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A NONCONFORMING FINITE ELEMENT METHOD OF UPSTREAM TYPE
APPLIED TO THE STATIONARY NAVIER-STOKES EQUATION (*)

F. ScHIEWECK (1), L. ToBISKA (%)

Communicated by P G. CIARLET

Abstract. — We present a nonconfornung finite element method wuth an upstream discreti-
zation of the convective term for solving the stationary Navier-Stokes equations. The existence of
at least one solution of the discrete problem and the convergence of subsequences of such
solutions to a solution of the Navier-Stokes equations are established In addition, under certain
assumpuons on the data, uraqueness of the solution can be guarenteed and error estimates of the
approximate solution are given Moreover, some favourable properties of the discrete algebraic
system are discussed

Resumé — Nous présentons une méthode non conforme d’éléments finis avec une
discrétisation décentrée amont du terme de convection pour la résolution des équations de Navter-
Stokes stationnaires On prouve Iexistence d’une solution au mowns du probléme discret et la
convergence des sous-suttes de telles solutions vers une solution des équations de Navier-Stokes
stationnaires En outre on peut sous certaines hypothéses sur les données garantir l'unicité et on
donne alors des esimations d’erreur de la solution approximanve En outre on discute quelques
propriétés importantes du systéme algébrique discret

1. INTRODUCTION

The Navier-Stokes equations for viscous, incompressible flow problems
have been the object of considerable research efforts. Because of its great
flexibility finite element methods have received considerable attention, both
from a theoretical and computational point of view. In general one uses
finite elements of higher-order shape functions in order to get better
approximations of velocity and pressure fields. However, this can be
guaranteed, at least theoretically, only for sufficiently smooth solutions of

(*) Recetved wn July 1987, revised in May 1988
(!) Dcpartment of Mathematics, University of Magdeburg, GDR 3010 Magdeburg PSF 124.
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628 F. SCHIEWECK, L. TOBISKA

the considered problem. Moreover, the use of higher-order shape functions
causes computational costs which can be too expensive for the problem
under consideration. Therefore we propose a finite element method with
lower-order shape functions. Taking into consideration the dominate
influence of the convective term in the case of a higher Reynolds number,
we shall use a special upstream discretization of this term.

In this paper we propose a method combining a P;-P, nonconforming
finite element method due to Crouzeix and Raviart [2] with an upstream
discretization of the convective term which has been applied by Ohmori and
Ushijima [9] in case of a scalar convection diffusion problem. The method in
[2] proposed for the Stokes problem was extended to stationary Navier-
Stokes equations in [7]. But the results concerning the nonconforming
elements are stated without proof. An extension to time-dependent Navier-
Stokes equations was done in [6].

A similar upwinding technique was first introduced in [8] to solve the
Neutron transport equation. For solving the Navier-Stokes equations in
terms of stream function and vorticity, this technique was applied in [3] and
analyzed in [5].

The plan of the paper is the following. In Section 2 we introduce the
notations used in the subsequent sections. The finite element method for the
approximate solution is presented in Section 3. Section 4 contains a
discussion of the properties of the algorithm and in Section5 we give
existence and convergence results for the discrete solutions.

2. NOTATIONS AND PRELIMINARIES

Throughout this paper,  is supposed to be a convex polygon in
R? with boundary TI'. Let n be the unit outer normal to Q. D;,
. . . 0 .

j =1,2 denotes the differential operator P and often we will use the
j

summation convention, that one has to take the sum over an index occuring

twice in some term. For a scalar function s on a measurable subset G <= Q,

let ||s|l, , ¢ and |s|, , ; be the usual norm and seminorm on the Sobolev

space  WXP(G) [1], respectively. Then for a vectorvalued function

v = (vy, v,) belonging to (W*?(G))* we will use the norm

2
101k, 6 =2 I “k,p,G
i=1

and the semi-norm

2
|v|k,p,G = Z |vi|k,p,(; .
i=1

M?AN Modélisation mathématique et Analyse numérique
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AN UPSTREAM TYPE NONCONFORMING ELEMENT 629

In this paper we consider the stationary Navier-Stokes problem for
incompressible flows, i.e. we have to find the velocity field u = (u;, u,) and
the pressure p such that

—vAu+u, D u+gradp =f inQ
2.1 divu=0 inQ
u=0 onT

where v denotes the constant inverse Reynolds number and fa given body
force. In order to write (2.1) in a weak form we introduce the notations

(2.2) V = (Hy(Q))

(2.3) 0 =L3Q) = {v e L(Q): f vdx = 0}
Q

(.,-) inner product in L%(Q) and (L2(Q))?, respectively (the meaning
becomes clear from the context)

(2.4) a(u,v) = J D,u, D, v, dx u,veV
Q

(2.5) b(u,v,w) :f u D,v,wdx u,v,weV.
Q

Then the variational form of (2.1) reads :
Find (u,p)€ V x Q such that

(2.6) va(u,v) +b(u,u,v)— (p,dive) = (f,v) YveV
(q,divu) =0 Vge Q.

It is well known that (2.6) admits at least one solution which is unique
provided that v=2|| f|| is sufficiently small [4].

3. FINITE ELEMENT APPROXIMATION OF UPSTREAM TYPE

For solving the continuous problem (2.6) approximately, we will combine
a nonconforming finite element method due to Crouzeix/Raviart, Temam
[2, 11] with an upstream discretization of the convective term which has
been applied by Ohmori, Ushijima in case of a scalar convection-diffusion
problem [9].
Let {r,} be a family of triangulations of () into triangles K with
a=\K,

KeTy

vol. 23, n° 4, 1989



630 F. SCHIEWECK, L TOBISKA

which is assumed to be regular in the usual sense, and let 4y be the diameter
of the triangle K. We also assume that the inverse assumption on the mesh
h

< .
hK_C VKEK;,) W

is fulfilled (h = max hK> .
Ken,

We denote by B,, 1=i =N, the midpoints of inner edges and by
B,, N +1=i =N + M, the midpoints of edges lying on the boundary T.
Now we define the finite dimensional spaces V, and Q, for V and
Q, respectively, by

(B.1) V,= {ve (LAQ)):v| e (P1(K))* VK € 7, v is continuous
atB,,1=i=N,v(B,)=0 for N+1=:1=N+M)
(32) On= {geLi(Q):q|ge Py(K) VKenm,}

where P,,(K), m = 0, 1, denotes the set of all polynomials on K with degree
not greater than m.

Because of V, ¢V, we have to extend the divergence operator, the
bilinear form @ and the trilinear form b, respectively.

For u,v, weV +V, and q € LZ(Q) we define these extensions by an
elementwise calculation of the corresponding integrals such that

3.3) (g, divyu) =% j q div u dx
K YK

3.4) ap(u,v) =y f D,u, D,v, dx
K VK

(3.5) by(u,v,w) =ZJ u, Do, w dx.
K VK

It is well known [2] that ||.|, with

(3.6) leell, = (an(u, u))"

is a norm on V.
In [11] instead of (3.5) the trilinear form

- 1
3.7) b,,(u,v,w):EZJ;( (w, D,v,w, —u,v, D, w,) dx
K

M?AN Modélisation mathématique et Analyse numérique
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AN UPSTREAM TYPE NONCONFORMING ELEMENT 631

was used which can be regarded as an extension of b(u, v, w) too, because
of

L [ (w, D,v,w, —u, v, D, w,) dx

b(u,v,w) = 5
Ja

(3.8)
Vu,v,weV with divu=0.

Moreover, b, satisfies the skew-symmetric property
by(u,v,w)=—b,(u,w,v) Yu,v,weV,,

which is useful in the analysis of existence and convergence. In the case of
small value of v, one needs a suitable discretization of the convective part
b(u, u,v) of (2.6) in order to avoid instabilities and numerical oszillations,
respectively. Therefore we will define a modified discretization of upstream
type by, of b following the lines of [9].

Figure 1.

Let each triangle K be devided into six barycentric fragments S,
i,je {k,l,m}, i =], as it is indicated in figure 1. Then, for each node
B,l=1,..,N +M, we define a lumped region R, by

(39) Rl = U Slk >

keA;

where A, denotes the set of all indices k, for which B; and B, are neighbour
nodes. Furthermore, let A;, be defined by

(3.10) Ay = 38y, N 38y

vol. 23, n° 4, 1989



632 F SCHIEWECK, L TOBISKA

and let n'* be the unit outer normal to R;, which 1s associated with the part
I, or dR; In a similar way as 1n [9] we can derive the following upstream
discretization 5;, of the trilinear form b

B 11) by(u,v,w) =

N+M

=y ¥ u, n*dy(1 — N () (v,(Bi) — v, (B))) w,(By)
1 -1 kel r“‘
with
1 if J u n*dy=0
(312) Me(u) = Tk

0 otherwise

Now our discretization of (2 6) reads
Find (u,, pr) € V, x Q) such that

(B 13) wvay,(uy, v) + by (up, up, ) — (Pp, vy v) = (f,v) Yo eV,
(g, dwv,u)=0 Vg e Q,

Remark 31 Contrary to b, of (37), mn our discretization (3 13),
b, 1s not a trlnear form on V? Actually, the mapping

(u, v, w) - b,(u,v,w) 1s hnear n v and w only

4. SOME PROPERTIES OF THE PROPOSED METHOD

In order to establish results concerning existence and convergence of
solutions of (3 13) we derive some properties of the mapping b, .V} — R

First of all let us define the lumping operator L, and the space
Wi
For a given v € V,, the lumping operator L, 1s defined by

41) (Lpv)(x)=v(B)) Vx€R, I=1, ,N+M
Furthermore, let us define the space
“42) W,={veV, (g,div,v)=0 VgeQ,}

One can easily see that in our case v € V;, belongs to W, if and only 1f
div, 0|, =0 VKerm, 1e W, 1s the space of discrete-divergence-free
functions mn V,

Now we have the following

M?AN Modelisation mathematique et Analyse numerique
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AN UPSTREAM TYPE NONCONFORMING ELEMENT 633

LEMMA 1: It holds the estimate

(4.3) by(u,v,v)Z0 YueW, YveV,.

Proof : Writing by, for u, v, w € V,, in the form

(4.4) by(u,v,w) = bi(u, v, w) + Bi(u, v, w)
with
(4.5) bi(u,v,w) =
N+M
-y zj , n* dy (e @) 0,(By) + (1 = M) 0, (Bi)) w, (By)
I=1 keAp v Ay
N+M
(4.6) b;z,(u, v, W)= — Z Z J u, n,”‘d'y v,(B;)w,(B;) »
=1 kea; vI

we obtain in an analogous way as in [9, Lemma 3]

(47) Bh(ur U,U)—{—%B%(u,v,v):

N+M 1 . .
=3 3 [ v 0,37 (-1 ) =0,
=1 kea; YTy

Using the fact that

Y un*dy=0 Yuew,, 1=1,...,N

ke v Ty

one can easily verify that b?(u, v, v) = 0 for u € W,,, v € V. Together with
(4.7) this proves (4.3). O
The next statement implies the continuity of b, on V3.

LEMMA 2 : There exists a constant ¢ > 0 independent of h, such that
(4.8) |Br s v, w) = By (w0, w)| = Cllu—u®, 0], W],
holds for all u, u®, v, we V.

Proof : Let us define the set of indicies
4.9) I={(,k):l=1,..,. N+ M, ke A} .

vol. 23, n° 4, 1989



634 F. SCHIEWECK, L. TOBISKA

Then, we can write

@10) [Byw o w) = Buwtow)| = | T pul+| T au
(t,kyel (U, kel
with
4.11) py= (, — u)) n* dy(1 = Ny (w))(v,(By) — v, (B)) w,(By)
T
and

(4.12) qu = L ul nf* dy (N (u®) = N ()) (v,(By) — v,(B1)) w,(By) .

Using the fact, that D, v, i,j=1,2 is a constant on Sy U Sy for all
(I, k) eI, we can estimate for u, u% v, we V,

|| = mes Ty |ju—u hlv

0
IlO,ao,Slk |1, 00, 51 ”W”(),oo,s,k

-1 0 Y3
=hCyh llu —u ”0,4,s,k C2|U|1,2,s,k Cih ||W”o,4,s,k

where C, and C, are the constants of inverse inequalities which are
independent of 4, [/ and k. This implies

‘szk

0
=C Y lu—-wlly, s, P2, wllo,s,s,

U,k)el (U, kyel
- 014 1/4 2 12
=C( Z l'”_u||0,4,s,k) ( Z |U|1,2,s,k>
0 kyer (,k)el
. 1/4
(5 Iwises,)
(U, k)el

0
=Cllu—ully o vl 1wlo,4a -

If we apply the estimate
(4.13) ||z||0,P,Q§C(p,Q) lzl, YzeV,,

which can be proven for 1 = p < oo in the two-dimensional case along the
lines of Rannacher and Heywood ([6, Proof of (4.36)]), we obtain

Z Pk

(. k)el

(4.14) =Cllu—u’ll, vl Iwll, -

To estimate the second sum in (4.10), we split the set I of indicies into
1+ = {(, k) e I: | @l n*)(Pu)| = [lu—u, s }

M?AN Modélisation mathématique et Analyse numénque
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AN UPSTREAM TYPE NONCONFORMING ELEMENT 635

and I~ = I\I*, where P, denotes the midpoint of I';.. For (I, k) e I* we
have

>

| (@, —u)) nY(Pr)| = ||u - "‘OHO,OO,SM < | @ n*)(Py)

which implies

sign ((#, n*)(Py)) = sign (&) n/*)(Py))
and consequently, since u is linear on I'y,
(4.15) Ne(@) = N (@®) for (L k)elI™.

(4.15) yields 3 gy =0. For ([,k)€ [~ we have

(U kyel”
g = mes Tyllu~u’lly o RIV]L o5, Wl w5, -

Thus, we obtain in an analogous way as for p;, the estimate (4.14) also for
Y 4, which completes the proof of (4.8).

(kyer” O
To prove our convergence result in Section 5, we need for arbitrary

k € (0, 1) the inequality

(416) ”vHO,oo,ﬂéckh'—K“UHh VU e‘/h
which is a consequence of (4.13) and the inverse inequality

12llo, 0,0 = Cch "]l pa YV EV,
with k = 2/p.

Now we will estimate the difference between the two different discreti-
zations of the convective term b.

LEMMA 3 : There exists a constant C independent of h, such that the
estimate

417)  |by(u, v, w) = by(u, v, w)| = C B w0, W],
holds for all u, v, we V, and x € (0,1).

Proof: We decompose b, into

(4.18) by(u,v,w)=bi(u,v,w) + bi(u,v,w)

vol. 23, n° 4, 1989



636 F. SCHIEWECK, L. TOBISKA

with
(4.19) bi(u,v,w) = ZJKD,(u, v,)w, dx
K
and
(4.20) by(u,v,w)=-Y JK D, u,v,w,dx.
K

Using the decomposition (4.4)-(4.6) of b, we may write

(4.21) bu(u,v,w)—by(u,v,w) =Y, + Y, + Y5
with

(4.22) Y, =b}(u,v,w—L,w),

(4.23) Y, = b}(u,v, Lyw) — bj(u,v,w),
(4.24) Ys = bE(u, v, w) — b (u, v, w).

At first let us estimate Y; by

RAEDY

X

J;( (D, u, v, +u, D,v,)(w, — L,w,))dx

= Z (Iull,z,K ”U”o,m,x‘*‘ “u”O,w,K |U|1,2,K) ”W_Lhw”o,z,l(
K

= (fulln Iollo,0,0 + [%llo, w0 NP1 HIWI, -
Using (4.16) we obtain
(4.25) Vil = Coh' = Jull, Ioll, 1wl -

To estimate Y, we start with the first sum Y5; in

Yo=Y | [univ],dvwB)+ 3 L u, nl* O\ () (v, - 0,(By))

1=1vIl (. kel
+ (1 =) (v, - v,(By))) w,(Br) dvy

where I'; denotes the edge containing the node By, [z ] r, the jump of z along

T, #' the unit normal vector on I'; and  the index set defined by (4.9). To be
more specific, let K;, K, be the two triangles with the common edge

M?AN Modélisation mathématique et Analyse numérique
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AN UPSTREAM TYPE NONCONFORMING ELEMENT 637

I; and let n' be directed outward with respect to K;. Then, the jump is
defined by [z], = z|g — z|g,- Obviously it holds

L [u, n! vl:ﬂr, dyw,(B)) =
{

= | [0~ Loy, — Law)T, v )

2
=mes (1) Y hlul; ok P10]1 0k, 1Wlo, .0 -

m=1

By means of inverse inequalities we obtain
; 2
L [[uz n, v!]]r, dyw,(B;)=Ch ”W“o,w,n Z |“|1,2,K,,, |v|1,2,1<,,, .
! m=1

Thus, using (4.16) we can estimate

Yun=2Ch|wlowa Y [4liak V] 2k

Ken,
=2Ch|Wllg w0 1l IV,

=C.h'™" el Iol, Iwll, -

Now, let us consider the second sum in Y, denotes by Y,,. If we take into

consideration that T, = Iy, N(u) =1 — Ny (u) and n'* = — n¥, we get
1
Yy, = 5 > J u, n;lk()\zk(u)(”/ -v,(B;)) +
(hyer YTy

+ (=N (@) (v, —v,(B;))) (w,(B;) — w,(By)) dv .

Since u, v and w are linear on I'j,, we can estimate

1
|Yy| = 5(,%: mes Tiellllo, o, 5, 21911, co 5 1% |1, o 5,
3 €
1
= 2 (lg Ih”“”o,oo,s,k C2|v|1,2,s,k C2|W|1,z,s,k
N €

A

Ch [ullo, 0,0 1011, 11

where C,; and C, are again the constants of inverse inequalities which are
independent of h, ! and k. Together with (4.16) and the estimate for
Y, we receive

(4.26) Yo = Coh™ = Jlufly 1ol Wil -

vol. 23, n° 4, 1989



638 F SCHIEWECK, L TOBISKA

Finally, we have to estimate Y; Using the 1dentity
bi(u,v,w) =b2(u, Lyv,L,w) Yu,v,weV,

we get

4 27) Y =bi(u,v — Lyv,w) +b2(u, Lyv,w—L,w)

It 1s easy to check that the lumping operator L, satisfies

(4 28) [Lavlly o k= IPlowx YVEVH, Kem,
and
(4 29) [o—Lyv|,, (Shlv|l,,x YveV,, Kem,

Thus, from (4 27), the definition (4 20) of b? and (4 16) we obtain
(430)  |Y3| = 3 July, g hlvl g IWllo o k +
K

+luly s e 1vllo w k21wl 2
Shfull, 1ol 1Wlo w o + Il 10l o o W,
=C R T ull, ol 1wy

which completes together with (4 25), (4 26) the proof of (4 17) O

5. EXISTENCE AND CONVERGENCE OF THE DISCRETE SOLUTIONS

In this section we study solvability of the discrete problem (3 13) and
convergence properties of 1ts solutions to a solution of the continuous
problem (2 6)

It can be shown that our nonconforming finite element discretization
fulfills the discrete LBB-condition, 1 ¢ there 1s a constant a > 0, indepen-
dent of A, such that

(p, dw, v)
(CR)) sup ———— Za|plly, 0 VP E QO
vev, IVl

Therefore, 1t 1s possible to separate the problem of finding a solution

(uy, py) of (3 13) mto one for determing u, and another one for determing

p, with a known u, [4] The discrete velocity field u;, solves the problem
Find u;, € W, such that

(52) vay, (uy,, v) + by (uy, up, v) = (f,v) Yoe W,

M?AN Modelisation mathematique et Analyse numerique
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AN UPSTREAM TYPE NONCONFORMING ELEMENT 639
where W), denotes the space of discrete-divergence-free functions defined in
4.2).

THEOREM 1 : Assume that f € (L*(Q))?. Then there exists at least one
solution (uy, py) €V, x Oy of (3.13).

Proof: Let P : W, - W, be the mapping defined by
a,(Pv, w) = va, (v, w) + b, (v, v, w) = (f, w)

for all v, w € W, Then, if k is sufficiently large, from Lemma 1 we conclude
for o], = k

a,(Pv,v)=va,(v,v) - (f,v)
= ofl, Wlvll,—C@2, Q) [ fllga)=0

where C (2, Q) is the constant from (4.13). In order to show the continuity
of P we apply Lemma 2

|Pv—Pw|? = va,(v —w, Pv — Pw) + b,(v,v, Pv — Pw) —
—b,(w,w, Pv — Pw)
[Pv— Pw|2 =v|v—w]|, |[Pv—Pw]|, +by(v,v —w, Pv — Pw)
+ b, (v, w, Pv — Pw) — by(w, w, Pv — Pw)
=@+ Cvll,+ Iwli)llv —wl, | Pv— Pw],
and obtain for bounded v and w

IPv—Pw],=Cllv—w],.

Then, by means of [11, II Lemma 1.4] we obtain the existence of at least one
solution u;, € W, of (5.2). The existence of a unique p, € Q), such that the
pair (uy, p;,) fulfills (3.13) follows in the usual way from (5.1) [4]. O

In order to study the convergence properties of the solutions (u, p,) of
(3.13) we introduce the embedding operator I,:V + V, — (L*(Q))® de-
fined on each element K by

(I,v)(x) = (v(x), gradv(x)) VxeK.

As a consequence of inequality (4.13) the embedding operator I, is
continuous uniformly in A, i.e. there is a constant C = 0 such that

(5.3) [ Invl| =C|v|, YveV +V,.

vol. 23, n® 4, 1989



640 F SCHIEWECK, L TOBISKA

THEOREM 2 Let {(uy, py)} be a sequence of solutions of the discrete
problem (3 13) where h tends to zero Then there exists a subsequence
{(uy,py)} and an element (u,p) belonging to V x Q such that I, w,
converges to (u,gradu) m (L*(Q))*, p, converges to p weakly n
L*(Q) and the pair (u,p) is a solution of the continuous problem (2 6)
Moreover, if (u, p) belongs to (H*(Q))? x H(Q) the pressure p, converges
to p also strong in L*(Q)

Proof Following the lines of Temam [11], we only have to modify some
details, which result from replacing the discretization b, defined m (3 7) by
our upstream discretization b, defined m (3 11) Therefore, we will only

mention the important steps of the proof
Setting v, = u;, 1n (5 2) we obtain from Lemma 1 the a prion estimate

54 “uh”hév"IC(Z,Q) £y a

By means of the discrete LBB-condition (5 1) we conclude from (3 13) and
(54) for all A

”ph"() 2 Qé C

such that the sequence {I,uy, p,} 1s umformly bounded in (L*Q))
Consequently, we are able to select a subsequence being weakly convergent
For simplicity, we will denote this subsequence agan by {(uy, p,)} The
weak himut (u, p) of {(uy, ps)} belongs to the space W x Q (cf [11]) where

W= {veV.dvv=0}

In order to show that (u, p) 1s a solution of the continuous problem we
introduce the restriction operatorr, . V - V,and r, W - W, respectively,
which 1s defined by

mes 1’]

(14 0)(B,) = — Lvds

and consider (3 13) for v replaced by 7, v with v € (CP(Q))*> As m [11] 1t
holds

ay(up, ry ) > a(u,v)
Pr, vy rv) > (p,divo)} for A0 VYve (CPQ))
(fsrwv) = (f, )
and we have to verify

(56) by(up, up,r,v) >b,u,v) for h—0 Vve (CP(Q))>
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Analogously to the proof of Lemma 3.3 in [11, II.3) we can show that
(5.7)  by(up, up, ra0) > b(u,u,v) for h-0 VYve (CP(Q)).

Using Lemma 3 we can estimate

‘Eh(u}nuh’ rhv)_ bh(uhs u}urhv)' = CKh1¥K”uh“i ”rh U”h .

From (5.4) and the fact that I,(r,v —v) tends to zero in the norm of
(L*(Q))° (cf. [11]) we see that |u, |, and [ryv|,, are uniformly bounded.

Thus, (5.7) implies (5.6) and the weak limit (u, p) fulfills
va(u,v) + b, u,v)— (p,divv) = (f,v) Vve (CLQ))
(g, divu) =0 Vge Q.

Since C{P(Q) is a dense subset of H{(Q), (u,p) is a solution of the
continuous problem (2.6).

Now we prove the strong convergence of I, (u, — u) in (L%(Q))®. For this
we consider

Xp=a,(u,—ryu,uy,—ryu) = ”uh“rhuﬂzéo )
Since u,, fulfills (5.2), we obtain

Xy, = ap(up, up) — 2 ap(uy, rpu) + ap(ryu, ryu)

= % {(f: uh) - Eh(uh, Up, uh)} -2 ah(uh, I u) + ah(rh u, ry u)

and with lemma 1
1
(5.8) X, = 5 (fsun) —2a,(up, ryu) +ap(rpu, ryu).
The right hand side of (5.8) for 2 — 0 converges to
1 1
S (f,u)—a(u,u):;b(u, u,u) =0,

which implies |u, — 7, u|, — 0 for A — 0. The triangle inequality concludes
the proof of the strong convergence of I, (u;, — u) to zero in (L*(Q))°.

The strong convergence in L?(Q) of the pressure p, in the case
(u,p) € (H(Q)) x HY(Q) follows from (5.1) in the following way.
Multiplying the equation

-vAu+u, Du+gradp=f,
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which now holds in (L*(Q))? with v € V,, integrating over K, applying
Green’s formula and summing-up over all finite elements K we get

va,(u,v) + b,(u,u,v) — (p,div,v) = (f,v) +1(v)

for all v € V, where [/ is defined by

1))=Y (v (

K V3K

g%vds— LKp(v . n)ds) .
Together with (3.13) we have for each ve V,
(5.9) (py — p, divy v) = va, (u, — u, v) + by (uy, up, v) — by (uy, up, v) +
+ by (uy, up, ) — by (u,u,v) +1(v) .
Using the representation
b(up, up, v) — bp(u, u,v) =by(uy —u,u, v) + by (uy, up, — u, v)

and taking into consideration that u, is uniformly bounded and b, is a
continuous trilinear form on V + V;, we obtain

|bn (s ey ) — b, u,v)| = C flu - wll, 1ol

for some positive constant C independent of /4. In [2] it was already shown
that

IIA

[I(v)| = Chllv], ferall veV,.

Together with lemma 3 and (5.4) it follows from (5.9)

| (p = Py, div, v)| = (Cllu - upll, + C.h'=+Ch)|v|,.
Let p, be the orthogonal projection in L%(Q) of p on Q,. Then by means of
(5.1) we have
1 (Br ~ Py div,, v)

5 _ ="
|| 2 Ph“o,z,n aveu‘},)h lvll,

~1up (@ — P> div, )
e, ol
=Cllu—u|,+Cch' .

Thus, we get the estimate

(510) “p_ph“o’z’g§ lné llp_q’10,2,0+cllu-uhlih+thl—K
9€
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such that for the convergent subsequence {u;, } the associated sequence
{pn} converges to the solution p in L*(Q). 0

Now, we will study the case of sufficiently large v in which the unique
solvability of the problems (2.6) and (3.13) can be guaranteed and give a
result concerning the rate of convergence.

THEOREM 3 : Let v be sufficiently large. Then both problems (2.6) and
(3.13) have uniquely determined solutions. Moreover, if the solution
(u,p) of (2.6) belongs to (H*(Q))’ x H'(Q) the error estimate

(5.11) ||p—ph||0)2’n+|lu—uh||h§CKh1"‘
with an arbitrary k € (0, 1) is satisfied.

Proof: Let (uy, p;) and (u,, p,) be two different solutions of (3.13). From
(5.2) we have for v = u; —u, € W,

vah(va U) = Eh(u27 Uz, U) - Eh(ulﬁ U U)
= by (uy, up, v) — by (uy, Uy, V) — by(uy, v,0).
Applying Lemma 1 and Lemma 2 we can estimate
vl[pl2=Clo)2 ual, -

By means of the a priori estimate (5.4) it follows v = 0 if v?|| f I 0, 12’9 is

sufficiently large. The relation p; = p, can be easily concluded from the
discrete LBB-condition (5.1). In a similar way we can also prove uniqueness
of the solution of problem (2.6).

In order to prove the error estimate let us consider w = u, — v € W, with
an arbitrary v € W,. Then we have

v(wl|?=va,(u, — v, w) =va,(u—v, w) + va,(u, — u, w)
év”u_v”h ”w”h + (fa W) _bh(ua u, W) - vah(u, W)

+ by (upy upy, w) — by (uy, up, w) + by(u, u, w) — by (uy, up, w) .
We split the term R = b, (u, u, w) — b, (u;,, u;, w) into
R=>b,(u,u—up,w)+b, (u—uy, u,, w)
= C(llully + lunll,) Nl = wnll, 1wl
and take into consideration that u and u, are uniformly bounded such that
R=Cv?|u- upll, Iwll, -
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From the triangle inequality it follows
u—wupll, =v(llu—vl,+ lIwl,)

(fsw)—by(u,u,w) —va,(u, w)
Wil

=2vfu—-v],+

bh(uha Up, W) - Eh(uh’ Ups W) C
+ = ”u - uh”h .
wl, v

Now, if v? is greater than C we have the estimate

’ -b s Uy - N
|l —ul|,=C inf |Ju—vj,+ sup | (f,w) —by(u, u, w) —va,(u, w)|
vEW, we W, Iwl,

|bh(uh, uns W) = bn(up, u, W)|

+ sup
we W, “W”h

and the error is decomposed into three parts, the approximation error, the
discretization error caused by the nonconforming finite element method and
the error due to the upstream discretization.

The estimates of the first and second error are obtained as in [2, 11]. On
the third term we apply Lemma 3 and (5.10) yields the estimation for the
pressure. O
Finally, we shall give a result about the algebraic system corresponding to
our discrete problem (3.13). Splitting the algebraic system by means of a
pressure-velocity iteration and solving the nonlinear system by a simple
iteration technique we get the linear system

(5-12) A"y =F

where u™ denotes the m-th iterate of the vector of velocity components. We
will show that under a certain assumption on the triangulation the matrix
A(u) is an M-matrix. To verify that A = (a,,) is an M-matrix it is sufficient
to show that

(i) a, =0 for i #j and

1] =
(ii) 3¢ = 0 such that Ae=0 and for all 1 € {1, ..., n} with (Ae), =0
there exists a chain iy =i, iy,...,i, such that (Ae),P>O and

a q<0forq=1,...,p.

lg-1t

Let the triangulation of Q be of weakly acute type, i.e. the interior angles of
all triangles are not greater than w/2. Moreover, let ¢, = (¢,,0),
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Y onv=1(0,¢), i =1,..., N be the basis of V, satisfying ¢,(B,) = 0 for
i #j and ¢,(B,) = 1. Then the matrix A(u) in (5.12) is given by

(513) a. = vah(‘b}) ‘]r’l) +5h(u: \!1]7 lJl’l) ia]: 1> ~"’2N ’

Y 0 otherwise .

THEOREM 4 : Let the triangulation of Q be of weakly acute type. Then the
matrix A(u) of (5.12) defined by (5.13) is an M-matrix.

Proof : Taking into account the representation (3.11) with (3.12) we get
the nonpositivity of b, (u, ¥,,4,) for i #j and the nonnegativity for
i = j. The direction of V¢, on a triangle K corresponds to the outer normal
on the boundary 8K in the node B, of K. Therefore, a,({;, ¥,) is nonpositive
for i # j and negative only in the case where i, j are neighbour nodes and
the angle between both edges with midpoints B,, B, is smaller than
w/2. Consequently, the assumption (i) is fulfilled. We set e = (1, ..., 1)
such that (Ae), corresponds to the i-th row sum. Obviously, it follows that

(Ae), =0 for i=1,...,2N.

If for some i = iy (Ae), = 0 we have to construct a chain iy, iy, ..., i, such
that 4, 0, < 0, g=1,...,p. For this aim it is sufficient to show that
(5.14) J ch,q_l'V(p,qu<0 qg=1,...,p.

[}

Let B, and B, are neighbour nodes, K the triangle containing these nodes
and k the third node of K. Since the triangulation is of weakly acute type we
have

(5.15) J Ve, Ve, dx = 0=
K

= (J Ve, Ve, dx <0 and j chkV<p]dx<O> .
K K

Therefore, starting with an index i, not belonging to a node of a boundary
triangle we can find a chain of two or three indices satisfying (5.14) and
connecting B, with any of the four neighbour nodes. Continuing this
procedure we come to a node B,, i = i,, of a boundary triangle K. Now we
have

(5.16) (Ae), = —v J‘ Ve, Ve, dx .
JEA @
Byjel
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Every integral in the above sum 1s nonpositive In order to prove
(Ae), = 0 we have to exclude the case that every integral in (5 16) 1s equal to
zero In the following let us consider this case

For the boundary triangle K contaming the node B,, we denote by
B, the boundary node and by B the third node Because of (5 15)
B, does not belong to I' and (5 14) holds for g=p +1 and 7,,, =k
Therefore, let us take the chain which consists of the above chain with
1, =1 and ¢, = k (515) also implies

J Ve, Ve, dx <0
Q

and therefore (Ae),= 0 Consequently, the assumption (1) holds and
A (u) 15 an M-matrix O
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