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EXPLICIT UPPER AND LOWER BOUNDS ON THE NUMBER
OF DEGREES OF FREEDOM FOR DAMPED AND DRIVEN

CUBIC SCHRODINGER EQUATIONS

by J. M. GHIDAGLIA (X)

Abstract. — We study space-penodic damped and driven cubic Schrodinger équations in one
dimension. In a previous work, we have shown that the long time behavior of these équations was
governed by a finite-dimensional attractor. Here our aim is to provide upper and lower bounds
on this dimension which are exphcit in terms of the data.

1. INTRODUCTION

We consider the following cubic Schrodinger équation

d2U
— -
bx2

+ \u\2u + iyu = f , (LI)

where 7 > 0 is a damping factor and f — ƒ (x, t) is an external time-periodic
driving force. We supplement (1.1) with space periodic boundary conditions
Le.

u(x + L,t) = u(x,t) , V*e M , W e M (1.2)

where L is a given positive number. As it was shown in a previous work [4,
5], the long-time dynamics of the infinité dimensional dynamical system
(1.1)-(1.2) is finite dimensional. More precisely we have shown that the
trajectories of this évolution équation are captured by a finite dimensional
attractor. This result contrast s with the case of the unperturbed équation
(where 7 = 0, ƒ = 0) for which thanks to the Inverse Scattering Theory, one

(*) Laboratoire d'Analyse Numérique, C.N.R.S. et Université Paris-Sud, 91405 Orsay,
France.
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434 J. M. GHIDAGLIA

observes a totally different dynamics [11]. Moreover, our results on the
perturbed équations agrée with numerical and physical investigations [9, 2],

Our aim in this work is to dérive explicit upper and lower bounds on the
dimension of the global attractor associated to (1.1)-(1.2). The upper
bounds are derived in Corollary 3.1 (third section) while the lower bounds
are given in the fourth section. In the next section, we dérive some estimâtes
on the solutions to (1.1)-(1.4) and define the global attractor.

2. BOUNDED ABSORBING SETS AND ATTRACTORS

For the sake of simplicity in the exposition, we are going to assume in the
remainder of this article that the driving term ƒ is time-independent (and
dépends periodically on the space variable x) : f{x, t) = f(x). We dénote
by v(k) the fc-th-Fourier-coefficient of a L-periodic function v :

j » ( ) e p ( ; ? ^ ) dx,

and H™, m e Jf, dénotes the usual Sobolev space

H%= (veL2(Q,L), £ (1 + k2)m \v{k)\2 < oo ) .

We assume that ƒ belongs to L2(0, L) and dénote by {$(t),t e 0t) the
noniinear group on ti\ that solves (1.1) with the boundary condition (1.2),
i.e. u(t)= S(t) u0 solves (1.1)-(1.2) and u(0) = M0, W0

 6 Hh T h e naapping
(t, M0) -• S(t) u0 is continuous on M x H\ and M x H\ ; and for fixed t,
S(t) is a homeomorphism of H\ and H\ ([5] and références therein).

An important feature of the damping in (1.1) is the existence of bounded
absorbing sets for the group S(t). We recall that given a norm TV on
Jf = H\ or Hl, a set ffla c= ̂ f is a bounded absorbing set for TV if

(i) $a is bounded with respect to TV,
(ii) for every bounded (w.r. to N) set $ <z Jf, there exists a time

T(B) e M such that

5 ( 0 # < = # « , Vt

Concerning (1.1)-(1.2) we have the following resuit.

PROPOSITION 2.1 : The group S(t) possess bounded absorbing sets in
H\ with respect to the norms of L2(0, L), Hl and H\.

This resuit is proved in full details in [4]. We are going to sketch briefly
some steps of the proof and dérive a slightly stronger resuit. Our starting
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points are the two identities (mass évolution and energy évolution)

) ~ \u\2dx + y \u\2dx = lm fûdx, (2.1)

ö i;V\u) + *#(«) = 0 , (2.2)
2 dt

where
CL {K| } (2.3)
o

{ l ^ | 2 + 2 R e ( ƒ & ) - |t>|4} dx, (2.4)

and Re z, Imz dénote the real and imaginary part of z e f. We dénote by
|- | 0 the L2-norm on [0, L] , and for a given s ^ O w e introducé the constant

7"4L"1(1 + 0 / 2 - (2.5)

With these notations, we can state the following resuit.

PROPOSITION 2.2 : For every e ̂  O, the sets

0HXz = {V G ̂ 0,8? V(ü) ̂  P̂e} (2-7)

are positively invariant by S{t) : S(t) â&ltEcz û&ljZ, Vr G ̂ . Moreover, for
E >- 0, ^ 0 e (resp. $ijE) is a bounded absorbing set for S(t) in the
L2 (resp. H1) norm.

This last proposition is an easy conséquence of (2.1), (2.2) and the
following well-known estimate :

K ^ S u p ^ \v(x)\^2\v\0\vx\0+\v\lL-\ VveHl. (2.8)

Indeed, we deduce from (2.1) and the Cauchy-Schwarz inequality that

d
ctt

and this implies that

o^+l/loTHl-e-*), V'^0. (2.9)

Now the properties of J O e J e == 0 follow from this bound. Concerning
0 1 ) 6 , we deduce from (2.2) that

vol. 23, n°3, 1989



436 J. M. GHIDAGLIA

B y ( 2 . 8 ) , t h e r . h . s . o f t h i s é q u a t i o n i s l e s s t h a n 7 ( 3 \ u \ l | M X | 0 - | W X | Q +

3L~l\u\l/2). Hence

dt " ° °

Taking W O € ^ I , E C ^ O , 6 J
 w e s e e t n a t t n e r.h.s. of (2.10) is less than

<pe since u e $0>e, W s= 0. This shows that the âS\te are invariant. Returning
to (2.10), one sees easily that these sets are absorbing for the //^norm,
provided e ̂  0.

In order to achieve the proof of Proposition 2.1, it remains to show that
S{t) possesses an absorbing set in Hl (w.r. to the /f^-norm). This result is
slightly more technical than the previous ones. It relies on the study of the
évolution of the quantity :

f
Jo

L

txx\
2~ \u\2 | ^ | 2 - 2 ( R e (uüx)f-2R& (füxx)\ dx ,

and we refer to [4, 5] concerning the details.
We dénote by 3&a a bounded absorbing set in H\y for the Hl-norm, and

introducé its omega limit set

where cl dénotes the closure with respect to the weak topology of
Hl. This set is the global attractor for (1.1)-(1.2) in Hl (endowed with its
weak topology) :

THEOREM 2.1 : The set srf defined in (2.11) enjoys the following
properties :

30 is not empty, compact and connected in H \ , (2.12)

s0 is invariant : S(t) jf = sf , W e M , (2.13)
j / is attracting : for every set @£ in Hl ,

the sets S(t) 0Ü converge in H2
L to $£ as t -• + oo . (2.14)

For a group (or semi-group) which admits an absorbing set, such a result
is classical provided some compactness of the group (or semi-group) is
obtained (Levinson [10], Billotti and La Salie [1]). Here, compactness is
simply obtained from boundedness since we use the weak-topology. The
counterpart is that one must show that the S(t) are continuous w.r. to this
topology, which is indeed the case [5].
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CUBIC SCHRODINGER EQUATIONS 437

By (2 14), the set si desenbes the long time dynamics of (1 1)-(1 2) In
particular it contams the stationary solutions, the (time) penodie solutions
or more generally every bounded invariant set m Hl, X, and lts unstable set
J£U{X)

J?U(X)= {uöeHl, s t S(t) w°weakly converges

in Hl to Xas t -• - oo } (2 15)

As it is well-known, even for smooth fimte dimensional dynamical Systems,
this set can be very compheated and therefore si can have a somewhat
complex topological structure This could explain the chaotic behavior of
solutions to (1 1)-(1 2) which has been observed [2], [9]

3. UPPER BOUNDS ON THE DIMENSION OF THE ATTRACTORS

In this section, we consider a bounded set Z i n Hl, which is invariant
under (1 1)-(1 2)

S(t)X = X, "item (3 1)

We introducé with Constantin, Foias and Temam [3] the global Lyapunov
exponents on X as follows Given u0 e X, the complete trajectory
u{t) = S(t)uQ, t e M, lies in Zand we can solve the non autonomous hnear
équation

l?l + ?±) + 2\u\2v+u2v +nv = 0 , (3 2)

vt dx

where v is L-space penodie and

v(x,O) = vo(x), we]0,L[ (3 3)

is given m H\ This linearized équation represents in a certain sensé the
differential of the mapping S(t) at u0 We dénote by L(t , u0) e £?{Hl

L) the
hnear operator v0 -» v (r), and set

W o ) ) , (3 4)

where o)m(L) = || AM L \\ ( m Rl is the norm of the m-th extenor product of

L € SPifll), m e JT* (and Hl
L is endowed with the norm ||i? || = (\vx\\ +

L'2\v\l)m) Thanks to the differentiation cham rule and the f act that

vol 23, n° 3, 1989
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<*m(Li o L2) ^ ^ ( L j ) <ûm(L2), we have ôjm(^ + t2) ^ ö>m(/x) <öm(f2). Hence
the following limit exists

= lim iom(t) /l <: oo .

The global Lyapunov exponents on X are then defined recursively from the
iTm by

lû  = Log 17 x and (JI; = Log ir/ - log TT, _ 1 for / === 2 .

With these notations we can state :

THEO REM 3.1 : We consider a subset X which is bounded in Hl
L and

invariant by (1.1)-(1.2). The global Lyapunov exponents on X satisfy

where Co is an explicit constant {see (3.16)) which dépends only on

I ƒ le y and L-
This result provides explicit bounds on the Hausdorff and fractal

dimension of the global attractor si :

COROLLARY 3.1 : The Hausdorff dimension d^>{s^) and the fractal
dimension d^ {si ) of the global attractor are finite and bounded as follows

' , (3.6)

) y - 2 ) , (3.7)

where Co is defined in (3.16).
With regards to (3.5), we see that for mo> CQ7~ 2 , ^{X) A +

\xm {X) < 0. Hence the sum of the first m global Lyapunov exponents on X
is négative so that the tangent flow (i.e. (3.2)) along a trajectory lying on X
shrinks the m0-dimensional volumes. This implies according to [3,
Theorem3.3] that the Hausdorff dimension of 1 = ^ is less than
1 + CQ y4 (and an analogous bound on the fractal dimension). We note that
since si is bounded and weakly closed in H\, it is compact in H\ and the
previous result in [3] is applicable. More precisely we apply here an
extension of this result [8], which is necessary here since the mappings
S{t) are not compact in H\.

Let us now deal with the proof of (3.5). The key point here is a family of
identities that satisfy the solutions to (3.2) :

T*9a(^ v) + 7<7n(*> v) = ru.{t> v) (3-8)
at
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where JJL e M is arbitrary and we have set for w e Hl, u0 e X,

x, (3.9)

CL ri
|x Re (uw)lra (uw)dx-l {Re (uüt)\w\

Jo Jo
+ 2 Re (uw) Re (ut w)} dx , (3.10)

where u = u(t) = S(t) uQ. The relations (3.8), jx e M, are analogous to
(2.1)-(2.2) and are obtained in a similar fashion [5]. For positive |x,
q^ can be seen as a perturbation of the norm of H\, More precisely we have

LEMMA 3.1 : We take

V=lS\f\*r4 + 3\f\2
0y-2L-l + L-2/2, (3.11)

then for every u0 e X, t e $ and w G Hl,

alHI^^w^KI^ + MH2, " = 1/2. (3.12)

Indeed, we have

f
Since X a Bo 0, we deduce thanks to (2.8) that the r.h.s. of this inequality is
less than 31 ƒ |^" 2 (21w| 0 K | Q + \w\lL"1). With the choice (3.11) for |x

in (3.9), we find (3.12).
Concerning the quadratic form r^ given in (3.10), we have the following

estimate (whose proof is somewhat technical and postponed to the end of
that of Theorem3.1).

LEMMA 3.2 : For every u0 e X, we have

K ( ' , H O | ^ C 1 | M | 1 / 2 M J / 2 (3.14)
where Cx (given in (3.21)) dépends only on \ / | 0 , 7 and L.

Introducing the critical values of the quotient | v \ 2J || v \\2 :

Kp = min max

we deduce from (3.8), (3.12), (3.14) and an abstract resuit on Gram
déterminants ([6, Appendix]) that

Mi + • • • + |xm ̂  - ym + — - f KXJ4 . (3.15)

vol. 23, n° 3, 1989
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Here the K̂  are explicitely known : they are the inverse of the eigenvalues of
the operator v -• d2v/dx2 + L~2 v i.e. { (1 + 4 II2 k2), k e 3£} . Now since
a = 1/2 an easy computation shows (3.5) with

C0 = 2Cl L1(2/Um , Cx is given in (3.21) . (3.16)

It remains to show (3.14). Since X is bounded in H\ and is invariant under
S(t), we deduce from Proposition 2.2 that XŒB10:

M o ^ l / l o ? " 1 ' < P ( " ) ^ o , VueX. (3.17)

On the other hand, using (2.8), we see that for every v e H\,

| « , l 2*2 < P ( i ; )+ | i ; | « + | i ; | SL- 1 + 4 | / | 0 | B | 0 . (3.18)

Hence by (3.17) we conclude using again (2.8) that

| u ; c | ^ n l s l l | / | « 7 - 6 + 4 | / | 5 7 - 4 L - 1 + 4 | / | 2
o 7 - 1 , V H Ê Z , (3.19)

and

l ¥ y - l
+ \ f \ l r 2 L - \ VueX, (3.20)

Then, we estimate r^ given in (3.10) by replacing ut by its value :
ut = iuxx + i\u\2u-yu~ if. By using (3.17), (3.19) and (3.28), we fkially
deduce (3.14) with

4. LOWER BOUNDS ON THE DIMENSION OF THE ATTRACTORS

In this section, we give a lower bound on the dimension of the global
attractor by computing the dimension of the unstable set emerging from
some particular stationary solutions. At the end of this section we compare
these bounds to the previous upper bound in a case inspired by a situation
arising from plasma physics.

We assume that for given p > 0 and kQ e Jf, the function

u(x) = pe ° ' (4.1)

is a stationary solution to (1.1), i.e. that

ƒ(x) = p(p2 - 4 n2 kl/O + h) e2'm°x/L. (4.2)

IVPAN Modélisation mathématique et Analyse numérique
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In order to study the stability of this stationary solution, we write the
solutions u to (1.1) as

U ( J C , 0 = S ( X ) ( 1 + > K J M ) ) - (4.3)

This leads to the following équation on w :

iwt + wxx -2ikwx -&0W + p 2 { | l + w | 2 ( l + > v ) - l } + iyw = 0 . (4.4)

In order to compute the dimension of the local invariant manifolds in
w = 0, we linearize (4.4) :

ivt + vxx - 2 ikvx - kçjv + p2{v + 2 Re v} + iyv = 0 . (4-5)

The solutions to (4.5) can be expanded in terms of plane waves

v(x, t) = eu(a eimt*/L + b e-
2tUi*/*<) , (4.6)

where \ e ^ , a, b e <$ and Î e 3£. Inserting (4.6) in (4.5), we find the
following dispersion relation

(\ + 7 ) 2 = (3 p2 - 4 U2(k0 + i f L"2)(4 U2(k0 + l f L~2 - p2) . (4.7)

Unstable modes correspond to \ e ^ , \ > 0 and the dimension of the
local unstable manifold is larger than the number of such \ 's : N (p, 7). An
easy computation shows that

N(p, 7) ̂  (p4 - 72)l'4 L/(2m U) , (4.8)

where x+ = (x + | JC | )/2. It follows that the Hausdorff dimension of the
unstable set emerging from ü, Jtu{u) (see (2.15)), is larger than
N(p,y). Since this set is included in the global attractor s& we deduce the
following result (recall that the Hausdorff dimension of a set é,

) , is always smaller or equal to its fractal dimension d$

PROPOSITION 4.1 : In the cases where the driving force is given by (4.2),
the dimensions of the global attractor are bounded from below as follows :

d,{j*) 5= d^sé) s= (p4 - y2)T L/(2112 H) . (4.9)

An application to a situation arising from plasma physics. Inspired by Nozaki
and Bekki [9], we assume that we are given a small parameter e > 0 and that
the damping term and the driving term (given in (4.2), with k0 = 0) scale as
follow

7 = 7o e " 2 , P = Po*~1- (4-10)

vol. 23, n° 3, 1989



442 J. M. GHIDAGLIA

In that case, provided p$ ̂ JQ, we deduce from (4.9) that

KOs~1 (4.11)

where K0 = (pj - y2
0)f L/(2m II).

On the other hand, since

\f\o = Lmpo(pt + y4o)mz-\ (4.12)

we find thanks to (3.7) that

where KÓ is independent of e and can be obtained explicitely in terms of
Po, 7o an<i L. In fact, in the case (4.10), the upper bound (3.14) can be
improved (but we shall not give the details here) and this leads to a better
estimate on the fractal dimension of sé', namely

0 < 6 ^ 1 . (4.13)

Summarizing (4.11) and (4.13) we see that

1 K 1 E - 6 , 0 < e ^ l . (4.14)

We cannot conclude from these estimâtes that neither the lower bounds nor
the upper bounds on the dimensions are asymptotically sharp, as it is the
case for the Ginzburg-Landau équation [7]. However, as follows from
(4.14), the long time dynamics of équations (1.1)-(1.2) is always finite
dimensional but involves more and more degrees of freedom as e -+ 0.
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