the nonlinear différence
équations, respectively, are controlled in a very simple manner. Above all,
the time and space discretization of (1.2), including the corresponding error
estimâtes, can be treated separately. The investigation is restricted to time
independent operators only for simplicity of présentation.

The stability of the solution of (1.2) relative to variations of the data
yields a posteriori estimâtes of the approximation errors in 9E and UT which
depend only on the amount by which the approximate solution fails to
satisfy (1.2) (section 3). Consequently, these estimâtes are comparatively
easy to compute. The reliability of the error estimâtes and the convergence
of the method are established by means of some a priori bounds for the
derivatives of the approximations for meshes with bounded step-size and for
rather gênerai data. In some cases such bounds have already been
investigated by Gröger [6]. Under fairly mild hypotheses on the data the
convergence of the method is of order h^2 where h^ is the maximum step-
size of a mesh A. For suffïciently regular data the approximations converge
linearly.

The paper is completed by a pilot investigation of a step-size control for a
linear équation of parabolic type (section 4). The conséquences of some
hypotheses are discussed by means of a constant coefficient diffusion
équation which is considered in various function space settings. In this way
some control procedures which have been used for a long time are put on a
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G LIPPOLD

sound basis. Effectivity in the sense of not using an excessive number of
time steps will depend upon additional regularity of the data and the
solution of the problem and is not investigated in this paper.

2. THE IMPLICITE EULER METHOO

To define discrete-time approximations of équation (1.2) for given data
fQe ir' and z0 G H, let 0 be the set of all meshes

on /. For each A e 0 let

hl = tl — tl_x for ls£Z=£=nA and hA — max hl (2.2)
i s i =s«A

(the dependence of the intervals and their characteristics upon A is often
suppressed in the notation below). The set 0 is partially ordered by
refïnement and so it is a directed index séquence with the minimal element
{/} and Hm hA = 0.

Ae ©

Each A e 0 détermines the spaces

3£\ = {x e 3C I x linear on qx for 1 === i === n A} , 1
T Â = {y e i^f I y constant on int (qt) for 1 =s i; =s n A} J

and an interpolation mapping/?A of Co(/, V') onto ^ A such that

for U U n A andaU ^ e C 0 ( / , K ' ) . (2.4)

For A G 0 , y e iTA and 1 «s f «s HA let ƒ = j(r z - 0).
If A is a mesh on /, then with any zA G V and fà e 1̂ *A the original

équation (1.2) is accompanied by the équation

x(0) ^ zA.

The functions x G ̂ "A are uniquely deternüned by their nodal values
x (O G F, 1 === i ^ nA. Therefore équation (2.5) is equivalent with the
uniquely solvable System of différence équations

(x(tl)-x(tl_l))/hl+Ax(tl)=ft
à9 l*zi*znà9)

= z à . J

Hence (2.5) admits a unique solution xA G
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ERROR ESTIMATES AND STEP-SIZE CONTROL 115

In the gênerai case, the initial value z0 will not be an element of V. Even if
z0 e F, then, for practical reasons, z0 has to be approximated very often by
some element zA of a fïnite dimensional subspace of V.

Special variants of the method result from special choices of ƒ A. If
ƒ0 e Co(/, V') and fA = pAfo, then (2.5) is the original implicit Euler
method. It turns out that this choice is the most convenient one to deal with
arbitrary meshes A e ©. For obvious theoretical and practical reasons it is
also of interest to investigate équations (2.5) with slightly perturbed
/ A such that

/ A = / > A / O + £ A and \sA\yt^yhA for 1 sss i ss « A , (2.7)

where 7 =2= 0 is an external parameter which may be chosen depending upon
or independent of A e ©, respectively.

If /o e W\(I, F ' ) , then (2.7) implies, with C7 = \\n\\r,/ \Fï + 7,

(2.8)

For a sufficiently srnooth forcing function fQ, (2.7) includes the variant
fk = f(ti -1 + 0ht) for 1 =s i ^ «A and some e 6 [0, 1 ]. Moreover, / A may
be the orthogonal projection of fö onto y A . This modification of the
method is the most gênerai one with respect to the assumptions on
fö and therefore it is the most preferred one in the literature.

There is an alternative interprétation of the fact that a fixed xA e
#*A solves équation (2.5) for some / A e T Â which satisfies (2.7). If
8A is not a priori fixed but implicitely defmed by means of xA) then
combining (2.5) and (2.7) for 7 > 0 results in the system of différence
inequalities

~f(tt)\ v,^yhA, l ^ i ^ n A

These inequalities détermine a set of solutions. Any solution algorithm for
(2.9) will fïx a unique xà e X"A and the corresponding / A e T̂ ~A.

Especially, inequalities (2.9) cover all those algorithms which in a step by
step procedure solve the différence équations (2.6) with / A = pA f0 approxi-
mately within some prescribed tolérance and in this way découplé the full
discretization of (1.2) with respect to time and space. The defects in the
différence équations may originate from different sources such as space
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116 G. LIPPOLD

discretization or an approximate solution of the nonlinear équations. (2.9)
may be realized in a comparatively easy way because it only involves
restrictions on the defects but not on the approximation of the exact
solutions of the différence équations.

Later on it will be necessary to restrict the investigation to a subsequence
©p e €> for some p ̂  1 such that

Ae@ p iff ç>2^hi/hi_l for 2 ^ f « « A . (2.10)

Even if p is of moderate size this is no serious restriction in practice. Almost
all realizations of a step-size control are provided with such a bound to
stabilize the control procedure.

3. ERROR ESTIMATES IN SC AND HT

It is convenient to define norms ||. | | s , \\.\\yr o n X and if such that

( Çt \ 1/2

\ x ( t ) \ 2
H / 2 + \ x ( s ) \ 2 )

J o

\x(t)\2
H/2 + \x(s)\2

vds) for all x e X (3.1)
Jo /

and
11*11 *r= (||*'+/x||^.,+ |*(0)|^)1/2 forall x e HT , (3.2)

where J is the duality map, i.e. the canonical isomorphism from V onto
F' such that \u\2

v = (Ju,u) = \Ju\\, for all u e V.
Evidently

a 't \ 1/2

<x' + Jx, x) ds + |x(0) \2
H/2 for ail x e UT. (3.3)

o /is equivalent to any canonical norm on HT because

( rt rt \ i/2

l*(0&+ \x'(s)\2
v,ds+ \ \x(s)\2

vds) (3.4)
Jo Jo /

( rt rt \ 1/2

2 (x\x) ds+ |JC(O)|^+ ((x\J-lx') + {Jx,x))ds\
Jo Jo /Ü

\x' + Jx\2
v, ds

Ü 1/2

v, ds + | J C ( O ) | ^ J

^^(il^llco(/^)+ l l x ^ + ll*'ll^)1/2 fora11

and HT c» c o ( / ,

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



ERROR ESTIMATES AND STEP-SIZE CONTROL 117

||. || % and ||. || ̂  are specially tailored to fit the structure of équation (1.2).
The strong monotonicity of A directly yields the stability of the solution of
(1.2) with respect to the forcing function and the initial value.

LEMMA 3.1 : Iffu f2e V, zl9 z2e H andxx, x2eif are the solutions of
the équations

x' + Ax = ft, x e U

then

| | * i - * 2 | | i r ^ l | / i - / 2 | | r . + | z i - z 2 | H / v ^ - (3-6)

Proof : Let w = xx - x2. (3.6) follows imniediately from (3.3) and (3.5)
via the estimate

\w\\% =
tel

f' <w' + /w, w) ds + \w(0)\2
ff/2

Jo

m a x (x[ - x'2 + Axx - Ax2, w) ds -f \zl~ z2\
2

H/2
tel Jo

= max
tel

(fy-f2iW) ds+ \zx-z2\
2
H/2

Jo

n
LEMMA 3.2 : If moreover A is lipschitzian and L' is a Lipschitz-constant

of A — / , then

/ 2 | | ^ + \Zl-z2\H). (3.7)

Proof : With the same notation as above the assumptions yield

M l V ^ f (w' +Jw,J~\x[ -x'2 + Axx -Ax2)) ds

+ [ {w\J-\{J-A)xx-(J-A)x1))ds+ \zx-z2\\
J i

Combined with Lemma 3.1 this proves (3.7). D

vol. 25, n ' l , 1991



118 G LIPPOLD

Due to Lemmas 3.1 and 3.2 for any fQ e *V' and z0 e H the solution
jty of (1.2) is a priori bounded such that

11*11** | | /0-^0| | r ,+ \zo\H/y/2. (3.8)

In addition, if A is lipschitzian, then

| |Ab | | i r^(l+Z, ')( | | /0-^0| | r ,+ \zo\H). (3.9)

THEOREM 3.1 : Let x0 G W be the solution of équation (1.2) for some
foe TT' and zoe H.

(i) If A is a mesh on I and xA G SC\ is the solution of équation (2.5) for
some ƒ A G ̂ A and zA G Vy then

K - * o | | ^ 11(7-^)^^4- </A-/o)||r,+ |2A-2oU/\/2. (3.10)

(ii) If moreover A is Lipschitz-continuous and L' is a Lipschitz-constant of
A — J, then

(3.11)
Proof : Because xA is the solution of the équation

x' + Ax = (I -/?A) AxA+fA, x e # ,

estimâtes (3.12-3.13) foîlow directiy from Lemmas 3.1 and 3.2. D
Theorem 3.1 provides a convenient basis for error estimation and step-

size control for arbitrary meshes A on ƒ as soon as the a posteriori bounds in
(3.10-3.11) can be traced back on a priori estimâtes for approximating the
data in (1.2), i.e. on | | / A - / o | | r , a n d \z&-zo\H'

LEMMA 3.3 : If A is Lipschitz-continuous with a constant L and A is a
mesh on I, then

In& r
Z^2J \x'

\ /

2
vds/3\ *Lhà\\x'\\r/y/3 (3.12)

or, equivalently,

|| (7 — PA) AX\\ ^ L l y ht \x(tt) — x(tl _ i) | /3 j . (3.13)

for ail A e S and x e X^.
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ERROR ESTIMATES AND STEP-SIZE CONTROL 119

Proof : If x G âfAs then actually holds

[ \AX(s)-Ax(ti)\
2
v,ds

Bounding the step-sizes by their maximum complètes the proof. •

L E M M A 3.4 : Let f0 e W\{I, V),

(i) If A E S and xA is the solution of équation (2.5) for f A = PA f o and
some zA G V, then

/7^ (3.14)

(ii) If in addition, z0 e V, Az0 -/0(0) G H, \zA- zo\
2

y^hl and L is a

Lipschitz-constant of A, then

forK0= \\n\\r+ \Azo-fo(O)\H+L.

Proof: (i) Let v = JCA. (2.5) implies

and

Hence

U O ) ) ( A / O ( ) ) | K , A I for l ^ / ^ n

and therefore (3.14) is valid,
(ii) The additional assumption about z0 yields the alternative estimate

vol. 25, n ' l , 1991



120 G LIPPOLD

which results in

Due to the Lipschitz-continuity of A this proves (3.15). D

Combining Lemmas 3.3, 3.4 and Theorem 3.1 results in a priori estimâtes
of the approximation errors for arbitrary meshes and the special choice
/ A = PA fo- As discussed in Section 2, there is a serious demand for similar
results in more gênerai situations which are governed by condition (2.7).
Under some more restrictive condition than (2.7) and for sub séquences of
meshes A which are inversely regular, i.e. sup hl_l/hl is uniformly

2 sS l sSrt^

bounded, Gröger [6] derived an a priori bound like (3.15). The step by step
realizations of (2.5) and inverse regularity assumptions are incompatible,
however.

LEMMA 3.5 : If A e ©, fu f2 e Y*'^ zh z2e V and xu x2 G £A are the
solutions of the équations

x(0) = zx J

then

fllxj -x2 | |co ( / Hf 11^(^1-^2)11^]^ I l / i - /2 | |^+ k i - ^ U -
(3.17)

Proof : Let w = xx — x2. (3.16) and the strong monotonicity of A imply

and therefore

7 = 1

such that (3.17) is valid. D

LEMMA 3.6 : Let f0 G W\{I, V' ).

(i) If A G ©p ûfw<i xà is the solution of équation (2.5) for some
which satisfies (2.7) a«<i some zA G F, ?/*e«, with
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2
vds\ =s/zA(M^ + | ^ Z A - / O ( 0 ) L . / N / * I ) - (3-18)

(ii) The additional assumptions of Lemma 3.4 (ii) imply that

(3.19)/ y 2 f | , , 2 \ 1 / 2 ^

for Ky = K0+ ( l + p ) 7 -

Proof : Let xA be the solution of (2.5) for / A = />A / 0 and let w = xA — xA.

Then

as a conséquence of Lemma 3.5 and (2.7). Because of

/ 1/2

(3.18)-(3.19) follow immediately from Lemma 3.4. •

THEOREM 3.2 : Let A be Lipschitz-continous with a constant L. Let
XQ G iV be the solution of équation (1.2) for some zoe H and
UeW\{I,V).

(i) If A G 0 p and xA G Ü2TA ZJ /Ae solution of équation (2.5) /o r
/ A 6 ^ Â which satisfies (2.7) awt/ .some zA G F ,

^ (3.20)

(ii) If moreover z0 G F , Az0 - / 0 ( 0 ) G ̂  a«<i \zA — zo\
2
y ^ hu then

(3.21)

Proof: (3.20)-(3.21) result from a straightforward combination of
Theorem 3.1 (i), Lemmas 3.3 and 3.6 and estimate (2.8). D

vol 25, n°l, 1991



122 G. LIPPOLD

The same hypotheses support similar estimâtes of ||JCA - xo\\ ifr. For fixed
values of 7 and p, some additional assumptions concerning the initial values
and the size of the initial step in A yield various estimâtes of the order of
convergence relative to hA.

COROLLARY 3.1 : If in addition to the assumptions of Theorem 3.2 (i),
hA^c\hx, zoe F , |zA - z o | F === c2, and \zA - zo\

2
ff === 2 hA, then

cx \Az0 - ƒ 0(0) \V, + Lcx c2)/>Jl + Cy + 1 ) .

(3.22).

COROLLARY 3.2 : If the assumptions of Theorem 3.2 (ii) hold and

| Z A -

K - *öll * « hA(LKy/^3 + C, + 1) . (3.23)

Except for (3.22), Theorem 3.2 and its corollaries hold without any
serious restrictions on the underlying mesh and without any a priori
regularity assumptions concerning the solution xö of the original équation
(1.2). For 7 = 0 the bounds are independent of p, thus they hold for
arbitrary meshes A G 0.

In fact, the bounds from (3.20)-(3.23) majorize the term on the right hand
side of (3.10). Hence the a posteriori estimâtes from Theorem 3.1 are
convergent with the same rate as the approximations themselves. Because
any bound involving the maximum step-size will be rather pessimistic, the
estimâtes (3.20)-(3.23) are mainly of theoretical interest.

With respect to a single mesh A G 0 p, the constant 7 may be regarded as a
free parameter. Defming ô = yhA, the combination of (3.12) and (3.18)
reads as

\\(I-pA)Ax\\ri^LhA(\\f^\\rf+ \Azà-f0(0)\yi/s/h[)/x/3

+ Z,(1 + p)Ô/x/3. (3.24)

Thus, with an a priori information about L, for each fixed tolérance level
K ;> 0 the bound in (2.9) can be chosen independently of hA such that
||xA — JC0Ij =s K for appropriate meshes A G 0p .

4. STEPSIZE CONTROL FOR A LINEAR EQUATION

The most effective way to approximate the solution x0 of équation (1.2)
within a prescribed tolérance is the simultaneous step by step construction
of an appropriate mesh A and the solution xA (defîning ƒ A) under control of
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ERROR ESTIMATES AND STEP-SIZE CONTROL 123

the estimâtes (3.10)-(3.11). Because the évaluation of the a posteriori
bounds of Theorem 3.1 in no way is a trivial task for gênerai nonlinear
équations, the investigation is subsequently restricted to the most simple
linear case.

Assume A is ünear and symmetrie and ƒ 0 is a constant. Without loss of
generality let A = / such that the constants L and L' in the estimâtes of
Section 3 are 1 and 0, respectively. In particular

1/2

(4.1)

for aiî A G © and x e Xà .
Based on this equality, various step-size control algorithms can be derived

in a straightforward way.

ALGORITHM 4.1 :

0. Let K > 0 and 0 < /ÏJ === 1.
1. i = 0 . t0 = 0 . Choose uQ e V such that \u0 - z o \ H === K / 2 .

2. i = ï + 1.

3. Choose ut e V such that | (ut — ut _\)/hj + y4w(- — /01 =s K/2.

4. fc= [-/J(max[l/2, ^ / V ^ I ^ - W ^ J ^ / K ] ) ] (integer part),

5. If k ^ - \ , then ht = 2k ht and goto 3 .
6. tt = tt _ ! + / ï r TjT ̂  < 1, ^ e « A,- + ! = m i n [2fe A,., 1 - tt] and goto 2 .
7. nA = i .
8.

The same arguments as in the proof of Lemma 3.6 combined with
estimate (3.14) now prove that Algorithm 4.1 is always fïnite. Especially, if
again xà dénotes the result of the exact implicit Euler method on the same
mesh A e © ^ , then

for l ^ i ^ n ^ (4.2)

If xA e Xà is defined by x^(tt) = ut for 0 ̂  i; s= nA then

| + \UO-ZO\H

(4.3)

Algorithm 4.1 approximately equidistributes the terms in the sum of (4.1)
(error per step control). Though this strategy is known to be optimal for
more regular problems, it lacks from the fact that «A cannot be determined
in advance. At least under the assumptions of Lemma 3.4 the step-sizes are
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124 G LIPPOLD

uniformly bounded from below by a multiple of K, hence
||XA — xoWur =

 0 ( \ / K ) for K small enough.

The alternative error per unit step control îs justifled only within the
setting of Lemma 3.4, recalling the argumentation from the proof of (3.14)
and (4.2). Some estimâtes like (3.14) seem to be necessary to prove the
algorithm to be finite (in fact the generated approximation xà must be
bounded in Co(7, F)).

ALGORITHM 4.2 :

0. Let K => 0, and 0 < hx ^ 1.
1. i = 0. t0 = 0. Choose uoe V such that \u0 — zo\H** K / 2 .

2. i = ï + 1.
3. Détermine ux e V such that (ut — u% _ \)/hl + Aut — fQ.
4. fc= [ - W ( m a x [ l / 2 , K - w,_ ! | y/(JÏ K / 2 ) ] ) ] (integer part),

5. Ifk^-\, then hx = 2*AI a«^ #oto 3.
6. r( = tl _ i + A r If tt < 1, /Ae« A, + i = min [2fc AIS 1 - tt] and goto 2.
7. nà = ï.
8. Sta/?.

For each tolérance level K > 0 this algorithm stops after a finite number of
steps and détermines a mesh A e ©^ and some xA e JfA with xA(^) = ut for
0 ^ / ^ « A such that

A | | ^ + WO-ZO\H^K- (4-4)

Obviously the realization of any of these algorithms dépends on the
availability of some algorithms which perform the détermination of the
ux e V for 0 =£= i ^nA.

Examples :
Some spécifie aspects concerning a realization of the implicit Euler

method, in particular of Algorithms 4.1 and 4.2, are discussed for the
diffusion équation

xt — div (a . grad x) + ex ~ f0onfl x I

x = 0 on dft x / [ (4.5)

where i l ç ^ l*£m===3, is a bounded, simply connected and polyhedral
domain, a, c e Lœ(O,), a(co) 3= a0 > 0, c(w) ^ 0 for ail co e Iî, zQe L2(O>)
and foe ^

1. Let Ho = Z,2(a)3 i/j = ^4(O) and i/_ ! = H[. The scalar products

(•, Oo> (•= -)i a n c i the duality map A e L (Hu H_x) are defmed by
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(u, v ) 0 = I uv d(ù for all u,v e H 0,

(4.6)

I»
r

(u, v )j = (v4w, i? ) î = (a . grad u r g r a d t; + cwi? ) i

for all u, Ü e H x.

Then / / t ^ i /0 ^ if _ x is an appropriate triple of Hubert spaces and équation
(1.2) for

HT = {x6L 2 ( J s HO\x' € L2(7, # _ , ) } s SE = L2( /3 Jf,) n C o ( / , /f0)

is the weak formulation of (4.5).
The implicit Euler method is determined by (2.6), thus resulting in a

system of elliptic boundary value problems. With respect to Algorithm 4.1 it
is advisable to solve these équations approxirnately by means of an adaptive
conforming finite element method. That is, the sélection of ut in step 3 is
carried out by a feedback algorithm which successively produces meshes on
Û and the corresponding fmite element solutions of the ï-th différence
équation from (2.6) until the stopping criterion of step 3 is satisfïed.
uQ is constructed by a similar algorithm based on information about
z0. General principles for such methods originate from Babuska and
Rheinboldt [2] (cf. Lippold [10] and références for spécifie topics on
adaptivity as well as Bietermann, Babuska [3] and Reiner [14] for
applications in the field of parabolic équations).

On the other hand, the bounds from Theorem 3.1 can also be used within
the classical approach starting from a primary space discretization. Then the
resulting évolution équation in finite dimensional spaces is approximately
solved by the implicit Euler method, e.g. by Algorithm 4.2. The combined
effects of space and time discretization, numerical intégration etc. are
supervised via (2.9) and (3.10)~(3.11), applied for the original équation.

2. Let H2 = A-{HQ = {u s Hx\a. gmàu e H (O,div)} and let
À G L (H2, HQ) be the restriction of A to H2, i.e.

Au = - div (a . grad u) + eu for ail ue H 2 . (4.7)

A canonical scaîar product (., .)2 on H2 is determined by

(w, v )2 = (Au, Av )0 for all u,v e H 2 . (4.8)

Now H2
C^ Hi^ HQ is the space triple under considération. By définition

<t?,f*>2= (!>,Ài<)0 for ail veH07 ueHly (4.9)

hence À is the duality map of H2 onto Ho.
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If / 0 e J L 2 ( ^ ) and z0 e HU then the équation

X' + Ax = / 0 , JCG1T,
(4-10)

now for

W = {x e L2(I, H2)\x' G L2(I9 i/0)} g f = L2(/, if2) n Co(/, # 0 ,

fits into the gênerai setting of équation (1.2). Theoretically all arguments
from the preceding example remain valid. From a practical point of view,
however, the space discretization by means of conforming finite éléments in
H2 will cause serious difficultés at least for m > 1. Thomée and Wahlbin
investigated the primary space discretization of (4.10). Motivated by the
underlying space triple the method was called an Hx Galerkin method.

3. An alternative choice is the investigation of (4.5) in the triple
HQ Q* H_ i <-» H_ 2 where H_ 2 is the dual of H2 in the triple H2 ^ Ho c> H_ 2

too. Using the duality map A* of Ho onto H^2, i.e.

< A * M , I ; ) 0 = (K,U) 0 forall u,veH0, (4.11)

and i^ = {x e L2(I, H0)\x' G L2(I, H_2)}, équation (4.5) can be written
in a very weak form as

J
x(0) = z0. J V< }

There is a wide variety of numerical methods which attack the space
discretization of (4.12), one of them is the H_x Galerkin method due to
Wheeler [18].

An interesting topic is the combination of the conforming finite element
approximations in H{ from the first example with the error estimâtes in this
very weak formulation. The defects in (2.9) or step 3 of Algorithm 4.1,
respeetively, now are bounded in H_ 2, Le. the accuracy of the solutions of
the différence équations is measured in HQ. At the same time the step
control is based on the values ^Jhi \utf — ut_ x | or \ui — ui_l\ff,

1 =£ i ^nà, respectively, thus confirming an approach which, motivated by
physical reasoning, has been used for a long time in the numerical analysis
of parabolic differential équations.

Based on some more restrictive assumptions already mentioned in the
introduction, Johnson, Nie and Thomée proved in [7] that bounding the
terms I u,• ~ ut _ x I , 1 === i; ̂  n *, results in an optimal step-size control for an

error estimate in Lœ(I,H0) (Theorem 3.1 only pro vides an estimate in
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In fact there is a séquence (Hk)r of spaces which are defïned together with
the correspondmg scalar products by means of the subséquent integer
powers of A The choice of examples 1 to 3 is in correspondence with the
needs for most applications
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