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CONTINUITY OF ATTRACTORS

by Genevieéve RAUGEL (1)
(Joint work with Jack K. HALE)

Abstract — For 0 < e < €y, let T, (1), t = 0, be a famuly of semugroups on a Banach space X
with attractors &Z.. Here we describe some results of upper-semicontinuity and lower-semicon-
nnmuty at € =0 of the family of attractors .

Résume — Pour 0 < & < &, considérons une famlle de semi-groupes T.(t), t =0, sur un
espace de Banach X, ayant chacun un attracteur .. Une mamére sumple de comparer les
attracteurs $f,, quand ¢ tend vers O, est d’eshmer la distance de Hausdorff de o, a
., ¢ #0 Cect nous condwit @ définir les notions de semicontinuités supérieure et inférieure de
la famulle o/, en € =0 La semicontinuité supérieure est une propriété en général sausfaite,
comme de nombreux exemples I'attestent En revanche, pour le moment, nous ne connaissons
qu’un cas général de semuicontuinuité inférieure c’est le cas des systémes gradients dont tous les
points d’équilibre sont hyperboliques

1. INTRODUCTION

Let X be a Banach space. For any subsets A, B of X, we define
3%x(A, B) = sup disty (a, B)

a€A
where

disty (a, B) = inf |a —b| .
beB

Let T(t), t=0, be a C’semigroup on X, r=0; that is, T(z),
t =0, is a semigroup and, for each t =0, x € X, T(¢) x together with all
derivatives up through order r in x are continuous. A set B in X attracts a set
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520 G. RAUGEL

Cin Xunder T(2) if 84(7T(¢) C, B) » 0 ast — + c0. A set B in X is invariant
if T¢) B= B fort=0. A set & in X is the attractor of T if & is compact,
invariant and attracts any bounded set B in X. A set & in X is called a local
arttractor if it is compact, invariant and there is an open neighbourhood % of
& such that & attracts %. The semigroup T'(¢) is asymptotically smooth if,
for any bounded set B in X for which T(¢t) B « B, t =0, there is a compact
set J < B which attracts B. If T(¢) is asymptotically smooth, {T(¢) B, t =0}
is bounded if B is bounded, and there is a bounded set B; which attracts each
point of X, then T(¢) has an attractor &/ (see [Hale (1), (2)] and the
references therein).

Suppose now that & is a topological space and {7,(t),t=0,ee€ £} isa
family of semigroups on X for which each 7,(r) has an attractor
& ., for e € &. It is important to understand how the set ./, depends upon
e. It is also the simplest question that one can ask. We say &, is upper-
semicontinuous at € = 0 if dy(F,, L) - 0 as ¢ » 0. We say & is lower-
semicontinuous at e =0 if dy(fy, &) -0 as € 0. We say &, is
continuous at & = 0 if it is upper- and lower-semicontinuous at ¢ = 0. The
same definitions hold if we replace the family of attractors ¢, by a family of
local attractors ..

The first general result of upper-semicontinuity has probably been given
by [Cooperman] (see also [Hale (2), Sections 2.5, 3.5 and 4.10]). Assume

that T,(¢) has a local attractor .7, attracting an open neighbourhood

U, of &, that each T.(t), € € &, is asymptotically smooth and that
T.(¢t) x is continuous in (z, x, €), the continuity in & being uniform with
respect to (¢,x) in bounded sets of R x %,. Then, for ¢ in a small
neighbourhood of 0 in &, T, (¢) admits a local attractor &/, which attracts a

bounded open neighbourhood %, of &/, and which is upper-semicontinuous

at ¢ = 0. Here the upper-semicontinuity in ¢ is an easy consequence of the
continuity hypothesis and of the strong stability properties of the attractors
..

In many of the encountered problems, 7,(+)x has not the strong
continuity property mentioned above. For instance, T,(¢), for € # 0, can
correspond to a Galerkin approximation or a time discretization of
Ty(t) (see the examples 2.1 and 2.2 below). However the upper-semicon-
tinuity property still holds in this case, because actually, the semigroups
T,(t) need only « approximate » Ty(¢) on bounded sets of X, in a fairly
general sense (see [Hale, Lin and Raugel] for this approximation condition).

In other cases, it may be possible to assert that &, is upper-semicontinu-
ous at ¢ =0, even if T,(¢+) does not approximate Ty(t) on bounded
neighbourhoods of &/, in X. For instance, the sets &/, may satisfy some
additional smoothness properties and lie in a smoother subspace Y of X so
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CONTINUITY OF ATTRACTORS 521

that the upper-semicontinuity property still holds if the semigroups
T,(¢) approximate T, (¢) only on bounded neighbourhoods of &, in Y. The
restriction of the discussion to the compact attractors (instead of a
comparison of the semigroups on arbitrary bounded sets) plays a crucial
role. At this time, there is no general theorem of upper-semicontinuity
which takes into account the smoothness properties of the attractors
&/ .. But, in the problems where the dependence in the parameter ¢ is not
too « bad », one should be able to prove the upper-semicontinuity of the
attractors .., by exploiting their additional specific properties. Two such
examples are described in Section 2 (see examples 2.3 and 2.4).

Without some further hypotheses on the flow restricted to the attractor
&y, there will be no lower-semicontinuity of the sets &/, at ¢ = 0. Let us
consider the following ordinary differential equation depending on the real
parameter ¢ :

i=—(x+1)x*—¢).

If e<0, &, ={(-1)}; for e=0, &y=1[-1,0] and if O<e=<]1,
o, =[-1, \/E]. Clearly &/, is not lower-semicontinuous at ¢ = 0, for
e < 0. This drastic change in the size of the attractor &/, when & passes
through zero in this example is caused by the fact that zero is not a
hyperbolic equilibrium. If T,,(z) is a Morse-Smale system (that is, the non-
wandering set is a finite set consisting only of hyperbolic equilibria and
hyperbolic periodic orbits, with the stable and unstable manifolds transver-
sal), then the attractors &/, are continuous at ¢ = 0 and the corresponding
flows restricted to the attractors are shown to be topologically equivalent
(see [Hale, Magalhdes and Oliva, chapter 10]). This result contains much
more information than lower-semicontinuity. For lower-semicontinuity, the
requirement of hyperbolicity is natural, as shown by the above example.
From an intuitive point of view, the condition of transversality should be
unnecessary. Moreover, transversality is a global property for which no
general procedure for verification is available. Here we present a class of
semigroups T, (¢) for which one has the lower-semicontinuity property (see
Theorem 3.1 in Section 3 and [Hale, Raugel (2)]). Roughly speaking, the
lower-semicontinuity property holds for systems T, (¢) which approximate
Ty(¢) in an appropriate sense and whose limit at € = 0 is a gradient system,
the equilibrium points of which are hyperbolic. We remark that all of the
required conditions are local except the condition (4) in the definition 3.1 of
gradient systems ; but this condition (4) is often easy to verify in appli-
cations.

Although the property of hyperbolicity of the equilibrium points is a
strong hypothesis, it is generic in many examples. For instance, for scalar
parabolic or hyperbolic equations in one space variable with the nonlinearity
f(u) depending only on the dependent variable 4 and not on its derivatives
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522 G RAUGEL

or the spatial variable, generic hyperbolicity has been proved by [Brunovsky
and Chow], [Smoller and Wasserman], [Henry (2)] (for a related result, see
[Rocha]) For the same situation with several space variables, generic
hyperbolicity with respect to the domain has been shown by [Henry (3)] In
the case of several space varnables, with f(u,x) = h(u) — g(x), generic
hyperbolicity with respect to g has been shown by [Babin and Vishik (1)]

Our result on lower-semicontinuity i1s general enough to be appled to
numerical approximations of parabolic equations or to singularly perturbed
problems Finally, let us emphasize that this lower-semicontinuity property
should hold for more general systems than gradient ones

2. EXAMPLES OF UPPER-SEMICONTINUITY

We will not state the general upper-semicontinuity result contained in
[Hale, Lin and Raugel, Section 2], because the precise hypotheses are a
little technical Let € > 0 be a parameter which will tend to zero and, for
O<e=<zgy let X, be a family of subspaces of the Banach space
X=X, For 0<e=< ey let T.(¢), t =0, be a C%semigroup on X, which 1s
asymptotically smooth Assume that 7;(z) has a local attractor &/, and that
there are an open neighbourhood %, of &/, and, for any positive numbers
ty, t;, with 0 <ty < t;, a positive function w(¢y, #;, €) such that

Iim 'ﬂ(to, tl, 8)20, (2 1)

e—0

and, if uge %, N X, has the property that T,(¢) uy, T.(¢) uy belong to
U, for t € [ty, t,] where 14 <1, <t,, then,

”To(t)uo—Ts(t)u()”X$T|(t0, tl7€) for t0$t$t2 (2 2)

Then, T.(t) has a local attractor &/, %, and dx(f., ;) — 0 as
¢ - 0 provided that T,.(z) satisfies some additional hypotheses These
hypotheses are satisfied, for example, if there are positive constants
80, to, t; and three open sets N; c N, < N3 (with &/ <« N, &, attracting
N, under Ty(¢t) and Ty(t) Ny N, for t=0) such that, for 0 < e <
gy, T ()N ;N X)) N, for 0=<t=1ty and for any x, € &/ (N,, 3)) N
X,, there exists #(x,.) = 0 such that T.(¢) x, € N5 for 0 <t < t(x,), where
N (N, 8y) denotes the 3;-neighbourhood of N,

The two first examples will illustrate this theorem

2.1. Semidiscretization in space of a parabolic equation

Here we describe a simple situation (A more general case i1s given 1n
[Hale, Lin and Raugel] ) Let V and H be two (real) Hilbert spaces such that
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V is included in H with a continuous and dense embedding ; the space H is
identified with its dual space and the inner product of H, as well as the
duality pairing between V and its dual space V', is denoted by (., . ). We
introduce a continuous, symmetric bilinear form on V x V:(u,v) €
V x V > a(u, v), which is V-elliptic, and we denote by A € L (V ; V') the
corresponding operator defined by

Yu,veV, a(u,v)= (Au,v).

Now we consider the nonlinear equation

du

— +Au = f(u),

dt 2.3)
u(O) = Uy,

where u, belongs to V and f:V — H is locally Lipschitz continuous.
We set

D(A)= {veV ;Ave H} .

By [Henry (1), Chapter 2], we know that under the above hypotheses on
A, fand uy, there is a unique solution in V of equation (2.3) on a maximal
interval of existence (0, 7(uy)). Here we assume that all solutions are
defined for ¢t =0, so that we can introduce the C%semigroup T,(z):
Vo5V, t=0, defined by Ty(¢)uy = u(,uy). We also suppose that
To(t) has a (local) attractor &7 attracting a bounded open neighbourhood
U,.

Now, let us turn to a finite-dimensional approximation of equation (2.3).
Let ¢ > 0 be a real parameter which will tend to 0 and (V,), be a family a

finite-dimensional subspaces of V. We introduce the operator &, €
L(V.; V,) defined by

Yvo,e V., (A w.,v)=a(w,v,) for w, in V,. 2.4
Let Q, € £ (H;V,) be the projector on V, in the space H, i.e.,
YVveH, Yo, eV,, (v-Q.v,v,)=0 2.5)
and let P, e Z(V ;V,) be the projector on V. in the space V, i.e.,
YoeV, Vv,eV,, a(v—-P,v,v,)=0. (2.6)
Now, consider the following equation in V,:

du,

W‘*’Aeua:st(us)r

Ue (O) = Upe » (23)8
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524 G. RAUGEL
where u,, € V.. We introduce the map T,(t):V.— V., defined by
T (t)uy, = u.(t, uy.) as long as it exists.

In order to prove that 7, (¢) also admits a local attractor ., for ¢ small
enough, we make some additional hypotheses on the spaces V, e >0:
there exist an integer m = (0 and, for any B, %s B =<1, a constant

C(B) = 0 such that, for all w in X*= D(A4P),

(i) [w—P.wl, +llw-Q.w|,<C@®)e"** Vw|m, (2.7)
and
(i) Iw—=P.wl,+lw—0.wl,<C®)e>™ |w| . 2.7)

Note that the hypotheses (2.7) are realistic (see [Hale, Lin and Raugel,
Section 3]). In this paper, it has been shown that if T.(¢)u,. and
Ty(t) uy. belong to %, for 0 < t=<¢,, then, for 0 <ty =<t =1t;, we have

m
”To(t)“os—Te(t)qu”VSCOeclllst—O, (2.8)
which is similar to (2.2). Then the general result of [Hale, Lin and Raugel,
Theorem 2.4] implies that there are a positive constant ¢, and an open

neighbourhood %, of &, such that, for 0 <& =< ¢y, T.(z) has a local

attractor &/, attracting %,. Moreover &/, is upper-semicontinuous at
e = 0.

2.2. Semidiscretization in time of a parabolic equation

We now turn to a semidiscretization in time of equation (2.3) by a one-
step method. Here we assume moreover that A has a compact resolvent and
that f belongs to C%(V ; H). Let k be a positive time increment which will
tend to 0 and let ¢, = nk, n € N, and define an approximation u” of the
solution of (2.3) at time ¢, by the recursion formula

W= (L= (L= 0)RA)(L +0kA) w4 k(L4 OKAY (), ()
u0=u0, |

where %< 0=<1.

We introduce the mapping T € £ (V ; V') defined by T u, = u' where
u! is given by the formula (2.3),. For any integer n=1, Tfu,=
u". We remark that 77: N — C%V ; V) is a discrete semigroup and that all

the definitions given in the introduction can be extended to this case. Let
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CONTINUITY OF ATTRACTORS 525

oy, a; be two positive constants with oy < a;. In [Hale, Lin and Raugel,
Section 4], it has been proved that if 77u, and T(nk)u, belong to

Q
Y, for 0 =n=<m and 0 =< nk < mk + k, respectively, where ?0 <m=

o

?1 , then

max || T(nk) ug — T ug, < Coe™™ aif , (2.9

&9
—=n=sm
k

which is similar to (2.2). Then Theorem 2.4 of [Hale, Lin and Raugel]
implies that there are a positive constant k, and an open neighbourhood

U, of o, such that, for 0 < k < k,, T} has a local attractor &, attracting
U, And &, is upper-semicontinuous at k = 0.

The two following examples of upper-semicontinuity fully exploit the
additional smoothness properties of attractors.

2.3. A singularly perturbed hyperbolic equation

Consider now the hyperbolic equation
o e e 7 h in Q x (0
() e—g+ i Bu =~ fw)—h(@x)  nQx (0 +c0)
(i) u, =0 on 3Q) , (2.10)

du,
(i) #.00,%) = up(x), —= (0,) = wy (¥),

where () is a bounded smooth domain or a convex polyhedral domain in
R*, n=1, 2, 3, € is a positive parameter which will tend to zero,
h(x) is a given function in L?(2) and (i, u;) belongs to Xy, = Hi(Q) x
L*(Q). Suppose that f belongs to C*(R ; R), that

m —JIO_ 2.11)
yh—-+o Y

and, for n = 2, there is a constant ¢, > 0 such that

|7"0)] =co(ly]”+1) for yeR, (2.12)
where

{Os'y<+oo if n=2

O=svy<1 if n=3. (2.13)
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526 G. RAUGEL

Along with equation (2.10), we consider the limiting parabolic equation
when € =0

) %—?—Au:—f(u)—-h(x) in Qx(0,+®)
(i) u=0 on 9, (2.14)

(i) u(0,x) = uy(x).

Under the above hypotheses, there is an attractor &, of (2.14) in
HA(Q) (see [Hale (1)]). Moreover, &, is in HX(Q) N H}(Q). Also, for
e >0, (2.10) admits an attractor &/, in X,, which belongs to the space
X, = (H*(Q) N H{(Q)) x H}(Q) (see [Hale (1)], [Haraux], [Ghidaglia and
Témam)). How is &, related to &, for ¢ small ? In order to make a
comparison, we introduce the set

Ay={(o,¥): 0 € Ao b =8¢~ F(¢)~h o o}

which is a natural embedding of the attractor &/, into X,.

THEOREM 2.1: Under the above hypotheses, the sets s, are upper-
semicontinuous at € = 0, i.e.,

hm SXO(‘ME’ MO) = 0 .

€0

For a proof of this result, we refer the reader to [Hale, Raugel (1)]. In this
proof, we widely use the fact that, for e = 0, &/, ¢ X;. More precisely, let
gg be a fixed positive constant ; one shows that there is a positive constant ¢

du
such that, for 0 < & =< &, if (u,(¢), —525 (¢)) belongs to o ,, for ¢t € R, then
u,
ar?

(t)“1+ ”% (t)l|1+ u )|, <c, for teR, (2.15)

where |- ||, i =0, 1, 2, denotes the norm in L*(Q), H}(Q), HX(Q) N
H}(Q) respectively (see [Hale, Raugel (1), (3)]). This property has the two

3
following important consequences. If (i, (1), —:;;f (t)) is a solution of (2.10)
3%u,
in &, and if £,(t) = ¢ =7 (t), then [|€.(t)]|, ~ O as & — 0 uniformly in

t € R and u.(z) is a solution of the regularly perturbed parabolic equation

&= Au= Fu)~h-0,) in @, (2.16)
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CONTINUITY OF ATTRACTORS 527

with homogeneous Dirichlet conditions. Inequality (2.15) also implies that,
for O=e=<g¢gy, . B where B is a bounded set in X;; thus, for
0 =<e =gy &, belongs to a special type of compact set in X;. These two
properties allow us to show the upper-semicontinuity at € = 0.

Finally, we remark that (2.10) and (2.14) are gradient systems. The proof
of Theorem 2.1 given in [Hale, Raugel (1)] does not exploit this fact and
therefore is also valid for more general systems, that are not gradient (like
those described in [Ghidaglia, Témam, Section 5]).

2.4. A reaction diffusion equation on a thin domain

Suppose now that & < R”, n = 1, 2, is a bounded open connected set with
smooth boundary, g: Qx [0, 5] » R is a C>*function (where Q) is the
closure of ), satisfying

g(x,0)=0, go(x)Eg—g(x,O)>O for xe O,
oF (2.17)
gx,e)=0 for xe Q, ee€ (0,5].

For a a positive constant and f a C%function satisfying (2.11), (2.12) and
(2.13), we consider the equation

0 ~
() Sf-du tau, =—Fw) in Q.x (0,+),
.. uE 0 a 218)
(i) = =0 on 00Q,, @

€

(iii) u.(0,x,5) =up(x,y),
where n, is the outer normal to 3Q,, u, belongs to H'(Q,), with
Q.= {(x,y)eR""':0<y<g(x,e),x€eQ}, for O=se=<ce,.

We want to relate the dynamics of (2.18) to the dynamics of the equation

. oaw 1 & 0 ou = .
_ 2 Rid = — Q 0,+0),
@ < 5 & 3 (90 5 ) + o fw) in Qx( )
.. ou
= Q 2.19
(i) o 0 on 3Q, ( )

(iii) u(0,x) =uy(x),

where u, belongs to H!(Q) and n is the outer normal to 9.

Under the above hypotheses, in the scaled domain Q = Q x (0,1)
defined by the change of variables x = &, y = g (£, € ) m, the equation (2.18)
has an attractor &/, « H*(Q). The equation (2.19) also has an attractor
&y = H'(Q) which is naturally embedded into H'(Q).
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528 G RAUGEL

THEOREM 2 2 Under the above hypotheses, the attractors o, « HY(Q)
are upper-senucontinuous at € = 0

For a complete proof of this result, we refer the reader to [Hale, Raugel
(4)] Let HX(Q) be the space H!(Q) endowed with the norm

_ 1]]2e
lellgy = ”‘P”[-II(Q)+€ am

L¥Q)

For & = 0, the attractors ./, satisfy the following important a priorn
estimate there 1s a positive constant C such that, for 0 < e < g,

l¢llmgy=<C, for ee, (2 20)

Let T,(t), € = 0, and Ty(¢) be the semigroups associated with (2 18) and
(2 19) on the scaled domamn Q = £ x (0,1) Then, to prove Theorem 2 2,
it 1s sufficent to obtan good estimates of the difference
I T.(t) ¢ — To(2) @ Hio) OB fimte time intervals [¢y, 73], with 0 <75 <

7o, when | ¢| H Q) = C and ¢, 1s a «good» approximation of ¢
H'(Q)
Remark2 1 1If g(x,¢e) = ¢, then &/, = & for e small This 1s proved by
writing the solution u, of (218) on Q as u,=v+w where v =
1
( u. (&, m) dn and by using the strong stability property of w
Vo
Another interesting example of upper-semicontinuity 1s contamned in
|Hale, Rocha]

3. A LOWER-SEMICONTINUITY RESULT

3.1. Let us recall the definition of a gradient system on a Banach space X

DEFINITION 31 A C’-serugroup T(t), t=0, r=0, 1s sad to be a
gradient system if there exists a Lyapunov function for T(t) , that s, there is a
continuous function ¥~ . X — R with the property that
(1) ¥ (x) 1s bounded below,

(2) V' (x) >+ 0 as ||x|y— + o,

(3) ¥ (T(¢) x) 1s nomincreasing in t for each x € X,

(4) 1f x s such that V" (T(t) x) = ¥ (x) for all t in R, then x 15 an equilibrnium
poiwnt, that 1s, T(t)x =x for all t 1n R

We now state a particular case of the lower-semicontinuity result of
[Hale, Raugel (2)] For 0 < & =< g, let X, be a family of subspaces of the
Banach space X, endowed with the norm ||- ||, and let T,(t), t =0, be a
farmly of semigroups on X, We make the following hypotheses on
T.(t), for e in [0, g] .
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CONTINUITY OF ATTRACTORS 529

(H.1) To(z), t=0, is a Clgradient system which is asymptotically
smooth,

(H.2) the set E; of equilibrium points of T;(¢) is bounded,

(H.3) each element ¢, o of E; is hyperbolic.

Then, E; is a finite set of, say, Ny clements. And since 7;(z) satisfies
(H.1) and (H.2), it admits an attractor &/, given by

Ao=\_J) W0
9,0¢€ Eo
where W¥(g, o) is the unstable manifold of ¢, ¢.

(H.4) For £¢>0, T.(¢) is a Clsemigroup and has a local attractor
&, attracting Uy N X, where U, is a fixed open neighbourhood of
M 0 in X N

(H.5) If E, is the set of equilibrium points of T, (¢), there exists an open
neighbourhood W, of E; in X such that Wy N E, = {¢ ., ..., $y, .} Where

each ¢, . is hyperbolic and ¢, . — ¢, o as ¢ » 0.
We define the local unstable sets
Wi, o(¢,.)= {y.€eUNX.:T.(-t)y.eUNX,, t=0,
T.(-t)y.> ¢, a8 t—>+0},
where U, is a neighbourhood of ¢, 4 in X (and therefore of ¢, . for e small
enough).

We furthermore assume that there are positive constants Cy, p and a such
that

(H.6) 5X(Wff>c,0(<P,,o), lléc,s(@],s)) =Cy¢,
(H.7) For any x, y belonging to (_J &,
Ose=eg

[To(t) x = To(t) y|l < Collx = yll yexp s,

(H.8) For any t§f = 0, there is a positive number C§ = C¢*(¢y) such that,
for y. € &,

[To(t) ye = Te(t) y|| y < C§ P expar for t=1§.
THEOREM 3.1: Under the hypotheses (H.1) to (H.8), there are two
positive constants C and q, with q < p, such that
SX(ﬂo» ME)SCEQ. (31)
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Remark 31 If moreover, we assume that
8x(Wiee s(% ) Wiee 0(‘P, 0)) < Cyef (32)
then, under some additional hypothesis, we have
3y (., Hy)=<Ce 33)

In the proof of Theorem 3 1, we widely use the facts that there exists a
Morse decomposition for &/, and that the local unstable mamifolds
Wit « (¢, <) have a « good » dependence in ¢ A similar weaker result had
also been announced 1n [Babin, Vishik (2)]

3.2. Applications of Theorem 3.1

Example 31 We now consider the equation (2 14) where f, & and Q
satisfy the hypotheses of Section 2 3 Tt 1s a gradient system with Lyapunov
function

Vo) = | (19614 Flo) + 4w o)) da

y
where F(y) = J. f(s)ds We can write equation (2 14) in the form (2 3) if
0

we set V =H{Q), H=L¥Q), fu)=—flu)—hk, A=—A with
Dirichlet homogeneous boundary conditions Thus a finite-dimensional

approximation of equation (2 14) 1s given by (23), which 1s still a
C -gradient system, the associated Lyapunov functional on X, bemng

o) = | (319 + Fuol) + Qb o))

y
where F.(y) = [ Q. f(s)ds and ¢ € X, Hence equation (2 3), has an
vO

attractor &, fore =0

Assume that all of the equilibrium pomnts of (2 14) are hyperbolic Then
one easily proves that the hypotheses of Theorem 3 1 and the mmequality
(3 2) are satisfied with p = 1 Therefore one can apply Theorem 3 1 and the
estimates (3 1) and (3 3) hold for a real number g, 0 <g =<1, for
0 < & = ¢y (see [Hale, Raugel (2)])

Example 32 We now turn to the semidiscretization in time (2 3), of
equation (2 14) Here the continuous semigroup 7T, (¢ ), for € > 0, 1s replaced
by the discrete semigroup T}, k=0, defined in Section2 2 Note that
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Theorem 3.1 and Estimate (3.3) can be extended to this case (see [Hale,
Raugel (2)]). Here, of course, T} is no longer a gradient system. However it
is gradient-like ; that is, the local attractor 4 « is the union of the unstable

manifolds of the equilibria. Assume that all of the equilibrium points of
equation (2.14) are hyperbolic ; then one easily shows that T, satisfies
hypotheses similar to those of Theorem 3.1 and Remark 3.1 with p =

5 Hence there are two positive constants C and g, with g < % , such that
Bja) (o, ;) + aHg(n)(Jgk, o) < Ck9.

Example 3.3 : Let us come back to the Example 2.3. By Theorem 2.1,
the sets &/, are upper-semicontinuous at ¢ = 0. Since the systems (2.10) and

(2.14) are gradient, the sets &, are also lower-semicontinuous at
e = 0.

THEOREM 3.2 : If (2.11), (2.12), (2.13) hold and if all of the equilibrium
points are hyperbolic, there are positive constants t,, C and p, with

p= 3 such that, for 0 < € < g,
3y, (o, &)+ 3x, (., ) < Ce? . (3.4)

The proof of Theorem 3.2 is quite similar to the one of Theorem 3.1. The
following property is an important ingredient of the proof of Theorem 3.2.
At first, note that ¢,, 1 < j < Ny, is an equilibrium point of (2.14) if and only
if (¢,0) is an equilibrium point of (2.10). Let Wi .((¢,,0)), for
e>0, and Wi‘oc(cp]) denote local unstable manifolds of (¢,,0) and
¢, respectively, for 1 < j < N, We then introduce the set

WI‘:)C,O("P/) = {(U, W) EXy:w=— f(U) —h+Av,ve WI{OC(‘P])} >
and we prove that, for ¢ >0, and 1 =j < N,,

8X()(Wll:)c,o(‘p/)’ W{éc,s(((P]s 0))) +
+ 85, (Wi, . (¢, 0)), Wite.0(¢))) < Ce'? . (3.5)

One even obtains a better estimate of the distance in Hi()) between the
sets Wit.(¢,) and P, Wi, .((¢,,0)), where P, e L(X,; H}(Q)) is the
projection onto the first component (cf. [Hale, Raugel (3)]).

If (2.10) and (2.14) are one-dimensional equations, then they admit
inertial manifolds which have a continuous dependence in ¢ (see [Mora,
Sola-Morales]). In higher dimensions one can show that if (2.14) is a Morse-
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Smale system, (2 10) 1s still a Morse-Smale system for & small enough (see
[Hale, Raugel (5)])

Finally let us pomnt out that a similar result of lower-semicontinuity of
attractors 1s true for the reaction diffusion equation on a thin domain (see
[Hale, Raugel (4)])
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