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INERTIAL MANIFOLDS
OF DAMPED SEMIL1NEAR WAVE EQUATIONS (*)

by Xavier MORA Q), Joan SOLÀ-MORALES (2)

In the present communication we give an account of the results obtained
by the authors in [8], [9], and [10], with some slight improvements in what
refers to [9]. We are concerned with the qualitative dynamics of a one-
dimensional semilinear damped wave équation and its dependence with
respect to the coefficient of the second-order time derivative, hereafter
denoted by e2, this parameter being considered to vary right up to the
limiting value e2 = 0, in which case the équation turns into a semilinear
diffusion one.

Our work has been motivated mostly by the question whether, for e
small, the dynamics of the damped wave équation is or not equivalent in
some reasonable sense to that of the limiting diffusion équation. A strong
évidence in this direction is the remarkable fact estabhshed by Henry (1985)
[7] and Angenent (1986) [1] that the limiting diffusion équation is
automatically Morse-Smale as soon as the stationary states are all hyper-
bolic. As it is well-known, this would immediately imply équivalence if our
System had been finite-dimensional and we had been dealing with a regular
perturbation problem instead of a singular one.

As it has become clear in the recent years, when dealing with infinite-
dimensional Systems like the diffusion équation considered here, the notion
of équivalence based on a comparison of all orbits is easily too severe, so
that it becomes convenient to restrict the attention to some smaller, usually
finite-dimensional, invariant set which still contains the essential éléments
of the dynamics. The smallest such invariant set is the so-called global
attractor. Of course, a very natural choice consists in asking oneself about
équivalence restricted to the global attractor itself. This is indeed the
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490 X. MORA» J. SOLÀ MORALES

approach of Haie, Magalhâes, Oliva (1984) [4], which in particular contains
a Morse-Smale theory adapted to this situation. In f act, very recently, the
particular singular perturbation problem described above has begun to be
studied from this point of view by Hale, Raugel (1988) [5].

That problem is here studied from a different point of view, the différence
lying in that instead of restricting our attention to the global attractor we
consider a larger invariant set, namely a finite-dimensional (local) invariant
manifold of class C1 containing the global attractor, i.e. what in the current
terminology is called an inertial manifold (of class C1).

In this connection we show that there exist an integer n and a real number
e^O such that, for e very e belonging to the interval [0, e), the global
attractor of the corresponding dynamical system is contained in an invariant
manifold of class C1 and dimension n, and for s ^ 0 both this manifold and
the vector field on it converge in the C1 topology towards the ones
corresponding to 8 = 0. By combining this result with that of Henry and
Angenent mentioned above, and applying the standard theory of Morse-
Smale, we can conclude that if the stationary states are all hyperbolic, then,
for e small enough, the dynamical system generated by the damped wave
équation and the one generated by the diffusion équation are equivalent
restricted to the inertial manifolds above. These results are the object of our
paper [10], whose contents are abridged in § 2 below.

Of course, the existence of an inertial manifold is not so gênerai a fact as
the existence of a compact global attractor. In particular, in order to obtain
the manifolds above we need to restrict ourselves to the one-dimensional
case as well as to values of s sufficiently small. In fact, we can give an
example where, for large values of e? the global attractor is not contained in
any finite-dimensional manifold of class C1 (whether invariant or not), and
in fact this situation is generic with respect to a special class of perturbations.
This example is described in § 3. The result given here is slightly improved
with respect to [9], where we observed only that the global attractor was not
contained in any finite-dimensional manifold of class C1 invariant by the
flow.

Some independent results about this problem have been obtained
recently by Chow, Lu (1988) [3]? whose paper contains a gênerai study of
the existence of smooth invariant manifolds containing the global attractor
for a class of problems which in particular includes the one considered here.
Concerning the limiting behaviour of such manifolds in the singular limit
e -• 0, they obtain a result of convergence essentially in the C° topology.
Another related work is that of Hale, Raugel (1988) [5], who centre their
attention directly on the global attractor and show that for s -» 0 this set
converges in the Hausdorff topology towards the one corresponding to
8 = 0. Although this property is weaker than the one obtained here, their
result applies to the more gênerai case of several space variables. Also, a
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DAMPED SEMILINEAR WAVE EQUATIONS 491

different result on the same problem has been announced recently by Babin,
Vishik (1987) [2].

1. THE EQUATIONS AND SOME PRELIMINARIES

Our results apply specifically to the following problem, where u is a
function of x e (0, L) and t e R with values in M :

E2utt + 2aut - $uxx + ƒ(>, u) + q{x) (1.1)

M h = o = M o » e « r l , = 0 = EV

or the analogous one where (1.2)^ is replaced by

Henceforth, the boundary conditions (1.2)D or (1.2)w will be referred to as
(1.2)B, where 5 stands for either D or N. In the preceeding équations,
£ is a real parameter which we consider to vary right up to the value
8 = 0, a and P are fixed positive real parameters, ƒ is a function
(0, L) x R -• R, q is a fixed function of x e (0, L), p0, pL, aOï aL are real
numbers, and the initial data u0 and v0 are given fonctions of x e (0, L ). The
function ƒ is assumed to satisfy the following conditions :

(ƒ1) ƒ ( . , « ) belongs to the Sobolev space Hl(0, L) for every w e R , and
in the case B = D f satisfies the condition ƒ (0, p0) = ƒ (L, pL) = 0 ;
ƒ(*,. )isofclassC2 + 11forevery;t e (0,L),fx(x9. )isofclassC1+71for
almost everyx e (0, L), and for every bounded open interval/ c= R, the
quantities

are both finite.

( f * ) c _ lim sup sup / % ü ) < {P-V^2 , « J = D (1.4)
U ^U l t ^ TV

% { J
| u | ^ o o * e ( 0 , £ ) U ^ U ' l t ^ = TV .

Concerning the function q, we assume simply that it belongs to L2(0, L).

Remark : The case B = D with ƒ (0, p0) or ƒ (L, pL) not equal to zero can
be reduced to the preceeding one by letting p : (0, L) -• R be any smooth
function satisfying p(0) = p0) and p(L) = pL, and changing f(x,u) and
q{x) respectively by ƒ(*, u) - f(x9 p(x)) and q(x) + f(x,p(x)).

Let w* be the solution in H2(0, L) of the équation $uxx + <?(*) = 0 with
the non-homogeneous boundary conditions (1.2)B. By switching over to the
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492 X MORA, J SOLÀ MORALES

new variable ü:=u — u*, the problem reduces to the homogeneous case
q = 0, p0 = pL = 0, CT0 = aL = 0 ; the role of ƒ is now played by the function
f(x, u) ;= ƒ (x, u*(x) + w), which can be verified to inherit properties
(ƒ1) and (ƒ*) from ƒ. Furthermore, by suitably rescaling time and space
and dividing équation (1.1) by a constant, the problem can be normalized to
2 a = 1, p = 1, L = ir. Henceforth, problem (1.1), (1.2)B, (1.3) will always
be considered in this particular normalized homogeneous form.

In the following this problem will be considered as a second order
évolution problem on the Hilbert space E ~ L2-- L2(0, L), namely

e2 ü + ù + Au = Fu (1*5)

K ( 0 ) = U 0 , eù(O)=ei?o (1.6)

where A and F are the operators given by

Au = - uxx (1.7)

Fu = ƒ ( . , * ( . ) ) (1-8)

with domains E1 and £1/2 respectively equal to ff| and H^. Here
H s (k = 1,2) dénote the closures in the Soboïev spaces Hk-.= Hk($, L) of
the set {u : (0, L) -• R\u e Cco([0) L]) and satisfies the boundary con-
ditions (1.2)B}.

In gênerai, our results apply to an abstract évolution problem of the form
(1.5), (1.6) where u takes values in a gênerai Hilbert space E, A is a self-
adjoint operator on E ha ving numerical range bounded from below and
compact résolvent, and F is a nonlinear operator with the properties of
beionging to C\^{Em, E112) (which in our case follows from condition
(ƒ1)), representing the gradient of some functional on Em, and satisfying
an abstract version of condition (ƒ*) (see [10] for a more précise
description). Here and in the following, Ea dénote the usual power spaces
associated with the operator A. Hereafter, the greatest lower bound of the
numerical range of A will be denoted by \x .

The properties of - A being the generator of an analytic semigroup on
E and F beionging to C^d\E

y2, Em) détermine that problem (1.5), (1.6)
with 8 = 0 fits in the standard theory of semilinear évolution équations of
parabolic type, which ensures that it générâtes a semidynamical system of
class C1 + T1 on Em.

As usual, for s ^ 0 we shall take as state variable the pair
(w, ü) =: (a, v) =: U, whose values will be considered in the space
Em x E-E, In terms of this variable, problem (1.5), (1.6) takes the first-
order form

t/ + A 8 C / = F e 1/ (1.9)

U(0) = UQ (1.10)

Modélisation mathématique et Analyse numérique
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DAMPED SEMILINEAR WAVE EQUATIONS

where Ae and Fg dénote the operators on Em x E given by

A e ( M , u ) = {-v,z~2{Au + v))

493

(1.11)

(1.12)

with domains respectively equal to E1 x E112 and Em x E. It is a standard
f act that — A e is the generator of a group on E112 x E. On the other hand,
the properties of F imply that Fe maps E112 x E to itself and this mapping
belongs to C1 + 7](E112 x E, E112 x E), With this, the problem fits in the
standard theory of semilinear évolution équations of hyperbolic type, which
ensures that it générâtes a dynamical system of class C1+T1 on E112 x E.

By using the Standard Lyapunov functional of problem (1.1), (1.2)5,
(1.3), and certain a priori estimâtes coming from condition (ƒ*), one
obtains that for e = 0 the semidynamical system is global, and for
e ^ 0 the dynamical system is global both in positive and négative time.

It is a well-known fact that, both for s = 0 and for e ^ 0, the preceeding
problem has a compact global attractor. In the following this set will be
denoted by sé'e. We recall that s/e consists of all initial states for which the
solution is defined and bounded on (— oo, 0],

In order to deal with second order évolution problems of the form (1.5),
(1.6) with e ^ 0, we take the inner product on E = E112 x E in a particular
way specially adapted to the linear part of the équation. This inner product,
which dépends on e, is the one associated with the norm given by

1 I I 2 o

In particular, this inner product has the virtue of making the numerical
range of As to be contained in a vertical strip as narrow as possible. This is
expressed by the following result, whose proof will be found in [9].

THEO REM 1.1 : For 4 e2 Xx :> 1, the numerical range of A e is contained in

the vertical line R e z = — - . For 4 E 2 \ 1 < 1 , it is contained in the strip

R e z -
2 E2

1 - >
8 V4e2

vol. 23, n°35 1989



494 X. MORA, J. SOLÀ MORALES

COROLLARY 1.2 : For every e =* 0, — AE is the generator of a group of the
form

e - A ' ' = < r ' / < 2 e 2 > / e ( O ( r e R ) , (1.14)

where, for 4 e 2 X 1 > l ) /E(r) (t EU) is a group ofunitary operators, and for
4 e2 \ j <c 1, # satisfies the bound

I ^ - I ^ M ) , VrelR. (1.15)

2. EXISTENCE AND CONVERGENCE IN THE PARABOLIC LIMIT

2.1. The setting and main results

By following the practice which is common in similar cases, in order to
look for attracting invariant manifolds of (1.5), we shall décompose the state
variable into fast and slow components, and we shall consider (1.5) as a
(finite) perturbation of a linear system where the fast and slow components
are mutually decoupled. The desired attracting invariant manifolds wili then
be sought for as graphs of mappings giving the fast components as a function
of the slow ones. In Mora (1987) [8], this was done for e ^ 0 by working on
the first-order system (1.9) as a perturbation of the one corresponding to
F = 0, and decomposing the variable according to the spectrum of
Ac. Here, we adopt a somewhat different approach, the différences lying
both in the way of decomposing the variable and of choosing the
« unperturbed » linear system. In particular, here we consider U as
decomposed into u and ü, which in its turn are decomposed according to the
spectrum of A ; this has the advantage that the décomposition does not
depend on £.

Let Xk (k = 1, 2, ... ) dénote the eigenvalues of A arranged in a non-
decreasing séquence. Let us now take a positive integer n such that
X„<X„ + lJ and consider the orthogonal décomposition invariant by
A, E — Ei ® E2, where Ex and E2 dénote the closed linear subspaces of
E generated respectively by the first n eigenfunctions and the rest of them.
In the following, the orthogonal projections of E onto Et (i = l> 2) will be
denoted as Pn and the corresponding parts of A will be denoted as

At. Parallel to this décomposition of E, the spaces Ea / a = - 5

décompose also orthogonally as Ea = Ef © E%9 where Ef — Pt Ea. The
spaces El7 El/2, El consist all in the same n-dimensional vector space
provided with different but equivalent inner products. According to this
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DAMPED SEMILINEAR WAVE EQUATIONS 495

f act, in the future the spaces Ex
2 and E\ will be distinguished of

Ei only when the spécifie inner product plays a significant role.
Let us now introducé the preceeding décomposition in équation (1.5).

Henceforth, the components of u in Ex and E2 will be denoted respectively
as ux and u2. By applying the projections P1 and P2, équation (1.5)
transforms itself into a system for ux and u2, which we shall write as follows :

e

X = P1F(ui + u2)-A1u1 (2.1)

ü2 + ü2 + A2 u2 = P2 F (ux + u2) (2.2)2 ü

where the term Ax ux has been moved to the right-hand side because in f act
we consider this system as a perturbation of the one which is obtained when
its right-hand sides are set to zero. For E = 0, the state variable is thus
decomposed into the two components ux and w2, which are to be considered
as taking values respectively in Ex

2 and E2
2. For e ̂  0, the state variable

will be considered as decomposed into the four components ux, u2,
ùx, ù2, with values respectively in E]12, E2

2, Eu E2.
It is known that if the gap between kn + x and max (Kn, 0) is large enough,

then the global attractor of the parabolic system (1.5) (e = 0) is contained
in a local invariant manifold of class Cx and dimension n, Mo, which is given
by a relation of the type

«2 = *o(*i) (2.3)

with hQ belonging to C\WU £2
1/2) and in fact to C\Wl9El)9 where

W1 is a certain bounded domain in Ex. Here, this result will be accompanied
by an extension to small non-zero values of s. Specifically, it will be shown
that, under the same gap condition there exists an ê > 0 such that, for
e e (0, ê), the global attractor of the hyperbolic system (1.5) is also
contained in a local invariant manifold of class C1 and dimension
n, M£, which is described by a set of relations giving u2, ü1, and
ü2 as functions of ux :

u2 = he(ux) (2.4)

üx = kz{ui) (2.5)

ü2 = eE(ux) (2.6)

where he9 kz9 and 2E will belong respectively to C\Wl9 E^2), C\WX, Ex),
and C\WV E2), and in fact he belongs to C\Wl7 El).

Although possibly these manifolds Me are normally hyperbolic, we shall
not enter into this question, which on the other hand does not play any role
in the development below.

vol. 23, n° 3, 1989



496 X MORA, J SOLÀ MORALES

Our mam resuit consists in showmg that, as e -* 0? both the mamfold
Me and the vector field on it converge m the C1 topology towards their
analogous for e = 0 Certamly, according to the preceeding paragraph,
M£ (s # 0) are submanrfolds of Emx E, whüe Mo is a submamfold of
Em In order that the problem of comparing Mt (e ^ 0 ) with Mo be
correctly posed, this last mamfold is considered as embedded m Em x E by
takmg ux and u2 as determmed by équations (2 1)5 (2 2) (with 8 = 0)
together with (2 3)

A1u1 = ko(ux) (2 7)

u2 = P2 F(ux -f hö(u1))-A2hi)(uï) = *o(«i) (2 8)

Notice that (2 8) has mdeed a meanmg smce h0 takes values m E\ In f act,
from the properties of h0 stated above, it is obvious that k0 and
£0 belong respectively to Cl(Wu Ex) and CX(WU E2) On the other hand,
one should notice also that relations (2 5) and (2 7), besides bemg part of
the spécification of M£, they give also the évolution équation for the flow on
Me In other words, ke is the projection on E1 of the vector field on
Me Thus, concermng the vector field on Me5 our objective is to prove that,
as s -* 0, kz converges towards kQ m the space C1(Wi, Ei)

Our mam result is contained in the followmg

T H E O REM 2 1 Let us consider problem (1 5), (1 6) with A and F
Sûtjsfyirig the hypotheses staied in § 1 There exists a constant i such that if
kn and kn + l satisfy the conditions

Xw + 1 ~ X , > 4 l (29)

K + i >2t (2 10)

then, there exist e > 0 and a bounded domain Wl in Ex such that

(a) For e = ö, the global attractor j# 0 is contained in Mo> an inflowing
local invariant submamfold of E112 ofclass Cl and dimension n> which has the
from (2 3) with hQ e C^W^ El)

(b) For every e e (0, ë ) , the global attractor M'E is contained in
Me? an inflowing local invariant submamfold of Em x E of class C1 and
dimension n, which has the form (2 4)-(2 6)? with he e C1(WU E\),
kE G Cl(Wly Et)7 and 2B s Cl(WXi E2) n C°(WU El)

(c) Let k0 and ^0 be defined by (2 7) and (2 8) Then} as e -* 0,
he converges towards h0 in the space C1(WÏ, El), kz converges towards
k0 in the space C1(Wl> Ex), and (e converges towards l0 in both spaces
C\W^ E2) and C°(W ls El)
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DAMPED SEMILINEAR WAVE EQUATIONS 497

(d) For any e e [0, ë), the solutions lying in Me are twice continuously
differentiable with respect to time, with ü given by a relation of the type

ü = mz(Ul), (2.11)

where mt =s C°(W1, E). As E -> 0, me converges towards mö in the space
C°(WUE).

In particular this resuit implies that

COROLLARY 2.2: Under the hypotheses of Theorem 2.1, then, for
e e [0, e), the solutions lying in the global attractor s4\ have uy u, and
ü bounded independently of e respectively in the spaces E1, E1, and
E.

Remark : The constant i dépends on the bounds on F and DF in a certain
bail containing the global attractor.

In the application to problem (1.1), (1.2)s, (1.3), conditions (2.9), (2.10)
reduce to

2 « + 1 > 4 £ , if B = D
2 ra - 1 > 4 £ , if B = N

which will allways be satisfied if n is taken large enough. Since it is known
(Henry (1985) {7}, Angenent (1986) [1}> that for s = 0 this system is Morse-
Smale whenever the stationary states are all of them hyperbolic, the
Standard theory of Morse-Smale allows to conclude that

COROLLARY 2.3 : Let us consider problem (1.1), (1.2)B, (1.3) with f
satisfying the hypotheses stated in § 1, and assume that the stationary states
are all of them hyperbolic, Then, for e small enough, the flow on
ME is equivalent to that on Mo. In particular, the flow on s/e is equivalent to
that on jtf0.

2.2. Idea of the proof

As it is usual in similar circumstances, our proof begins by modifying the
équation far from the attractor so that we can deal with global invariant
manifolds instead of local ones (i.e. the domain Wx of ht, ke7 £8 equals the
whole of Zij). For every e, the corresponding manifold Me should contain all
(mild) solutions which stay defined and bounded as t -• - oo. In order to
obtain such manifolds we use the classical method of Lyapunov and Perron
in the special form as it appears for instance in Vanderbauwhede, Van Gils
(1987) [11]. The main idea consists in looking for Me as consisting not only

vol. 23 , n ° 3 , 1989



498 X MORA, J SOLÀ MORALES

of all solutions which stay bounded as t -> — oo, but more generally all
solutions which satisfy an exponential growth condition of the form

\\u(t)\\m = O(e-n as t - - o o (212)

where jx will be a positive real number belongmg to the interval
(kn, X„ +1) The admittmg of these extra solutions will resuit m the fact of
the set Me bemg really a differentiable mamfold

The solutions which satisfy the growth condition (2 12) will be obtamed as
fixed points of certain mappmgs u°*-+ u which result of solvmg a pair of non-
homogeneous lmear équations of the form

z2ul + ux =G1(u°)=f1 (2 13)

e2 u2 + u2 + A2 u2 = G2(u°) - ƒ2 (2 14)

with the additional condition that u = ut + u2 satisfies (2 12) It turns out
that, for fx € (0, Xrt + i) , and E small enough, the set of solutions of (2 13),
(2 14) which satisfy (2 12) is parametrized by wz(0) e Et Thus, by addmg
an initial condition of the form Wj(0) = x3 we obtam a different mapping
u0^ u for every x E Ex By applymg a suitable version of the parametrized
contraction theorem, we obtam that, under conditions (2 9) and (2 10)
together with

max (0,X„ + 2 £ ) < c j x ^ \ n + 1 - 2 £ 5 (2 15)

each of these rnappings has a unique fixed point The totality of these frxed
points will give us the set ME we are lookmg for, which m fact will be a
mamfold parametrized by x E Ex Fmally, the behaviour of Mz as
e -* 0 is also taken care of by our spécifie version of the parametrized
contraction theorem on the basis of a previous detailed study of the
behaviour as e -+ 0 of the solutions of the non-homogeneous lmear
équations (2 13), (2 14) with the additional conditions mentioned above

3. NON-EXISTENCE FAR FROM THE PARABOLIC LIMIT

In this Section we provide an example where for large values of E the
global attractor is not contamed m any fimte-dimensional mamfold of class
C1 (whether invariant or not), and m fact this situation is genene with
respect to a special class of perturbations

The reason why large values of e make difficuit that the global attractor
be contamed in a fimte-dimensional mamfold of class C l is mainly lmear
For large values of e, the lmear part of the équation at a stationary pomt
easily has all the eigenvalues on the same vertical lme of the complex plane
Under these conditions, one can show that there exists a countable family of
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DAMPED SEMILINEAR WAVE EQUATIONS 499

fimte-dimensional manifolds of class C1 through that point such that if a
positive semiorbit tendmg to that point is contained in some finite-
dimensional mamfold of class C1 then it is contained also in one of that
countable family In § 3 1 this crucial fact is established for the hnear
problem By using a suitable C1 hnearization theorem, which we have
developed specifically to apply to this problem and which we give in § 3 2,
we can then translate this situation to the neighbourhood of a stationary
point of a nonlinear problem

Fmally, m § 3 3 we consider an example where the global attractor
contains an heteroclinic orbit from 4» to ^5

 W1th ty being a stationary state
with a hnearization of the type descnbed above, and we show that the
function ƒ can be perturbed in such a way that the connectmg orbit avoids
each of the countably many fimte-dimensional manifolds mentioned above
Therefore, one can conclude that the global attractor is not contained in any
fimte-dimensional mamfold of class C1 In fact, in our construction this
situation is genene with respect to the considered class of perturbations of
the function ƒ

3.1- The linear case

In this paragraph we deal with a second order linear évolution problem of
the form (1 5), (1 6) with F = 0, or equivalently the first order évolution
problem (1 9), (1 10) with FE = 0 In the following, ek and \k(k=l,2, )
dénote respectiveiy a complete orthonormal System of eigenfunctions of
A and the correspondmg séquence of eigenvalues, which séquence is
assumed to be non-decreasing Finally, Ek will dénote the one-dimensional
space generated by ek We have the orthogonal décomposition invariant by

00

A E = 0 Ek Correspondingly, the space E = Em x E has the orthogonal
k= 1

oo

décomposition invariant by As E = ® E*, where £k dénotes the two-
k= 1

dimensional subspace of E given by Efc = Ek x Ek

Let us now assume that 4 e 2 \ 1 > l , and consider e~ e decomposed
according to the formula (1 14) On each of the two-dimensional invariant
subspaces E*, the effect of the group Je (t) consists in a rotation of frequency

00. = _ \, From this fact it follows that, for every Ue\E, the

function M 3 t *-+ Jz(t) U e E is almost penodic
The mam result of this paragraph is the following

THEOREM 3 1 Assume that A is self-adjoint with numencal range
bounded from below and compact résolvent, and also that 4 E2 Xj > 1 If a
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positive semiorbit of e e (t e [R ) is contained in a finite-dimensional
submanifold of E differentiatie at the origin, then it is contained also in a

linear subspace of the form EK = © Ê  where K is a finite subset of
keK

N\{0}.

The proof of this theorem reduces to the application of the two followïng
lemmas.

LEMMA 3.2 : Under the hypotheses of Theorem 3.1, if a positive semiorbit
of e~ e (t G (R) is contained in a submanifold M of E differentiable at the
origin, then it is contained also in the tangent subspace of M at the origin.

Proof: Let U be a point of the semiorbit which is assumed to be contained
in M. Let F be the tangent subspace of M at the origin. Finally, let P dénote
the orthogonal projection of E onto i% and Q •.= I — P. The f act that F is
tangent to M at the origin means that

||gW|| = o(\\PW\\), as W ^ O o n M .

In particular, this implies that

\\Qe-^lU\\ ^oQPe-^UW), as f - + oo ,

or, equivalently by (1.14),

\\QJt(t)U\\=oQPJe(t)U\\), as r-> + oo.

Using the fact that Jz(t) U is an almost periodic fonction of t, one can then
dérive that QU = 0, i.e. U e F. •

LEMMA 3.3 : Under the hypotheses of Theorem 3.1, if a positive semiorbit
of e Ê (t e (R) is contained in a finite-dimensional linear subspace of

E, then it is contained also in one o f the particular from EK = © Ek where K
keK

is a finite subset of N \ {0} .

Proof: We first notice that the linear closure of a semiorbit of
e~ e ( f e R ) coincides with the linear closure of the semiorbit of
Je(t) (r e IR) starting at the same point. Now, the group Je(t) (f e IR)
décomposes as a rotation of frequency cô  on each of the two-dimensional
subspaces E*, from which one sees easily that the dimension of the linear
closure of a semiorbit of JB(t) (t e R) is twice the number of frequencies
involved. In particular, the linear closure of the orbit being finite-dimen-
sional implies that only a finite number of frequencies are involved, and
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since all frequencies have finite multiplicity (because A has compact
résolvent), this implies that only a finite number of proper modes are
involved. •

3.2. A C 1 linearization theorem

In this paragraph we give a Cl linearization theorem which is applicable to
certain stationary states of semilinear damped wave équations. In the finite-
dimensional case, our result is included essentially in that of Hartman (1960)
[6, Theorem (I)], which instead of our condition (3.2) requires only that
L b e a contraction. For the proofs of the following statements, the reader is
referred to [9],

THEOREM 3.4 : Let U be an open subset of a Banach space X, and T a
Cl map U -• X with a fixed point p. Let L be the Fréchet derivative of T at p,
i.e. L := DT(p). Assume that L has a bounded inverse, and that the following
properties are satisfied for some r\ > 0 :

DT(p+x)-L = o(\\xp), as x^O , (3.1)

HL"1!! | | L | | 1 + " < 1 . (3.2)

Then, there exist V, a neighbourhood of p in U, with T(V)<^V, and
R : V -> X, a C1 diffeomorphism onto its image, with R{p) = 0, DR(p) = I,
and

DR(p+x)-I = o(\\xp)9 as x ^ O , (3.3)

such that the following équation holds :

RT=LR. (3.4)

Such a map is unique in the following sense : ifV' and Rf satisfy also the
preceeding properties, then R and Rf coincide in any bail centered at p and
contained in V Pi V'.

Remarks :

(i) Condition (3.2) implies that L is a contraction.
(ii) The exponent r\ is by no means restricted to be less than 1 ; increasing

Ti makes condition (3.2) less restrictive, but then condition (3.1) requires
T to be closer to linear.

COROLLARY 3.5 : Let Xbe a Banach space, and T{t) (t e U) a group of
diffeomorphisms of X with a fixed point p. Let L(t) (t e R) be the group of
bounded linear operators on X given by L(t) := D(T(t))(p). Assume that,
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for some T e IR and some t\ > 0, T*.= F ( T ) and L -.- L(r) satisfy properties
(3.1) and (3.2). Then there exist Vs neighbourhood of p, and R ; V -+X, a
C1 diffeomorphism onto its image, with R(p) = 0, DR(p) - / , and (3.3),
such that, for every t e i , the équation

RT(t) = L(t)R (3.5)

holds in some bail centered atp and contained in V. Such a bail can be chosen
independently of t when t varies over any interval of the form [t0, + oo) with
f0 finite.

COROLLARY 3.6 : Let us consider problem (1.5), (1.6) with the hypotheses
stated in % 1. Let u* be a stationary statet and let Xj be the lowest eigenvalue of
the operator A — DF («*). /ƒ 4 e2 kx <: 1, then, near this stationary state, the
flow is Cx-conjugate to its linearization.

3.3, Exhibiting non-existence

Our example of non-existence belongs to problem (1.1), (1.2)^, (1.3),
which we consider in its normalized homogeneous form, i.e. with
q = 0, cr0 = o-L = 0, 2 a = 1, p = 1, L = ir. The function ƒ will have the
form

ƒ ( * , « ) = fo(u) + g(x,u), (3.6)

where / 0 will be a fixed function independent of xt and the perturbation g
will be variable.

The fixed function f0 is assumed to satisfy the genera! hypotheses
(ƒ1 ),(ƒ*), which in this case reduce to requiring it to be of class
C1+T1 and to satisfy lim sup ( / O ( W ) / M ) < O . Besides this, we assume that

f0 satisfies also the following conditions :

/0(0) = / 0 ( l ) = 0 ; 1 is the only positive zero of ƒ 0 , (3.7)

0 <ƒ£(<))< 1 , (3.8)

/ Ó C I ) - - - ^ . (3.9)
4 E2

Since ƒ0 is independent of x, and the boundary conditions are of
Neumann type, the dynamical system on E = H1 x L2 corresponding to
g = 0 has a two-dimensional invariant linear subspace consisting of the
states which are spatially homogeneous (i.e. constant with respect to
x) ; on this subspace, (1.1) reduces to a second order ordinary differential
équation. In the following, Ö and ï dénote the points of this subspace given
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respectively by u = 0, ù = 0 and u - 1, ü = 0. Conditions (3.7)-(3.9) imply
the following facts ;

Both Ö and ï are hyperbolic stationary states . (3.10)

Ö has a one-dimensional unstable manifold ;

ï is asymptotically stable . (3.11)

There is an heteroclinic orbit from Ö to T . (3.12)

In f act, the heteroclinic orbit which connects 0 to ï lies on the subspace of
spatially homogeneous states.

We now introducé a perturbation g which will break this special situation
occurring for g = 0. This perturbation g will be allowed to vary within a bail
in a certain Banach space *§ of functions (0, TT) X R -> IR supported in
(0, TT) x f, where / = (a, b) is a fixed open interval with 0 < a <c b ^ 1, and
for technical reasons a is restricted to be less than a certain quantity
a0 >̂ 0 associated with the heteroclinic orbit of the case g — 0. The Banach
space ^ consists of the linear space

^ := {g: (0, ir) x IR -> R \g satisfies (ƒ1), and g (x, u) = 0, Vw i f} (3.13)

provided with the norm

Ü' T T \ 1/2

| | / x (* , . ) ly | ^ + , ^ • (3-14)
o /

In the following, the bail of radius ô within this Banach space will be
denoted by ^8 . In order to indicate its dependence with respect to g, in the
future the flow on E = Em x E corresponding to the function ƒ given by
(3.6) will be denoted by Tg(t) (r 6 IR). One can verify that, for every
compact interval [t0, ti] c R, the mapping E x ^ 3 (U, g) ~> Tg(. )e
C([h> h]> E) is of class C\^. Clearly, for every g € ^ ? the corresponding
flow still satisfies (3.10) and (3.11). In f act, these perturbed flows remain
unchanged within the open set

3.= {U= (u,v)eE\u(x)$J, Vx e [0, TT]} .

Let us look at the flow in the neighbourhood of the stationary state
ï , where we know that it does not depend on g. Condition (3.9) means that
the linearization at Î satisfies the hypothesis 4 e2 kx > 1 of both Theorem 3.1
and Corollary 3.6. By applying those results, we can eonehide that there
exists a neighbourhood V of I , which by the stability of ï can be assumed
positively invariant, and a countable family of finite-dimensional subman-
ifolds of class C \ which we shall dénote by MK (K varying among the finite
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subsets of N \ {0} ), such that if a positive semiorbit tending to ï is contained
in a finite-dimensional manifold of class C1, then lts restriction to
V must be contained in one of the mamfolds MK

Let us now consider the only orbit that départs from Ö towards the
positive u direction Before leavmg 3, this orbit wül coïncide with that
correspondmg to g = 0 Let us fix an arbitrary pomt U of this common
initial arc Since T0(t) U -~+ ï as t -> + oo, the continuity with respect to g
ensures that, if 8 is small enough, then the following property wül hold

There exists t1 >> 0 such that, for every

ge$b, T9(tl)UeV (315)

In particular, this implies that, for g e # 8 , Tg(t) -> Î as t -+ + oo, i e the
correspondmg flow still satisfies (3 12)

Let F dénote the C1 mappmg

r ^sj^r^l/eVcE, (3 16)

where tx is the quantity appeanng m (3 15) We claim that, for most
g e ^ 5 , T(g) = Tg{ti) U does not belong to any of the countably many
mamfolds MK In f act, we can state the following result

T H E O R E M 3 7 Consider problem (1 1), (1 2)N, (1 3), with q = 0,
a0 = crL — 0, and normahzed to 2 a = 1, p = 1, L = ir Let f have the form
(3 6), with f0 fixed bamfying the conditions mentioned above, and g varying
in the Banach space <$ defined above There exists fl 8 > 0 and a residual
subset M of&b such that ifg e M then there is no finite-dimensional manifold
of class Cl containing the global attractor

The proof of Theorem 3 7 is based upon the following lemma, for whose
rather techmcal proof the reader is referred to [9]

LEMMA 3 8 Under the hypotheses of Theorem 3 7, there exists a
8 r> 0 and a dense subset 3)^ of ^ 8 such that if g E *̂ Ô then Range
DY{g) is infimte-dimensional

Proof of Theorem 3 7 It suffices to venfy that, for every fimte subset
K of Kl\{0} , there is an open and dense subset MK of # 8 such that if
g e MK then F (g ) <£ MK From this the theorem wül foilow by a category
argument The openness of 3kK is an immédiate conséquence of the
contmuous dependence of solutions with respect to g The denseness of
MK foliows from Lemma 3 8 Indeed, if $K were not dense, there would be
some open set % c ^ 5 such that T(g) e MK for all g e °U But this would
ïmpïy that, for every g e %, Range DT(g) a T{MK\^J which contradicts
Lemma 3 8 since T(MK)r^ is fmite-dimensional •
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