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APPROXIMATION THEORIES FOR INERTIAL MANIFOLDS (*)

by Mitchell LUSKIN (!) and George R. SELL (?)

0. INTRODUCTION

During the last few years it has been shown that some infinite dimensional
nonlinear dissipative evolutionary equations have inertial manifolds. This
discovery has profound significance in the study of the long-time behavior of
the solutions of these equations for the following reasons :

e The inertial manifold IR is a positively invariant finite dimensional
manifold in the ambient infinite dimensional phase space, and the given
evolutionary equation reduces to a finite dimensional ordinary differential
equation, an ODE, on JR.

e Every attractor, including the global attractor, lies in IR.

o Every solution of the nonlinear evolutionary equation is tracked at a
exponential rate by a solution on IR. This means that there is an
n >0 such that for every solution u(¢) of the original evolutionary
system, there is a solution v(¢z) on IR such that

lu()—v@)| <Ke ™, t=0, (0)

where K depends on u(0).

In some models the decay rate m appearing above is very large. When this
happens the solutions on the inertial manifold also give useful information
about the short-time behavior of an arbitrary solution u(t), provided
u(0) is near M.
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Because the existence of an inertial manifold implies that the dynamics of
the original evolutionary equation is completely described by a finite
dimensional ODE, with no error, this should lead to substantial improve-
ments in the computational efficiency of numerical methods used to study
the evolutionary equation. In order to realize this efficiency, it is important
to find good algorithms for approximating the inertial manifolds. The main
objective in this paper is to examine several approximation theories for
inertial manifolds. Since every existence theory is a potential spawning
ground for an approximation theory, we begin with a brief review of the
three known classes of existence theories for inertial manifolds.

The first existence theory uses the Lyapunov-Perron method, which is
based on the variation of constants formula. While the Lyapunov-Perron
method is very useful for deriving properties of inertial manifolds (in
addition to proving existence), it is not a very promising arena for finding a
good approximation theory. The main fault of the Lyapunov-Perron
method is that it uses backward integration of the evolutionary equation.
Since the backward integration is in the « unstable » direction of the
evolutionary equation, one will encounter a blow-up of the solutions, which
in turn is an inherent source of computational inefficiency.

The second class of existence theories use the Hadamard method, or the
graph transform method. The basic idea here is to start with some initial
approximation to the inertial manifold. This initial approximation is an
easily computed manifold of the correct dimension, call it ;. One then lets
the dynamics of the given evolutionary equation act on 9IR,, thereby
obtaining a set IR, at each time ¢ = 0. One then proves, under suitable
hypotheses of course, that each I, is representable as the graph of some
function (1), that the limit

lim IR, = M

t— o

exists, and that M is the inertial manifold.

Approximation theories based on the Hadamard method will be better
than theories based on the Lyapunov-Perron method because one is
integrating forward in time, i.e., in the stable direction. Because of
inequality (0) one expects that

th'rzﬁn:

for an appropriate T = 0. Approximation theories based on the Hadamard
method try to approximate IR.. Such approximations can be -easily

() Hence the term graph transform method.
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implemented when 7 is small, or when the constant m in (0) is large. The
Euler-Galerkin method, which is introduced in Foias, Sell and Titi (1988)
and described in Section 3 below, is an illustration of a Hadamard-type
approximation. If the convergence of I, to M is slow, then the Hadamard-
type approximation theories will require the time parameter 7 to be large in
order to get good approximations. We expect that in these situations, one
will get better approximations by using the following alternative.

The third method for proving the existence of inertial manifolds is based
on the method of elliptic regularization which Sacker (1964, 1965, 1969)
used in the study of finite dimensional invariant manifolds. The extension of
the Sacker method to infinite dimensional dynamical systems is presented in
Fabes, Luskin and Sell (1988) and Luskin and Sell (1988). A description of
the main ideas of this method is presented in Sections 4-5 below.

I. INERTIAL MANIFOLDS

The type of equation we study can be reduced to an abstract evolutionary
equation of the form

u' +Au=F(u), u(0)=u, €8]

on a Hilbert space H. We will assume that A is a self adjoint operator
defined on a dense domain & = Z(A) c H and that A is positive with

compact resolvent. This means that — A generates an analytic semigroup

e~ and that the fractional powers A% are defined for all a = 0, see Pazy

(1983). Furthermore, for every a, 0 < a <1, there is a constant M, such
that

e x —x| <M, t*|A%x]|, xe€ Z(A®). )
The nonlinear term F is assumed to be a C -function
F:2(A)-> 2(A"),
where 0 < B =<1 is fixed, satisfying the following two properties :
(A) There is a constant C, such that
|[APF(u)| <Cy, ue 2(A).

(B) There is a constant C; such that the Gateaux derivative DF (u)
satisfies

|APDF (u)v| < C,|Av|, u,ve B(A). 3)
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Because of (3) the function F satisfies a global Lipschitz condition, i.e.,
|AB[F(U1) - F(”z)” < Cy|Auy — Au,| 4)

for all u;, u, € Z(A).

We also assume that F: 2 (A'~®) - H is locally Lipschitz continuous.
This implies that for uy € 2 (A ~P) there is a unique mild solution of (1).
We will represent this solution as S(t) u,, where

t
St)uyg=e Yuy+ f e AC=VF(S(s) uy) ds .
0

This solution is a classical solution for ¢ > 0, and when uy € Z(A4), it is
differentiable for 0 <¢.

Finally we assume that F has bounded support, i.e., there is a constant
p = 0 such that

F(u)=0, when |Au|=p.

We will not describe in detail how nonlinear (parabolic-type) partial
differential equations are reformulated as an abstract evolutionary equation
of the type described above. Such reformulations can be found in the two
recent books by Hale (1988) and Temam (1988), and in the papers Foias,
Sell, and Temam (1986), Mallet-Paret and Sell (1988), and Constantin,
Foias, Nicolaenko, and Temam (1988, 1989). An important feature in these
problems is that the original equation is dissipative. This means that there is
a bounded set B < H such that for every u,€ 2 (A'~P) there is a time
T = T(uy) such that S(¢) uy€ B for all ¢t > T. Since the operator A has
compact resolvent, the dissipative property implies that there is a global
attractor U for (1) and that U is compact and invariant, see Billotti and La
Salle (1971). Furthermore, U has finite Hausdorff dimension, see Mallet-
Paret (1976), Foias and Temam (1979), and Maiié (1981). The 2D Navier-
Stokes equation, the Kuramoto-Sivaskinsky equations, the Cahn-Hilliard
equations, and many reaction diffusion equations can be reduced to (1) with
the given properties on F. In each case the reduction step involves a
modification of the nonlinearities of the given partial differential equation
outside of some neighborhood of the global attractor. This modification is a
common feature in handling such equations. We will not describe the
modification here, but instead refer the reader to the references cited
above.

A subset M < H is said to be an inertial manifold for (1) if It satisfies the
following four conditions :

(A) M is a finite dimensional Lipschitz manifold in H.
(B) M is smooth, i.e., M is of class CL
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(C) I is positively invariant, i.e., if uy€ MM then S(t) uy € M for all
t=0.

(D) M is exponentially attracting, i.e., there is a p = 0 such that for every
uy € H there is a constant K = K(u,) such that

dist (S(t)ug, M)<Ke™ ™, t=0.

The smoothness of IR, which is not a part of the definition of an inertial
manifold as presented in Foias, Sell and Temam (1986), is an important
property and it will be used below. The smoothness of the inertial manifold
is not a major issue. Most theories which yield the existence of a Lipschitz
manifold 9N also imply the smoothness of 9N, see Chow, Lu, and Sell (1988)
and Mallet-Paret and Sell (1988).

The methods for finding inertial manifolds begin with a splitting of the
Hilbert space H into two parts PH and QH, where P is an orthogonal
projection on H with finite dimensional range and QO=1I1-P. The
prototypical choice for this splitting occurs when P is the orthogonal

projection onto Span {wy, ..., wy}, Where w, is the i-th eigenvector of A
with associated eigenvalue \,, and

OD<MshsMhs..osN, 500,

The usual existence theories for inertial manifolds seek to realize I as
the graph of a smooth function

&:PH - QH.

We shall say more about the properties of 9t and @ later. One should note
that with P as described above, then for any Lipschitz mapping
®: PH — QH, its graph is an M-dimensional Lipschitz manifold in H.

The list of references on inertial manifolds is growing rapidly, and any
attempt to cite all such papers is bound to have some omissions. The
following papers will be included in the ultimate « complete » list : Chow,
Lu, and Sell (1988), Constantin (1988), Constantin, Foias, Nicolaenko, and
Temam (1988, 1989), Doering, Gibbon, Holm, and Nicolaenko (1988),
Foias, Nicolaenko, Sell, and Temam (1988), Foias, Sell and Temam (1986),
Foias, Sell and Titi (1988), Ghidaglia (1988), Hale and Sell (1988), Henry
(1981), Jolly (1988), Kamaev (1981), Mallet-Paret and Sell (1987), Maiié
(1977), Marion (1988), Mora (1983), Mora and Sola-Morales (1987, 1988),
Nicolaenko, Scheurer, and Temam (1987), Sell and You (1988), and
Taboada (1988).

In this lecture we will present three methods for approximating inertial
manifolds. All of these methods can be viewed as modified Galerkin
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approximations. In order to present a uniform framework for viewing these
approximation theories, we describe next the Galerkin and modified
Galerkin methods.

II. MODIFIED GALERKIN APPROXIMATIONS

The classical theory of Galerkin approximations for nonlinear evolutio-
nary equation (1) can be best described by first fixing two integers
M=1 and N =1, and letting P and Q denote the orthogonal projection
onto

Span {wj, ..., wy} and Span {Wy .1, ..., Wy, pm} »

respectively. Next let R=1 -~ P — Q. For ue H set p= Pu, q = Qu,
r = Ru. By applying P, Q and R to (1) we obtain the equivalent system :

p' +APp=PF(p+q+r), dimp=M

q' +AQq=QF(p+q+r), dimg=N %)
r'"+ARr=RF(p+q+r), dimr=o

where we have used the commutativity relationships PA = AP, QA = AQ
and RA = AR, which hold on Z(A).

The classical Galerkin approximation of (1), or equivalently of (5),
involves setting certain terms in (5) equal to 0. Thus the (M + N)-
dimensional Galerkin approximation is formed by setting r = 0 in (5) and
thereby « obtaining »

{p’+APp=PF(p+q), dimp =M, ©6)
q9'+AQq =QF (p+q), dimg=N,

while the M-dimensional Galerkin approximation is
p'+APp =PF(p), dmp=M, (7)

i.e., set r =0 and g = 0.
Let us concentrate on (6) for the moment. If it happens that

RF(p+q)=RF(p+q+r)|,_,=0,

then the (M + N )-dimensional system (6) describes the dynamics of (5) on
the invariant manifold

r=20.

Of course, this rarely happens. However it is oftentimes the case that
RF (p + q) is small. In fact, the raison d’étre behind the Galerkin approxi-
mations is the following :
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The function RF(p + q) is small and the dynamics of (6) is a good
approximation to the dynamics of (5), provided (M + N ) is sufficiently large.
One expects, and there are theories which prove, that the approximation gets
better as the dimension (M + N) gets larger. In particular, for N large, the
(M + N )-dimensional system (6) is expected to generate a better approxi-
mation to the dynamics of (5) than the M-dimensional system (7).

The modified Galerkin approximations begin with (5) and, as a first step,
one sets r = 0 to obtain (6). The modification now occurs in the second step.
Instead of setting g = 0 to obtain (7) one uses g = ®,(p) to obtain the
modified equation

p'+APp=PF(p+®,(p)), dimp=M. ®

One wants to take advantage of the theory of inertial manifolds in order to
determine the function ®,(p). The main idea behind the modified Galerkin
approximations is the following :

When (5) has an inertial manifold, then the long-time dynamics of (5) can
be better approximated by the M-dimensional system (8) than by the
(M + N )-dimensional system (6), for any N = 1.

Naturally the approximation (8) is preferable in this situation.
Assume now that the system (5) has an inertial manifold 9t and that I =
Graph ® where ® = (®,, ®,) is a smooth function

®:PH - QHG® RH .

Then the dynamics on I is completely and accurately described by the M-
dimensional system

P +APp = PF(p + @,(p) + ®,(p)) » ©)

which is called an inertial form in Foias, Sell and Temam (1986). In other
words, the long-time behavior of any solution u(t) = S(¢) uy of (5) is
completely determined (with no error) by an associated solution

v(t) =p(t) + D (p (1)) + @,(p (1)) ,

where p(t) is an appropriate solution of the inertial form (9). In this way the
long-time dynamics of the infinite dimensional system (5) are completely
and accurately described by the dynamics of the M-dimensional system (9).

Under a spectral gap condition on the eigenvalues of A, one can show that
there is a constant K;, which does not depend on N, such that

”d>r”wsK1()‘M+N+l)_B: (10)
vol. 23, n° 3, 1989
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where the norm is given by
|®.]|, =sup {|A®,(p)|:p € PH} ,

see Foias, Sell and Temam (1986), and Foias, Sell and Titi (1988).
Therefore if one chooses

@, = @,
for equation (8), it follows from (4) and (10) that the error term

Error (p) = F(p + ®,(p) + ®,(p)) - F(p + ®,(p))

satisfies

def
| Error || = sup {|APError (p)|:p € PH)

=C1Ki(A\yons1)?.

In the remainder of this paper we shall describe alternate choices for
®,. In each case we believe that the calculation of ®, is easier than the

calculation of ®,, on the one hand, and under suitable hypotheses

”q)a_(pq”m

1s smaii, on the other.

III. EULER-GALERKIN APPROXIMATION

The Hadamard method is one of the methods used in the proof of the
existence of inertial manifolds for (5). The idea here is to begin with the flat
manifold

Moy={u=p+q+r:gq=0,r=0}
in A and set
M, =SE)IM, .

Then 9N, is a subset of H, and under a suitable cone condition,
M, can be represented as the graph of a function

M, = Graph ¥,
where ¥': PH - QH @ RH is a Lipschitz continuous function, see Mallet-
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Paret and Sell (1988) and Constantin, Foias, Nicolaenko and Temam
(1988). Furthermore one can show that the limit

lim ¥ = ®

t—»

exists, and IR = Graph & is an inertial manifold. More precisely, there are
constants b >0, p >0, and K, > 0 such that

|¥]| <b and ||V -®| <K,e ™,
© © 2

for all ¢ = 0. The value of b, p and K, depend on M, the dimension of M. In
many cases one has

lim sup K, < + o0
Mo 0

while

b0 and p—- o

as M — oo, see Mallet-Paret and Sell (1988), and Foias, Sell and Titi (1988).
What this implies is that for every € > 0 and 7 = 0 there is an M|, such that if
dim PH = M, and the spectral gap condition holds, so that I = Graph P is
an inertial manifold (with bounded support), where ®: PH - QH @
RH, then

H‘PT—CI)”wsa.

The Euler-Galerkin method, which is introduced in Foias, Sell and Titi
(1988), uses the implicit Euler method for approximating ¥*. The implicit
Euler method for the system (5) can be summarized as follows: Let
(po> 99, 7o) be a given initial condition and let (p (), g(7), r(7)) denote the
corresponding solution of (5) at ¢ = 7. The implicit Euler approximation
0. (%), q,(7), r,(7)) is given by letting p,(¢) be the solution of

p' +APp=PF(p), p(0)=po
and then setting
q.(7) = qo + 7[- AQq,(7) + QF (p,(7) + q,(7) + r,(7))] ,
7,(7) =19+ 7[= ARr,(7) + RF (p,(7) + q,(7) + r,(7))] . (11)

One can also describe this by asking that the « slope » of the line segment

joining (py, q¢s 7o) to (P,(7), q,(7), r,(7)) being given by evaluating the
(g, r)-equations at the terminal point (p,(7), q,(7), r,(7)). Next we define

vol. 23, n° 3, 1989
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V= (¥,,¥,) =(q,(7), r,(7)). Since the mapping py—p = p,(7) is a

homeomorphism of PH, the solution ¥ of (11) can be written in the form :

V()= (I +7AQ) ! [qo + 7QF (p + ¥1(p) + ¥2(p))]

‘I’z(p) = (I -+ 'l'I‘lR)_1 [TO + TRF(p =+ \I,l(p) =+ q’z(p))] .

The existence of a solution of the system (12) can be derived by use of the
contraction mapping theorem.

In applying the implicit Euler method to estimate W™ we begin with

Po> g0, 1o) € My, i.e., o = 0, ry = 0. Furthermore, the first iteration of the
method of successive approximations ®, = (®;, ,), where

D(p) =7 +7AQ) ' QF (p)
®,(p) =+ +7AR) ' RF (p),

(12)

already leads to a useful approximation of the inertial manifold, see Foias,
Sell and Titi (1988). This method is applied to a numerical study for the
Kuramoto-Sivashinsky equation in Foias, Jolly, Kevrekides, Sell and Titi
(1988).

IV. ELLIPTIC REGULARIZATION

A short time ago Sacker (1964, 1965) introduced a new method for
proving the existence of invariant manifolds for finite dimensional dynamical
systems This method is based on the theory of elliptic regularization of the
underlying first order partial differential equation which defines the
invariant manifold.

This method can be extended to the infinite dimensional systems
considered here. In order to motivate the Sacker method, let us return to
the situation where (5) has a inertial manifold of the form

M = Graph @,

where ® = (®,, ®,) is a smooth function. The invariance of 9 implies that
if p(¢) is a solution of the inertial form (9) then

Q@) = (q@), r@1)) = (PP (1)), 2.(p(1)))

is a solution of the (g, r)-system

{q’+AQq=QF(p(t)+q+r) (13)
r'+ARr=RF (p(t) +q +r).

Since ® = ®(p) is smooth we denote the derivative with respect to p by
D®(p) = (DP,(p), DP,(p)) -
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W
wn

The chain rule then implies that
d 0
S P@1) = De(P©) 5P ().

By combining this fact with (9) and (13) we then obtain

D®,(p)(— APp + PF(p + @,(p) + ®,(p))) =
=—-AQ%P,(p) + QF (p + @,(p) + @,(p)) ,
(14)

D®,(p)(— APp + PF (p + ®,(p) + ®,(p))) =
=—AR®,(p)+RF(p +Q,(p) + ®,(p)) .

For the moment, let us drop the r-equation above and set ®, = 0 in the g-
equation. Also replace D®, by V®,. One then has

V®,(— APp + PF (p + ®,)) + AQ®, = QF (p + ®,) , (15)

a first order partial differential system, where dim ¢, =N.
By construction the given function ® = (®,, @,) has bounded support,
i.e., one has

®(p)=0, when |Ap|=>p,

see Foias, Sell and Temam (1986) and Chow, Lu and Sell (1988). This
means that one is looking for a solution of (14) or (15) that satisfies
®(p) = 0 on 3Q, where

O, = {pe PH: |Ap| <p} .

This suggests that one might try to construct an inertial manifold by solving
(15) in Q, subject to the boundary conditions mentioned above. Since F has
bounded support, it follows that every boundary point of (1, is a point of
strict ingress for the inertial form (9). Therefore by using a method of
characteristics one should, in principle, be able to find a sufficiently regular
solution of (15), provided shocks do not develop.

The first step in the Sacker method, which we formulate in terms of (15),
is to replace (15) with the second order partial differential equation

— e AD, + VO (B(p, D,)) + AQ®, = QF (p + ®,) , (16)

where B(p, ®;) = — APp + PF (p + ®,). One then seeks a solution
®, of (16) which satisfies one of the boundary conditions

®,(p)=0, on 3Q,,
or
®,(p)=0, at |p|=.

vol. 23, n° 3, 1989
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The object 1s to study the behavior of solutions of (16) as ¢ » 0* By
deriving suitable a priort bounds on the solutions of (16), bounds which are
independent of €, one can show that the limut as ¢ —» 0* exists and 1s a weak
solution of (15) For the nertial manifold problem in an infinite dimensional
space H, we seek a prior1 bounds which are independent of both & and
N = dim ®, One then shows that the imit as € — 0" and N — oo exists and
describes an invariant manifold for the original infinite dimensional system
(5)

In addition to studying the behavior of solutions of (16) as € — 07, the
extension of the Sacker method to the study of mertial mamifolds involves
two mathematical 1ssues which did not arise 1n Sacker (1964, 1965) The first
of these 1s that the solution ® = (®,, ®,) has range mn an mfinite
dimensional space Secondly the domain of ® 1s PH and is no longer a
compact manifold without boundary

The a priorn1 bounds, which are independent of e, do not come freely In
order for the limut

Iim d>q

e 0

to be smooth, one needs assumptions on the coefficients, especially
B(p, ®,) and QF (p + ®,), which prevent shock phenomena from develop-
ing mn (15) Such shocks would be evident m the regularized problem (16)
for small € = 0 The hypotheses which guarantee that the a prior1 bounds be
independent of ¢ and N are analogous to the spectral gap conditions

appearing 1n Foias, Sell and Temam (1986), for example The following
theorem 1s proved i Fabes, Luskin and Sell (1988)

THEOREM 1 Let (1) be gven satisfying the conditions stated above with
B =1 Then there 1s a constant K, which depends only on C, and
C,, such that if

A1 — Ay > K,

then there 1s a weak solution of ® of (15) with ®(p) = O at |p| = oo and such
that

[®llpro=<R,
where

[ @y o =sup {|A®(p)|.p € PH} +sup {|AD®(p)|.p € PH}

and R depends on Cy, C, and the spectral gap (Npy;,1 — Nyy)

For equation (15) with fixed M, finite N = 1 and fixed € > 0, 1t 1s possible
to obtain information on the error between the solution ®, 5 of (15) and the
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inertial manifold & for the full problem (5). These bounds will be described
in the next section, where we use the Sacker method to introduce a
parabolic regularization of (5).

V. PARABOLIC REGULARIZATION

In this section we want to take another point of view in analyzing (15) and
(16), but with the same objective in mind. The basic observation is that one
can view the Laplacian term (— € A®) in (16) as a perturbation term added
to (1) or (5). More precisely let B = — A be given on , with the boundary
condition ® =0 on 3Q,. The effect of adding (— & A®) to (15) is then
equivalent to perturbing the (p, g, r) equations (5) to

p'+APp=PF(p+®,+®,)
@, + (AQ+eBQ)®, =QF(p+9,+9,) (17)
® + (AR+eBR)®, =RF(p+P,+®,).

where & > 0. This perturbation is a parabolic regularization of the original
system (5).

We shall say that ®° = (®Z, ®F) is a solution of (17) if ®° = ®*(p)is a
function of p € PH with the following property : whenever p(¢) is a solution
of

p'+APp = PF (p + ®,(p) + ®,(p))
then (p(¢), @;(p(t)), ®;(p(t))) satisfies

p@) +APp(t) = PF(p(1) + D5 (p (1)) + D7 (p(1)))
Dy (P (1)) + (AQ +eBQ) ®y(p()) = QF (p(t) + D(p (1)) + P (p (1))
P;(p (1)) + (AR + eBR) @7 (p(1)) = RF (p(1) + @5 (p (1)) + D7 (p(¢))) .

The solution ®¢ = (CD;, ®;) is said to be smooth if <I>§ and ®; are smooth as
functions of p e PH. Let Q = Q + R.

The problem we address is to find a family ®° = (®;, ®;) of smooth
solutions of (17) for & =0 with the property that ®° — ®° (as & —
0*) where the graph of ®° is an inertial manifold of (5). Part of the problem
is to describe the topology in which ®° converges to ®° and to estimate the
difference ||®° — ®°|| in a suitable norm.

Before stating our main result, it is convenient to outline our basic
approach to the problem described above. We use the Lyapunov-Perron
method for constructing invariant manifolds for (17), see Foias, Sell and
Temam (1986), Foias, Sell and Titi (1988) and Chow, Lu and Sell (1988).
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The first step in this process is to show that for £ = 0 the linear operator
[- (AQ + eBQ)] is the infinitesimal generator of an analytic semigroup,

— (AQ +eBQ)t

which we will write as e , t = 0. Since we are especially interested

in the behavior as € —» 0", we will need to compare e (A0 +eBQ)s with the
limiting semigroup e~ 42",

The next step, which lies at the heart of the Lyapunov-Perron method, is
the construction of the infinite integral operator

B 0p) = [ ¥ P OF(p(s) + B(p(s)) ds, £=0,

v -

where p(¢) is the solution of the ordinary differential equation
p'+APp=PF(p+®(p))

satisfying p(0) = p, and ® = @, + ®,. It is shown in Luskin and Sell (1988)
that a fixed point ®° of G, is a solution of (17) for € = 0. Also it is shown that
under a suitable spectral gap condition, G, is a strict contraction and that it
has a fixed point ®°. Furthermore the fixed point ®*° is a smooth function of
p. The final step is to calculate |®°— 7| - Our main result is the

following.

THEOREM 2 : Let (1) be given satisfying the conditions stated above. Then
there are constants K, and K, depending on C, and B, such that, if for some
M the eigenvalues of A satisfy the spectral gap condition

Mrc1— M= Ki(Ny i + Ny)

and Ny = Ky, where o =1 — B, then for all € = 0 the operator G, is a strict
contraction on a suitable function space F and, therefore, G, has a fixed
point ®° in & . Furthermore the following properties hold :

(A) @ :PH - QHN Z(A) is a smooth function with Supp ®° < Q,, for
e=0.

(B) There is a constant Ly, which depends on M but not on ¢, such that
| D¢, < Lo for all €= 0.

(C) The derivative V®° satisfies |AQ VO*(p)| <1 for all £=0.

(D) ®° is a solution of (17) for all £ = 0.

(E) There is a constant L,, which depends on M but not on &, such that

[@°— @) <Ly, e=0. (18)

The full proof of Theorem 2 is given in Luskin and Sell (1988), so we will
not reproduce it here. The derivation of (18), on the other hand, is rather
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simple and we can explain the main idea easily. The proof uses inequality
(2) (with o =1/2 and applied to e °%) and the fact that F(®°)e€

2 (B"2) where F(®°)(p) = F(p + ®°(p)). In order to prove that there is an
L,, which is independent of e, such that (18) is satisfied, we let
p.(t) denote the solution of the approximate inertial form

p'+APp = PF (p + ®*(p))
that satisfies p,(0) = p. Since ®° = G, ®° for all € =0 one has

®*(p) - ¥(p) =
N f D UL OF (@ (5) (p (5))) — €40 OF (8°) (po(5)) ] ds
- JO e@CH BV OIF (@°) (p,(5)) — F (®°)(po(s))] ds
+ J A% O[e® F (@) (py(s)) — F () (po(s))] ds .

After applying A to this equation, one shows that the middle integral is
bounded by

1 ae
2o —a)

and the last integral is bounded by

0
A s
j e N+l |
~

By using (2) we then obtain

e® F(@°) - F(2")|| ds .

2

0
% @, — Dyl = Cyg &2 j 15|12 ds||B" F (%)
—

which implies (18).
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