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INERTIAL MANIFOLDS
OF DAMPED SEMILINEAR WAVE EQUATIONS (*)

by Xavier MORA (%), Joan SOLA-MORALES (?)

In the present communication we give an account of the results obtained
by the authors in [8], [9], and [10], with some slight improvements in what
refers to [9]. We are concerned with the qualitative dynamics of a one-
dimensional semilinear damped wave equation and its dependence with
respect to the coefficient of the second-order time derivative, hereafter
denoted by e, this parameter being considered to vary right up to the
limiting value € = 0, in which case the equation turns into a semilinear
diffusion one.

Our work has been motivated mostly by the question whether, for e
small, the dynamics of the damped wave equation is or not equivalent in
some reasonable sense to that of the limiting diffusion equation. A strong
evidence in this direction is the remarkable fact established by Henry (1985)
[7] and Angenent (1986) [1] that the limiting diffusion equation is
automatically Morse-Smale as soon as the stationary states are all hyper-
bolic. As it is well-known, this would immediately imply equivalence if our
system had been finite-dimensional and we had been dealing with a regular
perturbation problem instead of a singular one.

As it has become clear in the recent years, when dealing with infinite-
dimensional systems like the diffusion equation considered here, the notion
of equivalence based on a comparison of all orbits is easily too severe, so
that it becomes convenient to restrict the attention to some smaller, usually
finite-dimensional, invariant set which still contains the essential elements
of the dynamics. The smallest such invariant set is the so-called global
attractor. Of course, a very natural choice consists in asking oneself about
cquivalence restricted to the global attractor itself. This is indeed the
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490 X. MORA, J. SOLA MORALES

approach of Hale, Magalhaes, Oliva (1984) [4], which in particular contains
a Morse-Smale theory adapted to this situation. In fact, very recently, the
particular singular perturbation problem described above has begun to be
studied from this point of view by Hale, Raugel (1988) [5].

That problem is here studied from a different point of view, the difference
lying in that instead of restricting our attention to the global attractor we
consider a larger invariant set, namely a finite-dimensional (local) invariant
manifold of class C! containing the global attractor, i.e. what in the current
terminology is called an inertial manifold (of class C?).

In this connection we show that there exist an integer » and a real number
€ = 0 such that, for every e belonging to the interval [0, ), the global
attractor of the corresponding dynamical system is contained in an invariant
manifold of class C! and dimension n, and for ¢ — 0 both this manifold and
the vector field on it converge in the C! topology towards the ones
corresponding to ¢ = 0. By combining this result with that of Henry and
Angenent mentioned above, and applying the standard theory of Morse-
Smale, we can conclude that if the stationary states are all hyperbolic, then,
for € small enough, the dynamical system generated by the damped wave
equation and the one generated by the diffusion equation are equivalent
restricted to the inertial manifolds above. These results are the object of our
paper [10], whose contents are abridged in § 2 below.

Of course, the existence of an inertial manifold is not so general a fact as
the existence of a compact global attractor. In particular, in order to obtain
the manifolds above we need to restrict ourselves to the one-dimensional
casc as well as to values of e sufficiently small. In fact, we can give an
example where, for large values of €, the global attractor is not contained in
any finite-dimensional manifold of class C! (whether invariant or not), and
in fact this situation is generic with respect to a special class of perturbations.
This example is described in § 3. The result given here is slightly improved
with respect to [9], where we observed only that the global attractor was not
contained in any finite-dimensional manifold of class C?! invariant by the
flow.

Some independent results about this problem have been obtained
recently by Chow, Lu (1988) [3], whose paper contains a general study of
the existence of smooth invariant manifolds containing the global attractor
for a class of problems which in particular includes the one considered here.
Concerning the limiting behaviour of such manifolds in the singular limit
e — 0, they obtain a result of convergence essentially in the C° topology.
Another related work is that of Hale, Raugel (1988) [S], who centre their
attention directly on the global attractor and show that for £ — O this set
converges in the Hausdorff topology towards the one corresponding to
e = 0. Although this property is weaker than the one obtained here, their
result applies to the more general case of several space variables. Also, a
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DAMPED SEMILINEAR WAVE EQUATIONS 491

different result on the same problem has been announced recently by Babin,
Vishik (1987) [2].

1. THE EQUATIONS AND SOME PRELIMINARIES

Our results apply specifically to the following problem, where u is a
function of x € (0, L) and t € R with values in R :

e U, +2au, = Buy, + fx,u)+qx) (1.1)
”‘x=o=PO’ “IX:L=PL 1.2)p
ul,_o=uo>» e, |, _o = €V (1.3)

or the analogous one where (1.2), is replaced by
ux|x=o:GO7 ”x|x=L:(’L~ (1.2)y

Henceforth, the boundary conditions (1.2),, or (1.2), will be referred to as
(1.2), where B stands for either D or N. In the preceeding equations,
¢ is a real parameter which we consider to vary right up to the value
e =0, a and B are fixed positive real parameters, f is a function
0,L)x R > R, g is a fixed function of x € (0, L), py, p, 09, o, are real
numbers, and the initial data u; and v, are given functions of x € (0, L ). The
function f is assumed to satisfy the following conditions :

(f1) f(.,u) belongs to the Sobolev space H'(0, L) for every u € R, and
in the case B = D f satisfies the condition f(0,p) = f(L,p.) =0}
f(x,. isofclass C** " foreveryx € (0, L), f,(x, . )isofclass C' * "for
almost every x € (0, L), and for every bounded open intervalJ = R, the
quantities

- 2
suI’JL) [ fx,. )|1“C2+n ) L | felx, . )|]||C1+ndx

xe (0
are both finite.

(f*) c:=limsup sup

2 2 :
f(x,u)< {B’n’ /L, if B=D (1.4)
[u] 00 xe(0,L) u

0, if B=N.
Concerning the function g, we assume simply that it belongs to L,(0, L).

Remark : The case B = D with f(0, pg) or f(L, p.) not equal to zero can
be reduced to the preceeding one by letting p : (0, L) > R be any smooth
function satisfying p(0) = py, and p(L) = p,, and changing f(x,u) and
q(x) respectively by f(x,u)— f(x,p(x)) and g(x) + f(x, p(x)).

Let u* be the solution in H*(0, L) of the equation Bu,, + g(x) = 0 with
the non-homogeneous boundary conditions (1.2)5. By switching over to the
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492 X MORA, J SOLA MORALES

new variable #:=u — u*®, the problem reduces to the homogeneous case
qg=0,py=p,=0,00=0, =0 ;therole of fis now played by the function
fx, @)= f(x,u*(x)+ @), which can be verified to inherit properties
(f1) and (f*) from f. Furthermore, by suitably rescaling time and space
and dividing equation (1.1) by a constant, the problem can be normalized to
2a =1, B =1, L =« Henceforth, problem (1.1), (1.2), (1.3) will always
be considered in this particular normalized homogencous form.

In the following this problem will be considered as a second order
evolution problem on the Hilbert space E = L, := L,(0, L), namely

e2it + i+ Au = Fu (1.5)
u(0) = uy, ei(0) = ey (1.6)
where A and F are the operators given by
Au = —uy, 1.7)
Fu = f(.,u(.)) (1.8)

with domains E! and EY? respectively equal to H% and H}. Here
HE (k =1,2) denote the closures in the Sobolev spaces H*:= H*(0, L) of
the set {u#: (0,L)—> R|ue C®([0,L]) and satisfies the boundary con-
ditions (1.2)z}.

In general, our results apply to an abstract evolution problem of the form
(1.5), (1.6) where u takes values in a general Hilbert space E, A is a self-
adjoint operator on E having numerical range bounded from below and
compact resolvent, and F is a nonlinear operator with the properties of
belonging to C};;"(EY2, EY?) (which in our case follows from condition
(f1)), representing the gradient of some functional on E'?, and satisfying
an abstract version of condition (f*) (see [10] for a more precise
description). Here and in the following, E® denote the usual power spaces
associated with the operator A. Hereafter, the greatest lower bound of the
numerical range of A will be denoted by \;.

The properties of — A being the generator of an analytic semigroup on
E and F belonging to C};;"(EY2, E'?) determine that problem (1.5), (1.6)
with &€ = 0O fits in the standard theory of semilinear evolution equations of
parabolic type, which ensures that it generates a semidynamical system of
class C'1*" on EY2

As wusual, for &30 we shall take as state variable the pair
(u, )= (u.v)=U, whose values will be considered in the space
E2x E=[E. In terms of this variable, problem (1.5), (1.6) takes the first-
order form

U+A. U=F. U (1.9)
U(0) = U, (1.10)
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DAMPED SEMILINEAR WAVE EQUATIONS 493
where A, and F, denote the operators on EY? x E given by
A (u,v) = (—v, e 2(Au +v)) (1.11)
F.(u,v)= (0,e"2 Fu) (1.12)

with domains respectively equal to E! x EY? and E¥? x E. It is a standard
fact that — A, is the generator of a group on EY? x E. On the other hand,
the properties of F imply that F, maps EY? x E to itself and this mapping
belongs to C!*"(EY x E, E? x E). With this, the problem fits in the
standard theory of semilinear evolution equations of hyperbolic type, which
ensures that it generates a dynamical system of class C'*" on EY? x E.

By using the standard Lyapunov functional of problem (1.1), (1.2)g,
(1.3), and certain a priori estimates coming from condition (f*), one
obtains that for & =0 the semidynamical system is global, and for
e # 0 the dynamical system is global both in positive and negative time.

It is a well-known fact that, both for ¢ = 0 and for & # 0, the preceeding
problem has a compact global attractor. In the following this set will be
denoted by &7,. We recall that &7, consists of all initial states for which the
solution is defined and bounded on (- o0, 0].

In order to deal with second order evolution problems of the form (1.5),
(1.6) with € % 0, we take the inner product on E = EY? x E in a particular
way specially adapted to the linear part of the equation. This inner product,
which depends on €, is the one associated with the norm given by

1UII% =

1 12
[(4-5) "
4 g2

(4= (n-5) 1)
(1.13)

In particular, this inner product has the virtue of making the numerical
range of A, to be contained in a vertical strip as narrow as possible. This is
expressed by the following result, whose proof will be found in [9].

2

2
+Hz—lgu+ev , if 42N >1,

2 1
+ — U + €v
HZS

2
‘,if4§xl<1.

THEOREM 1.1 : For 4 €? \; > 1, the numerical range of A, is contained in

the vertical line Re z = i For 4 €*\, <1, it is contained in the strip
€
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494 X. MORA, J. SOLA MORALES

COROLLARY 1.2 : For every ¢ = 0, — A\, is the generator of a group of the
form

e A — e /N (1) (teR), (1.14)

where, for 4 e* Ny > 1, J,(t) (t € R) is a group of unitary operators, and for
4 €2 Ny < 1, it satisfies the bound

1 /1
HJE([)”L(E,E)SCXP(E Zs—i—')\ll”) , VieR. (1.15)

2. EXISTENCE AND CONVERGENCE IN THE PARABOLIC LIMIT

2.1. The setting and main results

By following the practice which is common in similar cases, in order to
look for attracting invariant manifolds of (1.5), we shall decompose the state
variable into fast and slow components, and we shall consider (1.5) as a
(finite) perturbation of a linear system where the fast and slow components
are mutually decoupled. The desired attracting invariant manifolds will then
be sought for as graphs of mappings giving the fast components as a function
of the slow ones. In Mora (1987) [8], this was done for & = 0 by working on
the first-order system (1.9) as a perturbation of the one corresponding to
F =0, and decomposing the variable according to the spectrum of
A,. Here, we adopt a somewhat different approach, the differences lying
both in the way of decomposing the variable and of choosing the
«unperturbed » linear system. In particular, here we consider U as
decomposed into u and i, which in its turn are decomposed according to the
spectrum of A ; this has the advantage that the decomposition does not
depend on .

Let A, (k=1,2,...) denote the eigenvalues of A arranged in a non-
decreasing sequence. Let us now take a positive integer n such that
N, <\,,1, and consider the orthogonal decomposition invariant by
A, E=E,® E,, where E; and E, denote the closed linear subspaces of
E generated respectively by the first n eigenfunctions and the rest of them.
In the following, the orthogonal projections of E onto E; (i =1, 2) will be

denoted as P,, and the corresponding parts of A will be denoted as

A,. Parallel to this decomposition of E, the spaces E® (a:l,l)

2
decompose also orthogonally as E*= EY @ Ej, where E} = P, E*. The

spaces E;, Ei?, E} consist all in the same n-dimensional vector space
provided with different but equivalent inner products. According to this
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DAMPED SEMILINEAR WAVE EQUATIONS 495

fact, in the future the spaces EJ? and E] will be distinguished of
E, only when the specific inner product plays a significant role.

Let us now introduce the preceeding decomposition in equation (1.5).
Henceforth, the components of u in E; and E, will be denoted respectively
as u; and u,. By applying the projections P, and P,, equation (1.5)
transforms itself into a system for u; and u,, which we shall write as follows :

e2ily + 1y =P, F(u;+uy)— A uy (2.1)
ezi't2+L't2+A2u2=P2F(u1+u2) (2.2)

where the term A, u, has been moved to the right-hand side because in fact
we consider this system as a perturbation of the one which is obtained when
its right-hand sides are set to zero. For € = 0, the state variable is thus
decomposed into the two components #; and u,, which are to be considered
as taking values respectively in Ei? and E}2. For ¢ # 0, the state variable
will be considered as decomposed into the four components u;, u,,
iy, it,, with values respectively in E}?, E}? E,, E,.

It is known that if the gap between X\, . ; and max (\,, 0) is large enough,
then the global attractor of the parabolic system (1.5) (¢ = 0) is contained
in a local invariant manifold of class C' and dimension n, M,, which is given
by a relation of the type

uy = ho(u;) (2.3)

with h, belonging to CY(W,, E}?) and in fact to C!}(W,, E3), where
W, is a certain bounded domain in E;. Here, this result will be accompanied
by an extension to small non-zero values of . Specifically, it will be shown
that, under the same gap condition there exists an & > 0 such that, for
e € (0,%), the global attractor of the hyperbolic system (1.5) is also
contained in a local invariant manifold of class C! and dimension
n, M., which is described by a set of relations giving u,, #;, and
i, as functions of u; :

uy = h,(u;) (2.4)
uy = k.(uy) (2.5)
=, (1) (2.6)

where h,, k., and £, will belong respectively to C(W,, E}?), CY(W,, E,),
and C'(W,, E,), and in fact A, belongs to C*(W,, E3).
Although possibly these manifolds M, are normally hyperbolic, we shall

not enter into this question, which on the other hand does not play any role
in the development below.
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496 X MORA, J SOLA MORALES

Our main result consists 1n showing that, as € —» 0, both the mamfold
M, and the vector field on 1t converge mn the C' topology towards their
analogous for ¢ =0 Certainly, according to the preceeding paragraph,
M, (e #0) are submanifolds of E? x E, while M, 1s a submanifold of
E' In order that the problem of comparing M, (¢ #0) with M, be
correctly posed, this last manifold 1s considered as embedded in EY2 x E by
taking u; and u, as determmed by equations (2 1), (22) (with & = 0)
together with (2 3)

uy =Py Fuy +ho(uy)) — Ay = ko(uy) 27
Uy = Py F(uy + ho(uy)) — Ay ho(wy) = go(ul) (28)

Notice that (2 8) has indeed a meaning since h, takes values in E; In fact,
from the properties of 4, stated above, it 1s obvious that k; and
£, belong respectively to C'(W;, E;) and CY(W;, E;) On the other hand,
one should notice also that relations (2 5) and (2 7), besides bemg part of
the specification of M., they give also the evolution equation for the flow on
M, 1In other words, k. 1s the projection on E; of the vector field on
M, Thus, concerning the vector field on M,, our objective 1s to prove that,
as & — 0, k. converges towards k, mn the space CY(W,, E;)
Our main result 1s contained in the following

THEOREM 21 Let us consider problem (15), (16) with A and F
sanisfying the hypotheses stated in § 1 There exists a constant ¥ such that .f
N\, and \, | satisfy the conditions

Nop—\, =47 29)
) =2f (2 10)

then, there exist € >0 and a bounded domawn W, in E; such that

(a) For € =0, the global attractor £ 1s contaned in My, an inflowing
local invanant submarifold of E*? of class C' and dimension n, which has the
from (2 3) with ho € Cl(Wl, E%)

(b) For every ee€ (0,%), the global attractor &/, s contained n
M., an inflowing local invanant submanifold of E*? x E of class C* and
dimension n, which has the form (24)-(26), with h,e CY(W,, E}),
k., e CY(Wy, E,), and £, e CY(W,, E,) N CYW,, E})

(c) Let ky and ¢, be defined by (27) and (28) Then, as & —0,
h, converges towards hy in the space C'(Wy, E}), k. converges towards

ko in the space CY(Wy, E;), and £, converges towards {, in both spaces
CY(Wy, E;) and C%(W,, E})
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DAMPED SEMILINEAR WAVE EQUATIONS 497

(d) For any ¢ € [0, €), the solutions lying in M, are twice continuously
differentiable with respect to time, with it given by a relation of the type

i=m.(u), (2.11)

where m, < CO(W,, E). As ¢ -0, m, converges towards my in the space
C%W,, E).

In particular this result implies that

COROLLARY 2.2: Under the hypotheses of Theorem 2.1, then, for
e € [0, €), the solutions lying in the global attractor &, have u, u, and

it bounded independently of € respectively in the spaces E!, E!, and
E.

Remark : The constant { depends on the bounds on F and DF in a certain
ball containing the global attractor.

In the application to problem (1.1), (1.2)g, (1.3), conditions (2.9), (2.10)
reduce to

2n+1=4f, if B=D
2n—-1=4f, if B=N

which will allways be satisfied if » is taken large enough. Since it is known
(Henry (1985) [7], Angenent (1986) [1]) that for € = 0 this system is Morse-
Smale wheniever the stationary states are all of them hyperbolic, the
standard theory of Morse-Smale allows to conclude that

COROLLARY 2.3: Let us consider problem (1.1), (1.2)p, (1.3) with f
satisfying the hypotheses stated in 8 1, and assume that the stationary states
are all of them hyperbolic. Then, for ¢ small enough, the flow on
M, is equivalent to that on M. In particular, the flow on & is equivalent to
that on .

2.2. Idea of the proof

As it is usual in similar circumstances, our proof begins by modifying the
equation far from the attractor so that we can deal with global invariant
manifolds instead of local ones (i.e. the domain W, of k., k., {. equals the
whole of E;). For every ¢, the corresponding manifold M, should contain all
(mild) solutions which stay defined and bounded as ¢ - — co0. In order to
obtain such manifolds we use the classical method of Lyapunov and Perron
in the special form as it appears for instance in Vanderbauwhede, Van Gils
(1987) [11]. The main idea consists in looking for M, as consisting not only
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498 X MORA, J SOLA MORALES

of all solutions which stay bounded as ¢ - — oo, but more generally all
solutions which satisfy an exponential growth condition of the form

|]u(t)||h,.2=0(e“”‘) as t > —oC (2 12)

where p will be a positive real number belonging to the interval
(\;s Ny, 1) The admitting of these extra solutions will result in the fact of
the set M, being really a differentiable mamfold

The solutions which satisfy the growth condition (2 12) will be obtained as
fixed points of certain mappings u° — u which result of solving a pair of non-
homogeneous linear equations of the form

e2u; + uy =G, u% = f, (2 13)
52 u2+u2+A2 U, = Gz(u0)= f2 (2 14)

with the additional condition that u = u; + u, satisfies (2 12) It turns out
that, for w € (0, \,,, ), and & small enough, the set of solutions of (2 13),
(2 14) which satisfy (2 12) 1s parametrized by u;(0) € E; Thus, by adding
an mtial condition of the form u,(0) = x, we obtain a different mapping
u’— u for every x € E; By applying a surtable version of the parametrized
contraction theorem, we obtam that, under conditions (2 9) and (2 10)
together with

max (0, N, +28)<p<n,,;—2F, (2 15)

each of these mappings has a umque fixed point The totality of these fixed
points will give us the set M, we are looking for, which m fact will be a
manifold parametrized by x € E; Finally, the behaviour of M, as
e - 0 1s also taken care of by our spectfic version of the parametrized
contraction theorem on the basis of a previous detailled study of the
behaviour as ¢ -0 of the solutions of the non-homogeneous linear
equations (2 13), (2 14) with the additional conditions mentioned above

3. NON-EXISTENCE FAR FROM THE PARABOLIC LIMIT

In this Section we provide an example where for large values of ¢ the
global attractor 1s not contained 1n any finite-dimensional manifold of class
C! (whether invanant or not), and in fact this situation 1s generic with
respect to a special class of perturbations

The reason why large values of € make difficult that the global attractor
be contamned n a finite-dimensional manifold of class C! 1s mamly linear
For large values of &, the linear part of the equation at a stationary point
easily has all the eigenvalues on the same vertical line of the complex plane
Under these conditions, one can show that there exists a countable famuly of
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DAMPED SEMILINEAR WAVE EQUATIONS 499

finite-dimensional manifolds of class C' through that pomnt such that if a
positive sermorbit tending to that point 1s contamned 1n some finite-
dimensional mamfold of class C! then 1t 1s contained also 1n one of that
countable family In §3 1 this crucial fact i1s established for the hnear
problem By using a suitable C! hnearization theorem, which we have
developed specifically to apply to this problem and which we give in § 3 2,
we can then translate this situation to the neighbourhood of a stationary
point of a nonlinear problem

Finally, in § 33 we consider an example where the global attractor
contamns an heteroclinic orbit from & to ¢, with ¢ being a stationary state
with a linearization of the type described above, and we show that the
function f can be perturbed 1n such a way that the connecting orbit avoids
each of the countably many fimte-dimensional manifolds mentioned above
Therefore, one can conclude that the global attractor 1s not contained 1n any
finite-dimensional mamfold of class C! In fact, in our construction this
situation 1s generic with respect to the considered class of perturbations of
the function f

3.1. The linear case

In this paragraph we deal with a second order linear evolution problem of
the form (1 5), (1 6) with F = 0, or equivalently the first order evolution
problem (1 9), (1 10) with F, = 0 In the following, e, and N\, (k = 1,2, )
denote respectively a complete orthonormal system of eigenfunctions of
A and the corresponding sequence of eigenvalues, which sequence 1s
assumed to be non-decreasing Finally, E; will denote the one-dimensional
space generated by e, We have the orthogonal decomposition invarnant by

e o]
AE = @ E, Correspondingly, the space F = E? x E has the orthogonal
k=1
[+ ]
decomposition 1nvariant by A, E = @ [E;, where [E, denotes the two-

k=1
dimensional subspace of E given by E, = E; x E

Let us now assume that 4 e2\; > 1, and consider e Mt decomposed
according to the formula (1 14) On each of the two-dimensional invariant
subspaces [F,, the effect of the group J, (¢) consists m a rotation of frequency

wp = = [N — L From this fact 1t follows that, for every U € [, the
k c k 4 82

function R3¢t — J.(¢) U € [ 1s almost periodic
The main result of this paragraph 1s the following

THEOREM 31 Assume that A s self-adjoint with numerical range
bounded from below and compact resolvent, and also that 4 e>\; > 1 Ifa
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500 X. MORA, J. SOLA MORALES

.. L -A . . . o .
positive semiorbit of e «f (t € R) is contained in a finite-dimensional
submanifold of t differentiable at the origin, then it is contained also in a

linear subspace of the form Ex= @ [E, where K is a finite subset of

keK
N\ {0} .

The proof of this theorem reduces to the application of the two following
lemmas.

LEMMA 3.2 : Under the hypotheses of Theorem 3.1, if a positive semiorbit
of e ! (t € R) is contained in a submanifold M of [ differentiable at the
origin, then it is contained also in the tangent subspace of M at the origin.

Proof: Let U be a point of the semiorbit which is assumed to be contained
in M. Let F be the tangent subspace of M at the origin. Finally, let P denote
the orthogonal projection of F onto F, and Q :=1 — P. The fact that F is
tangent to M at the origin means that

oW =o(|PW]|), as Wo0onM.

In particular, this implies that
|ge ™ Ul =o(|Pe ™ U|), a 1o+,
or, equivalently by (1.14),
1Q/. () Ul =o(|PI()U]), as t—>+00.

Using the fact that J,(¢) U is an almost periodic function of ¢, one can then
derive that QU =0, i.e. Ue F. N

LEMMA 3.3 : Under the hypotheses of Theorem 3.1, if a positive semiorbit
of e At (t € R) is contained in a finite-dimensional linear subspace of

E, then it is contained also in one of the particular from Ex = @ [E; where K
ke K

is a finite subset of N\ {0} .

Proof: We first notice that the linear closure of a semiorbit of
e M (t € R) coincides with the linear closure of the semiorbit of
J.(t) (r € R) starting at the same point. Now, the group J.(¢) (t € R)
decomposes as a rotation of frequency w; on each of the two-dimensional
subspaces [E;, from which one sees easily that the dimension of the linear
closure of a semiorbit of J.(¢) (¢ € R) is twice the number of frequencies
involved. In particular, the linear closure of the orbit being finite-dimen-
sional implies that only a finite number of frequencies are involved, and
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since all frequencies have finite multiplicity (because A has compact
resolvent), this implies that only a finite number of proper modes are
involved. W

3.2. A C! linearization theorem

In this paragraph we give a C ! linearization theorem which is applicable to
certain stationary states of semilinear damped wave equations. In the finite-
dimensional case, our result is included essentially in that of Hartman (1960)
[6, Theorem (I)], which instead of our condition (3.2) requires only that
L be a contraction. For the proofs of the following statements, the reader is
referred to [9].

THEOREM 3.4 : Let U be an open subset of a Banach space X, and T a
C!'map U — X with a fixed point p. Let L be the Fréchet derivative of T at p,
i.e. L:= DT (p). Assume that L has a bounded inverse, and that the following
properties are satisfied for some =0 :

DT(p+x)—L=o(||x|™, as x-0, 3.1
IL=H Lt <1 (3.2)
Then, there exist V, a neighbourhood of p in U, with T(V)cV, and

R:V - X, a Cldiffeomorphism onto its image, with R(p) = 0, DR(p) =1,
and

DR(p+x)—I=o(||x||"), as x—-0, (3.3)
such that the following equation holds :
RT =LR. (3.4)

Such a map is unique in the following sense : if V' and R’ satisfy also the
preceeding properties, then R and R’ coincide in any ball centered at p and
contained in V NV'.

Remarks :

(i) Condition (3.2) implies that L is a contraction.

(ii) The exponent m is by no means restricted to be less than 1 ; increasing
v makes condition (3.2) less restrictive, but then condition (3.1) requires
T to be closer to linear.

COROLLARY 3.5 : Let X be a Banach space, and T(t) (t € R) a group of
diffeomorphisms of X with a fixed point p. Let L(t) (t € R) be the group of
bounded linear operators on X given by L(t) = D(T(¢t))(p). Assume that,
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for some v € R and some n =0, T:= T(7) and L := L(7) satisfy properties
(3.1) and (3.2). Then there exist V, neighbourhood of p, and R:V - X, a
C! diffeomorphism onto its image, with R(p) =0, DR(p) = I, and (3.3),
such that, for every t € R, the equation

RT(t) = L(t)R (3.5)

holds in some ball centered at p and contained in V. Such a ball can be chosen
independently of t when t varies over any interval of the form [t,, + 00 ) with
t, finite.

COROLLARY 3.6 : Let us consider problem (1.5), (1.6) with the hypotheses
stated in § 1. Let u* be a stationary state, and let \| be the lowest eigenvalue of
the operator A — DF (u*). If 4 €2\, < 1, then, near this stationary state, the
flow is Cl-conjugate to its linearization.

3.3. Exhibiting non-existence

Our example of non-existence belongs to problem (1.1), (1.2)y, (1.3),
which we consider in its normalized homogeneous form, i.e. with
q=0,0p=0,=0,2a=1, B =1, L =w. The function f will have the
form

fG,u) = folu) +9(x, u), (3.6)

where f; will be a fixed function independent of x, and the perturbation g
will be variable.

The fixed function f; is assumed to satisfy the general hypotheses
(f1),(f*), which in this case reduce to requiring it to be of class
C!*" and to satisfy lim sup (f,(«)/u) <0. Besides this, we assume that

|u| — C

fo satisfies also the following conditions :

fo(0) = fo(1)=0; 1 is the only positive zero of f , (3.7

0< f£3(0)<1, (3.8)

) 1
fo(1) < - ypeh (3.9)

Since f, is independent of x, and the boundary conditions are of
Neumann type, the dynamical system on E = H!x L, corresponding to
g = 0 has a two-dimensional invariant linear subspace consisting of the
states which are spatially homogeneous (i.e. constant with respect to
x) ; on this subspace, (1.1) reduces to a second order ordinary differential

equation. In the following, 0 and 1 denote the points of this subspace given
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respectively by u = 0, 4 = 0 and u = 1, & = 0. Conditions (3.7)-(3.9) imply
the following facts :

Both 0 and 1 are hyperbolic stationary states . (3.10)
0 has a one-dimensional unstable manifold ;

1 is asymptotically stable . (3.11)
There is an heteroclinic orbit from 0to 1. (3.12)

In fact, the heteroclinic orbit which connects 0 to 1 lies on the subspace of
spatially homogeneous states.

We now introduce a perturbation g which will break this special situation
occurring for g = 0. This perturbation g will be allowed to vary within a ball
in a certain Banach space ¢ of functions (0, 7) x R - R supported in
(0, ™) x J, where J = (a, b) is a fixed open interval with0 <a < b < 1, and
for technical reasons a is restricted to be less than a certain quantity
ag > 0 associated with the heteroclinic orbit of the case g = 0. The Banach
space ¥ consists of the linear space

%= {g: (0,7) x R - R|g satisfies (f1), and g (x,u) =0, Vu ¢ J} (3.13)

provided with the norm

L 172
by s0p 900 lllaan ( NS )I,IIZ@MdX>  (G19)
x€ (0, ) 0
In the following, the ball of radius 8 within this Banach space will be
denoted by %;. In order to indicate its dependence with respect to g, in the
future the flow on E = E? x E corresponding to the function f given by
(3.6) will be denoted by T,(t) (t € R). One can verify that, for every
compact interval [, #;]< R, the mapping Ex %3 (U,9) - T,(.)e
C ([to 111, E) is of class Ci™. Clearly, for every g € ¢, the corresponding

flow still satisfies (3.10) and (3.11). In fact, these perturbed flows remain
unchanged within the open set

J={U= (u,v)eE|u(x)¢J, Vxe [0,7]} .

Let us look at the flow in the neighbourhood of the stationary state
1, where we know that it does not depend on g. Condition (3.9) means that
the linearization at T satisfies the hypothesis 4 €2 \; > 1 of both Theorem 3.1
and Corollary 3.6. By applying those results, we can conclude that there

exists a neighbourhood V of 1, which by the stability of 1T can be assumed
positively invariant, and a countable family of finite-dimensional subman-
ifolds of class C', which we shall denote by My (K varying among the finite
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subsets of N\ {0}), such that if a positive semiorbit tending to 1 1s contained
mm a finite-dimensional manifold of class C', then 1ts restriction to
V must be contamned 1n one of the manifolds My

Let us now consider the only orbit that departs from 0 towards the
positive u direction Before leaving J, this orbit will coincide with that
corresponding to g = 0 Let us fix an arbitrary pomnt U of this common
mitial arc Since Ty(t) U — 1 as t — + oo, the continuity with respect to g

ensures that, 1f 3 1s small enough, then the following property will hold
There exists £; = 0 such that, for every

ge%,, T,()UeV (3 15)

In particular, this implies that, for g € 95, T,(t) — Tast— 400, 1e the

corresponding flow still satisfies (3 12)
Let I denote the C! mapping

F gssgk—)Tg(tl)UeVC[E, (316)

where ¢, 1s the quantity appearmng m (3 15) We claim that, for most
g€ %, I'(g)=T,(t) U does not belong to any of the countably many
manifolds My In fact, we can state the following result

THEOREM 37 Consider problem (11), (12)y, (13), with g =0,
oy =0y =0, and normalized to2a =1, =1, L = Let f have the form
{3 6), with [y fixed sausfying the condmmons mentioned above, and g varying
in the Banach space 4 defined above There exists a 8 >0 and a residual
subset R of G such that 1f g € R then there 1s no firute-dimensional manifold
of class C! contaiuing the global attractor

The proof of Theorem 3 7 1s based upon the following lemma, for whose
rather technical proof the reader 1s referred to [9]

LEMMA 38 Under the hypotheses of Theorem 37, there exists a
3= 0 and a dense subset Dy of 95 such that if g € 95 then Range
DI’ (g) 1s infinite-dimensional

Proof of Theorem 3 7 It suffices to verify that, for every fimite subset
K of N\ {0}, there 1s an open and dense subset Zx of ¥; such that if
g€ Rg then I'(g) ¢ Mg From this the theorem will follow by a category
argument The openness of %y 1s an immediate consequence of the
continuous dependence of solutions with respect to g The denseness of
Ry follows from Lemma 3 8 Indeed, if £ were not dense, there would be
some open set % < %5 such that I'(g) € Mg for all g € % But this would
umply that, for every g € %, Range DI'(9) = T(Mk)r(), which contradicts
Lemma 3 8 since T(Mg)r() 1s fimte-dimensional W
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