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A FINITE ELEMENT APPROXIMATION OF THREE DIMENSIONAL
MOTION OF A BINGHAM FLUID (*)

by JONG UHN KIM Q)

Communicated by R. TEMAM

Abstract. — In this paper, we approximate solutions of an initiai-boundary value problem
associated with the motion of a Bingham fluid in a three dimensional domain. The method o f
approximation consists of the backward Euler scheme in the time variable and conforming
piecewise hnear finite éléments in the space variables augmented by the penalty method. The
convergence of this scheme is proved under a mild assumption on the data. Error estimâtes are
also obtained when the data satisfy restrictive assumptions

Résumé. — Dans cet article nous approximons les solutions d'un problème aux conditions aux
limites et valeurs initiales, associé au mouvement d'un fluide de Bingham dans un domaine
tridimensionnel. La méthode de discrétisation se compose d'un schéma d'Euler en temps et
d'éléments finis conformes linéaires par morceaux en espace avec pénalisation La convergence
de ce schéma est démontrée moyennant une hypothèse faible sur les données Des estimations
d'erreur sont aussi obtenues lorsque les données satisfont des hypothèses restrictives supplémen-
taires

0. INTRODUCTION

The purpose of this paper is to discuss a certain finite element method to
approximate solutions of an initiai-boundary value problem associated with
the motion of a Bingham fluid in a three dimensional domain. According to
Duvaut and Lions [4], [5], the initiai-boundary value problem is formulated
as

/ " M > - u j + a(u, w -u) + b(u,u, w) +

+ / (*>)-ƒ(«) s* ( / , w - u ) in ( 0 , r ) , (0.1)

(*) Received m October 1987. This research was supportée! by AFOSR under contract
AFOSR-86-0085 and by NSF-grant DMS-8521848.
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294 J. u. KIM

for each test function w such that V. w — 0 in n and w = 0 on
an,

V . M = 0 in ü x ( O J ) , (0.2)

M = o on an x [o, T], (0.3)
u(x,O) = uo(x) in n . (0.4)

Here, n is a bounded convex domain in R3 with smooth boundary
6n, u(x, t) dénotes the velocity of the fluid and f(x, t) stands for external
force. The density, the yield limit and the viscosity are assumed to be
positive constants. In particular, the density is taken to be one. We employ
the notation :

3 f
a(u, w) = V 2 \x \ Dl}(u) Dl}(w) dx, JJL = viscosity

" v ' 2\dx, dx, / '

J(u) = 2 g \ Dn(u)m dx , gf = yield limit
J £1

1 3

!,ƒ = !

3 r ^ Ü I

(,) = a scalar product which will be defined in the next section.
The conservation of momentum is expressed by (0.1) and the condition of

incompressibility is given by (0.2). The above initial-boundary value
problem was investigated for the first time in [4]. The numerical approxi-
mation of this problem has been the subject of numerous works : [1], [6],
[9], [10] and [11]. However, the numerical study has been restricted to the
case of either two dimensional domain or laminar flow in a cylindrical pipe.
No attempt seems to have been made in the past on the fully discretized
approximation of time-dependent solutions in a three dimensional domain.
The major difficulty in a three dimensional domain is that weak solutions
are not regular enough to give a meaning to the first term in (0.1). In fact,
weak solutions are supposed to satisfy a weaker version of (0.1) ; see [4],
[5]. This lack of regularity persists in the limit of a séquence of approximate
solutions even if we use smooth data. This is due to the f act that sufficient
a priori estimâtes for the fully discretized approximate solutions cannot be
obtained even with smooth data. In this paper, we shall approximate strong
solutions obtained in [13] and [14]. The above mentioned difficulty in the
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numerical approximation can be avoided by showing that the limit of
approximate solutions coincides with the strong solution. For approxi-
mation, we employ the backward Euler scheme with respect to the time
variable and conforming piecewise iinear finite éléments with respect to the
space variables. The use of piecewise linear finite éléments is attributed to
the limitation on the regularity of solutions. The lack of regularity inhibits
the use of higher-order finite éléments, particularly when error estimâtes
are sought. While the computation is substantially simplified by using linear
finite éléments, it is difficult to incorporate the divergence-free condition
(even an approximate condition) into the approximate function class of
linear finite éléments. Therefore, we use the penalty method to deal with
the incompressibility condition. Our scheme is similar to one of those
discussed in [16], except that we use finite éléments instead of finite
différences. To maximize the regularity of solutions, the boundary of the
space domain has to be sufficiently smooth, and we exclude polyhedral
domains which are typically used for the numerical approximation of the
Navier-Stokes équations. The région near boundary cannot be filled with
tetrahedra. But we can use Hölder's inequality to estimate the error arising
in this région since the measure of this région can be made arbitrarily small.
One may use isoparametric finite éléments to take care of the curved
boundary. However, this does not improve our resuit due to the inherent
lack of regularity of solutions.

In section 2, we prove the convergence of our scheme under the same
assumption on the data as in [14]. In section 3, we obtain further regularity
of solutions for the purpose of obtaining error estimâtes. In section 4, we
analyze the error between the true solution and the approximate solution
under the same assumption on the data as in [13]. Our resuit on the error
estimate is not as strong as the known resuit for the Navier-Stokes
équation ; see, e.g., [12] among others. This is due to the fact that we cannot
raise the regularity of solutions to that of solutions of the Navier-Stokes
équations.

1. NOTATIONS AND PRELIMINAIRES

Throughout this paper, fi dénotes a bounded convex domain in
R2 with smooth boundary bCl e C4 and we shall retain all the notations
defined in the introduction. We also employ the following notation :

9( = l ' e' = ̂ ' for ' = 1 ' 2 ' 3 > A= S a < '
v = ( Ô P a2, a 3 ) , \f\ = ( / 1

2 + / I + / 3
2 ) 1 / 2
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and
3

v • / = Z a<^ ' for f = (fi> ^2' ̂  •
t = 1

When E is a Banach space, Z/(0, r ; E) is the set of all £-valued strongly
measurable V functions on [0, T] with the obvious norm. C( / ; E) is the
set of all £-valued continuous functions on the interval /.

We introducé the following function spaces :

S = {<}> e C0°°(n)3 : V . <j> = 0 in XI} ,

wm>r(n) = {v e z / (n ) : a"1 a"2 a"3 v e Lr(n), i ̂  ttl + a2 + a3 =

For ƒ e Wm ' r (H) 3 , \\f\\wmr dénotes the norm o f / i n Wm>r(Q,)\

= the completion of C O
co(n) in Wm ' r(

= the dual of W^ r(H) , where i + 1 = 1 , l ^ r < o o 5

X r = the completion of S in L r ( n ) 3 , l < r < o o , V = W^2(ftf D X2,
V' = the dual of V. (,) stands for the usual inner product in L 2(H).

3 p
When/ , gr e L2(f ï)3 , (ƒ, gr) = £ flgldx. (9) also dénotes the duality

pairing bekeen Tyo
lï2(n)3 and W 1 ' 2 ^ ) 3 or between V and F ' . The

meaning of (,) will be clear from the context. One can characterize
X rby

XT= {v e L r ( n ) 3 : V j = 0

in H and the normal component of v vanishes on aH} .

We let Pr dénote the projection from Lr(H)3 onto Xr and write the Stokes
operator as

Ar = — Pr A , for l < r < o o ,

with the domain,

D(Ar) = w2>r(nf n w^r(af n xr.

As in [13], G dénotes the set of all v e V such that for some H e L2(Clf,

a(v, w-v) + b(v,v, w)+J{w) -J(v)^ (H, w - v ) (1.1)

holds for every w e V. It was shown that G is dense in V and
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We define

and dénote by.
every v, w e V*

and

which follows from

\

the Gâteaux differential of / (•). Then, we find that for

Dl}(v)Du(w)
; :

| « | 2 \ A i + \b\2
(a

(1.2)

(1.3)

(1.4)

for every a = (av ..., an), b = (b1, ..., bn) e iî". It is easy to see that for ail
t i > 0 and D S Wh\n,)3

, i,j = 1,2,3

and

(1.5)

(1.6)

where M is a positive constant depending only on g and H. We also need

LEMMA 1.1 : Ifv e W2 '2(n)3, 9 e C ( â ) fl/id cp ̂  0, r^en /or / = 1, 2, 3,

(1.7)

Proof: Since C2(Ô)3 is dense in W2'2(H)3, it is enough to show that (1.7)
is true for ail v e C2(H)3. Since dfl is smooth, each v e C2(Ö)3 can be
extended to a function v e C2(R3)3. <p can be extended to <p such that
9 = <p for x € H and 9 = 0 for x £ &. The intégral in (1.7) can be evaluated
over R3 after replacing 9 and v by 9 and v. Then, we approximate
dl by a finite différence in the ^-direction and arrive at the inequality by
means of (1.4).

vol. 23, n° 2, 1989
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The following property of «(,) wül be used

C1\\v\\l/i2^a(vfv)^C2\\v\\2
wi2 forall v e W% 2(ft)3 (18)

where Cx and C2 are positive constants depending only on ft and JUL
Next we introducé finite dimensional approximate function spaces which

consist of conformmg piecewise lmear fmite éléments Let us dénote a 3-
simplex by K and associate the following two numbers with K
hK = diameter of K,
pK = diameter of the greatest bail contained in K

We dénote by T5A a finite set of simphces K such that

(i) tfcn,
(u) If Kx and K2 e T>A, then Kx = K2 or Kx n K2 is empty or Kx n K2 is

exactly a complete m-face of Kx and i£2> where 0 =s; m =s 2,
(ui) sup/Ce^/ziC = ^
We next wnte

^ = the set of all vertices of TŜ ,
^ = all points of Xh which belong to the interior of <&h, and make the

following assumptions on the family {*BA}ft

(i) h - 0
(ii) there is a positive constant 8 such that

sup \hK/9K

(m) 2 A - 2 ? c e n
Let us define

Wh == the space of continuous functions on <ï>ft which are lmear on each
simplex K e T^

Wo/2 = {̂  e ^/i y = 0 o n the boundary of ^ }
Each element of WQ h can be extended to Ù - <&h by 0 so that

Woh is the space of continuous functions on Ö which are lmear on each
simplex K eHh and vamsh outside <i>h It is evident that WOh a W$ p(Ci), for
any 1 ̂ p <: oo We next define the interpolation operator rh C (ft) -• Wh

b y (rfei;)(jc) = Ü(X) for each je G Xh (19)

Hence, if v belongs to C (Ö) and vamshes on aft, then rh v e WOh It follows
from Theorem 3 1 5 [3] that for all v G W£ p(£l), 3 <p < ex),
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where C is a positive constant independent of v and h. Let TS/f be any subset
of *6A and set <ï>ft* = \^J K. Again by Theorem 3.1.5 [3], we find that for ail

v e Whp(£l), 3<p<oo,

llv-rhHyr-HW^C^'^K^my ^ = 0,1, (1.11)

and, for ail v e W2)2(n),

II» ~ ̂ I l w - ' W ) * c * 2 " m IMIw» W ) > ™ = 0, 1 , (1.12)

where C dénotes positive constants independent ofv, h and Oft*. Finally we
set Vh = (W0/ï)

3 and use the same notation rh for the interpolation

operator : C(Ü)3 _> (WA)3 defined by

eSft . (1.13)

2. APPROXIMATION OF SOLUTIONS

We first review some results on the existence of solutions of (0.1) through
(0.4) obtained in [14].

DEFINITION 2.1 : A fonction u(x, t) is called a solution of (0.1) through
(0.4) on an interval [0, T) if

(i) UEL2(0, T;V) and dtu G L2(0, T; V ) ,

(ii) (0,1) is satisfied for every w e V for almost ail t e (0, T),
(iii) u(x, 0) = wo(x).

THEOREM A. [14] : Suppose that 3 < r < oo, MO(JC) G ^ r

ƒ G L°°(0, T; W" l i r(ft)3). T/îen, there is a unique solution u(x, t) on an
interval [0, 7*), 0 < T* ==s T. Furthermore, « e C ( [ 0 J * ] ; JcTr).

Our purpose is to approximate the above solution by the backward Euler
scheme in the time variable and conforming piecewise linear finite éléments
in the space variables. Let us fix 3 < r ^ 6 , uo(x) e Xr and
ƒ G L°°(0, T ; L2(H)3). Let us divide the interval [0, T] into N intervais of
equal length k = T/N, and consider the following finite dimensional
problem : for given u™~x in Vh, find u™ in Vh satisfying

I («JT- «fc"-1, vh) +a(K, vh) + b{u%-\ uf, vh) + ( ƒ ; « ) , vh) +

+ I ( V . « J T , V . o J k ) = ( / m ,o f c ) , (2.1)

vol. 23, n° 2, 1989



300 J. U. KIM

for every vh e Vh. Here, we take

u® — the orthogonal projection of u Q(x) onto Vh in L2(H)3 , (2.2)
rmk

f(t)dt, m = l,...,N, (2.3)
' ( m - l ) J t

and define

f
J(f

b(u,v,w) = ± Y ( f ut(dtv})w}dx- f utv^xw3)dx\ . (2.4)

It is obvious that b(u, v, v) = 0, for every M G L3(H)3 and u e W0
1>2(a)3,

a n d t h a t b(u, v, w) = b(u, v, w), for e v e r y u e V a n d v,we WQy2(O,f. B y

virtue of the properties of /^,(.) and Lemma 4.3 in [15, p. 53], there is a
unique u™ in Vh of (2.1). We now set

uh(t) = u™, for ( m - l)fc=s= t^mk, m = l, ...,iV, (2.5)

2 A ( 0 = MA1"1»
 f o r ( m ~ ^)k*kt<mk, m = 1, ...,N, (2.6)

fk(t) = fm, for (m-l)k^t^mk, m = 1, . . . ,# . (2.7)

We also define a piecewise linear F^-valued function wA(t) on [0, T] such
that

= u?, m = 0, . . . , # , (2.8)

and wft is linear on [(m — 1) k, mk], m = 1, ..., N. The convergence of our
numerical scheme is stated as

THEOREM2.2 : Let {h, k, T\, e} be an arbitrary séquence of quadruplets
such that {h, k,^^} -• {0, 0, 0, 0} and —^ -> 0. Then

uh9 ühy wh^u weak * in L œ(0? T* ; L2(O)3) , (2.9)

wft, wft5 wh -+ u strongly in L 2(0, T* ; L2(O)3) , (2.10)

uh -+ u strongly in L2(0, T* ; W0
1)2(n)3) , (2.11)

where u is the solution on the interval [0, T*) of TheoremA above.

Proof: Substituting u™ for vh in (2.1), we obtain

\ i «r | | 2
L : -5 ||«A

m-1||2L2 + 5

(2.12)

Modélisation mathématique et Analyse numérique
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from which it follows that

301

1,-m m-1112
\uh - uh r2

" k

m = l

*»(«C«JT) + I f IV .^ I^^M, (2.13)

where M dénotes a positive constant independent of h, k, e and r\. (2.13)
implies that {uh} is bounded in L^O, T \ L2(H)3) and L\0, T ; W^2{Sïf).
We borrow an idea from [18] to show that {wh(0} is precompact in
L2(0, T;L2(H)3). Using the notation wh, uh, uh and fk, (2.1) can be
rewritten as

(fit^h* vh) + « K , »fc) + S(Bfcf wh? i?fc) + (/;(«/,), »A) +

+ ±(y.uh,V.vh)=(fk9vh) (2.14)

for every vh e Vh> for almost ail t e [0, T]. From this, we dérive

rt + b
(wh(t + ?>)-wh(t),vh) = - a(uh(s),vh)ds

rr + s ^ rr + 8

- J h(üh(s),uh(s),vh)ds- J (/;(uA(j)),üA)dï

f + 6 / i \ r t + s

- J ( ± V . uh(s)9 V . vhj ds + J ( / t ( j ) , t>fc) d5 (2.15)

for all f e [0, T - 8], 0 < 8 < r , and all vh e Vh. By means of (2.13), we can
estimate the right-hand side of (2.15) :

t + h
a(uh(s),vh)ds (2.16)

ri r
^ ^ f+511^11^2 ||wft(5)||^2 ||aA(j)||^ \\üh(s)\\l^2ds

al/4 (2.17)

f + 8
(J^uh(s)),vh)ds *M\\vk\\wU1b, by(1.5), (2.18)

vol. 23, n° 2, 1989



302 J. U. KIM

• M

| ^ H ^ 8 ,

(2.19)

(2.20)

where M dénotes positive constants independent of h, k, e, r\ and 8. We
substitute wh(t + 5) - wA(f) for i;A in (2.15) through (2.20) and integrate
over [k, T — 8] to arrive at

(2.21)

for all 0 < 6 < min ( r — fc, 1 ), where M is a positive constant independent
of h, k, e, r\ and ô. Let us set

( 0

Then, it follows from (2.13) that

for 0
(2.22)

*} o

M being a positive constant independent of h, k, e and r\ , (2.23)

which, combined with (2.21), implies that the séquence {wh(t)} is
precompact in L2(0, T ; L2(O)3) ; see [18]. In the meantime, we dérive from
(2.13)

Ja
(2.24)

(2.25)

(2.26)

where M dénotes positive constants independent of h, k, e and TJ. By virtue
of (2.24), the séquence {wh{t)} is also precompact in L2(0, T ; L2(H)3).
Let {h, k, e, tl} be any séquence of quadruplets such that {h, k, e, r]} ->
{0,0,0,0} and -^=-*0. Then, on account of (2.13), (2.25) and (2.26),

\\uh{t)~wh{t)\\\2dt^Mk,

H«*(0-s*(0||*2* =

Modélisation mathématique et Analyse numérique
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h'
there is a subsequence {hf, kf, e', r\'} -* {0,0,0,0} with —^=-^0 such

Ve '
that for some fonction «,

uh, -> u weakly in L 2(0, T ; W0
1>2(a)3) , (2.27)

uh,,uhl,wh,-»u weak*mL°°(05 T ; L2(üf) , (2.28)

«/*<> *V» wh. -+ u strongly in L 2(0, T ; L2(ü)3) , (2.29)

wh,(t) -* M ( 0 strongly in L2(O)3 (2.30)
for ail tsEcz [05 T], where measure ([0, T] - E) = 0. By (2.13), we
notice that

[ | |V .M A | | 2
2 ^^eM, (2.31)

J Q

where M is a positive constant independent of h, k, s and r\. Consequently,
we find

weL2(05 T;V). (2.32)

We shall prove that the above fonction u coincides with the solution of
Theorem A above. Let us choose any v s €^([0, T] ; W2>p(nf n V),
3 <p < oo. Then, rh v e Cl{[Q, T] ; Vh), where Vh is equipped with the
norm of WQyP(flf. Substituting rh v - uh for vh in (2.14) and integrating over
[0, t], 0 < r ^ T, we have

rt
,v-uh)ds+ a(uh,rhv -uh)ds

J Q

+ b(üh,uh,rhv)ds+ Jn(rhv)ds
J Q J Q

1 f'
r
t|(Mfc)ds + - (y.uh,V.(rhv-uh))ds

o E Jo
(fk,rhv-uh)ds. (2.33)

o
The first term can be written as

1o z

(wA»9r'At7)^+ (^Wfc»wA-wA)&. (2.34)
Jo Jo

vol. 23, n° 2, 1989
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But, for mk =s= s <: {m + 1) k, m — 0, ..., iV — 1,

(9tw„(s),wh(s)-uh(s)) = ( i l J 5 * - i ) I |«h
m + 1-«A

m!|2L2^0, (2.35)

and consequently,

f(a,w*,H>fc-KA)<fa<0, (2.36)
Jo

which together with (2.33) and (2.34) yields

~\ K O l f r + j ||M0||22+ (Wh(t),rhv(t))

~(4,rhv(0))- \' (wh,8trhv)ds
Jo

+ Û ( « I , ^ ^ - W A ) * + b(üh,uh,rhv)ds
JQ JO

+ f A ( ^ r ) d5 ~ ^ ( « A ) ds + ! f (V . uA, V . rA ») is
Jo Jo 8 Jo

^ f (A.r* «"«*)*, (2.37)
Jo

for all i e [0, T]. Since u € C^tO, J] ; W2ïP(n)3 n V), ït is easy to see
that, for any t e [0, T],

I f ' ! (V . W „ V . rh v ) ds ^ fr 1 | (V . uh9 V . (rh v - v )) | ds,
\Jo E Jo 8

by (1.12) and (2.13),

s i n c e

We now consider (2.37) for a subsequence {h', kf, e', t)'} for which (2.27)
through (2.30) hold. With the aid of (2.27), (2.29) and

lim rh v = v in the norm of C x([0, T] ; Wo'p(n)3) , 3 <p < oo , (2.39)

we find

b(üh,,uh,,rh,v)ds-> b(u,u,v)ds=; b(uyu,v)ds (2.40)
Jo Jo Jo

Modélisation mathématique et Analyse numérique
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as {A',fc', e ' ,Tj '} -i, { 0 , 0 , 0 , 0 } . We also notice that as {/r', * \ e ' , ^ ' } -
{ 0 , 0 , 0 , 0 } ,

Mffi a(uh.,uh.)ds3* a(ufu)ds, (2.41)
Jo Jo

lim \tJri<(rh>v)ds= ['ƒ(»)£&, (2.42)
Jo Jo

lim P / v (i*A, )ds*\'j(u)ds. (2.43)
Jo Jo

Consequently, we conclude that for ail t e E ; see (2.30),

llwCOIII +

-(UQ,V(0))- («, 3ro)rf5+ a(ii,i;-u)<fr + b(u,u,v)ds
Jo Jo Jo

+ [ ' /(I0&- ( / ( M ) * * * j (f,v-u)ds (2.44)
Jo *>o Jo

holds for each P e Cl([09 r ] ; W2si?(Û)3 f 1 F ) , p > 3 . Hère we also used
the fact that «|-+&0 strongly in L2(€tf, Next we choose any
v G L2(0, r ; F ) n C ([0, T] ; Z3) such that dtv e L2(0, T;V). Then,
there is a séquence {vn} in C^fO, T] ; W2'p(ftf f l F ) , ] ? > 3 } such that as
n -* oo,

oB-^i? strongly in L2(0, J ; F ) a n d C ( [ 0 , T];X3), (2.45)

3ri?B -> btv strongly in L 2(0, T ; Vr ) . (2.46)

Hence, (2.44) holds for every v e L2(0, T;V)DC ([0, T] ; X3) with
btv e L2(0, T; V ) , for ail r e £ . One can show the existence of such a

séquence as follows. Let v%(t) = v ( —- (r + ô ) j , for each 8 > 0.
\ T 4- 2 o /

Then, y 8 e L 2 ( - 8 J + 8 ; F ) n C ( [ - 8 J + 5 ] ; I 3 ) and a,P8 €
L 2 ( - 8, T + Ô ; Vf ). Furthermore, o8 -> Ü strongly in L2(0, T;V)D
C ( [0, T] ; X3) and 3ft?8 -• drt? strongly in L2(0, T ; V' ) as Ô -> 0. Next we set

(2.47)

w h e r e P i / m ( . ) is t h e Fr i ed r i chs mol l i f ier . T h e n , vnm e C ^ — oo , oo ;V)

a n d , for e a c h fixed 5 , Ü 6 m -> i?8 s t rong ly in L 2 ( 0 , T ; V ) O C ( [ 0 , T ] ; X 3 ) ,
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dtvb m -• dtvb strongly in L2(0, T ; V' ) as m -• oo. Thus, it is enough to show
that Cl([09 T] ; W2-p(Slf dV),p> 3 , is dense in C\[0, T];V). But this
follows from the f act that W2'p(Clf n V is dense in V.

We now proceed to prove that u is the same as the solution of Theorem A
denoted by U on the interval [0, 71*]. Substituting U for u in (2.44), we have

- (u,dtu)ds+ a(u,ü - u)ds
Jo JQ

rr rt n
+ b(u,u,ü)ds+ J(U)ds- J(u)ds

Jo Jo Jo

3» f (f,U-u)ds, (2.48)
Jo

for all r e E H [0, T*]. In the meantime, w satisfies, according to Défi-
nition 2.1,

(erâ, u-U) + a ( w , w - ü) + è(w? ü, u) +7(w)

^ (ƒ, « - n) , for almost all r e ( 0 , 7 * ) , (2.49)

which yields

ds

1 _ 2 1 2 f -
2 û 2 ° Ll JO

r - p
+ a(u, u — u) ds + b(u,u,u)i

Jo Jo
+ I J{u)ds- ( J(ü)ds^ \ (f,u-U)ds9 (2.50)

Jo Jo Jo

for all * e [0, r * ] . Adding (2.48) and (2.50), we obtain

I«(O- 0(011̂ 2 + 2 f a(u-U,u-ü)ds
Jo

^ 2 \b(ü, ü, u) + b(u, u,U)\ ds, (2.51)
Jo

for all t e E D [0, r * ] . Meanwhile, we can estimate

, 5 ) | ^ M | | W | | L , | | M - ü | | ^ 5 | | W - 0 | | v
 r , (2.52)
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2 3where - + - = 1, r > 3 , and M is a positive constant depending only on fl.

Consequently, we arrive at

P u-ü\\\2ds (2.53)

for ail f e E H [0, T*], M being a positive constant, from which it follows
that

WEEW, on[0, F * ] . (2.54)

By the uniqueness of solution ü, uh converges to u in the sense of (2.9) and
(2.10) for the whole séquence {h, k, e,r\}.

Next we shall prove that uh converges to u strongly in
L2(0, 7* ; W^2(nf) by slightly modifying an argument due to [17]. We
first show that uh -> u strongly in L2(0, f ; W0

1)2(n)3) for any 0 < f < T*.
Since wA converges to u strongly in L2(0, T* ; L2(H)3), there is a subsequ-
ence {A', A:', s', <n'} -• {0, 0, 0, 0} such that ufc.(f) converges to u(t)
strongly in L2(lî)3 for almost all t e [0, T*]. For convenience, we shall use
the notation h, k, e, r\ for /i', k'\ e', TI'. Choose any 0 < T < T*. Then, there
is f < r* < T* such that uh(t*) ^> u{t*) strongly in L2(H)3. Let A *̂ be an
integer such that (N* - l) kzz t* < N* k. It follows from (2.1) that

m

1

£

= 1

N*

I*m = l

• | | v . « ;

m = 1

m = l

Following [17], we can define for each A a fonction u£ e L2(0, T ; Vh) such
that as h -> 0,

< - . M strongly in L 2(0, T* ; WQ1-2(H)3) . (2.56)

We then consider the expression

Xh= \ «(«* - K. "A - «A+ ) * , (2.57)
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which can be split into

' O

Using (2.55), we can rewrite

CkN*

Xh= a(Uh,Uh)<t*

rtcN*
x J « - 2 a(uh,ut

Jo
rkN*

Xh = a(uh,uh)dt.
Jo

i 1 1 N*
V 3 _ 1 II „Af* II 2 1 II 0 | |2 1 V

N*

m = 1 m = 1

+ £ k{fm,uZ). (2.58)

Hence, as {h, k,z,r\} ->• {0, 0, 0, 0} ,

h~~ 2 L 2 ° L2 Jo ^ ' '

+ f' (f,u)dt-]im2g f' [ Z>//(U*)(T| + Dn(uh)y
mdxdt. (2.59)

Jo ô ^fl

Meanwhile, we set w = 2 M in (0.1) to see

i 2 i 2 p* r*
2 ^2 2 ° L' J O J O ~~

^ f (ƒ ,«)* . (2.60)
Jo

Combining the above two inequalities, we get

lim Xh ^ J(u) dt — lim 2 gr Du{uh){r\JrDIl{uh))~
ll2dxdt

Jo Jn Jfi
«• (•»• (2.61)

^ J(u)dt — lim J(uh)dt^0
Jo Jo

since

||ö„(KA)Cn + Du(uh)Y
m - Du(uh)

y2\\L<o ^ s/^M (2.62)
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for almost ail t, M being a positive constant independent of h, k, e and r\.

This proves uh^u strongly in L2(0, f ; Wo'2(ft)3) for a certain subsequence

{hf, k\ e', V} -• {0, 0, 0, 0} . By the uniqueness of M, this convergence is
true for the whole séquence {h, k, e, t\}. If T* < T, then we can extend
w(0 to an interval [0, T* + 8) for some small 8 > 0, since
u(t)e C([0, r*] ;JTr). We then apply the above resuit so that uh - • u
strongly in L2(0, T* ; W^2(nf). If T* = T, then we extend ƒ (t) by setting
/ (O = 0 for t > T so that ƒ e /-"(O, oo ; L2(ft)3). According to (2.1), we
can define w™ for m = 1, 2, ..., 2 7V and consequently, uh is extended to
[0, 2 T]. In the meantime, w can be also extended to a larger interval
[0, r + 8). We can again apply the above resuit to get the strong convergence
inL2(0, r ; ^ 1 ' 2 ^ ) 3 ) .

The proof of Theorem 2.2 is now complete.

3. REGULARITY OF TIME-DISCRETE SOLUTIONS

In this section, we first establish interior regularity of stationary solutions
and, based on this, we obtain more regularity of time-discrete approximate
solutions than in [14].

THEOREM 3.1 : Let v be a unique solution in V o f

a(v, w -v)+J^w)=_J^vJ ^(H^w-v) (3A)

for allweV, where H e L2(H)3 is given. Let Os be the set {x e ft : distance
(x, 3O)>Ô}. Then

where C and M are positive constants independent of§,r\ and H.

Before proceeding to the proof, we recall that if ƒ sWm

II ƒ || wm,p always dénotes the norm in Wm>p(n)3. If the norm is taken over a
space domain other than ft, it will be denoted explicitly.

Proof: It was shown in [13] that there are a unique function vx in

D(A2) and px € W1>2(ft) with the condition px dx = 0 such that
Ja

- fji Avx ~- \fji AA vk - g 3, ——; + Vpx = H , (3.3)
/ D ( )

where we write A = A2 which was defined in Section 1, and |x and g are the
viscosity and the yield limit, respectively. The third term is a vector function
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which is represented by lts f-th component. Throughout this section, we
adopt the summation convention on repeated indices. In fact, the case
X = y\ was discussed in [13], but the same analysis can be applied to the case
\ ^ r\ and we have

y L | (3.4)

and

(3.5)

where C and M stand for positive constants independent of X, r\ and H. Next
let us write

where qx is a scalar function. It then follows from (3.4) that

2 2 l , (3.6)

C being a positive constant independent of \ , r\ and H. Furthermore,
according to Cattabriga's theorem [2], vKeD(A2) implies that
vx e W4)2(n)3 and S7qK G W2>2(nf since afiieC4 This regularity is necess-
ary to justify the manipulations in obtaining the estimâtes below. We next
construct a function <pK(x) e C3(£i) such that, for all sufficiently small

<p8 = 1 o n ^8 an (i <Ps = O on 3H , (3.7)

K <PÔ(*) | 2 ^^<PÔ0O> for aU x e n , i = 1,2,3, (3.8)

I 3, 9, <P8(*) |2 =s ̂  cps(x), for all x e ft, /, ƒ = 1, 2, 3 (3.9)

lM/9/<P8(*)| « ^ , foraUxen,i,;,/ = l , 2 , 3 , (3.10)

where C is a positive constant independent of ô. Let d(x) = distance
(x, all) for x G Ù. Since 8ft G C3, which is enough for <p8, there is a positive

number £ such that d(;t) G C3(T^), where Fç = {jceÜ; d(;c) =s £} ; see [7].
We next define a function cp(s)G C3([0, oo)) such that

s\ for 0 ^ ^ - c i
2 (3.11)

1, fors ^ 1 , v '
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and

xe Ù, f / 1 \

/ 1 \4 l
( - j =59(5)^1, for - ^ s ^ l , and then, set for 0 <: ô < £,

(3.12)
( 1, i f d ( x ) > 8 .

Then, it is easy to see that this 98(x) satisfies (3.7) through (3.10). We shall
need the following lemma.

LEMMA 3.2 : If u e Wo'2(H), tfien /c?r ail sufficiently small ô > 0,

I I ^ 3 ; < P S | | L 2 ^ § I I " I I ^ 2 (3.13)

H U S . Ô ^ ^ I I ^ ^ ^ I I M I I ^ Z , î , / , / = 1,2, 3 . (3.14)

This is an easy conséquence of the well-known fact :

LEMMA 3.3 : If u G W O
U ( Ü ) , then

CÔ2 | |W | |^,2, (3.15)

C being a positive constant independent of Ô and w.

Let us multiply both sides of (3.3) by - <p5 At\ and integrate over H :

|x cp6|Aux|
2^x + \|x (AAvJ.<phAvxdx +

+ 0 [ ( 3y ^ ( P x ) ) cp5 APX I * C - f Vpx . 9 . Au, ^x

H.ybAvKdx , where PX = (vkl, Î;X2, ÜX3) . (3.16)
Jn

We shall consider each term of (3.16). Below, C and M stand for positive
constants independent of ô, \, y\ and H :

= - \
Ja

f (At?J . (A9Ô) Aux dx + K (Avx) . (3 ,^) â Ai;,, dx

X V f <Pt\dA»K\2dx-\ \ dlVqx^bblAvxdx. (3.17)
t=iJa Ja
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~\\H\\h by (3.6) and (3.9). (3.18)
8Z

Avx . (3,<P8)

« X \A\
Ju ^s ^ , = i •/ ft

§o Z l f <Ps|a,A»x
* ,mlJn

9 , =X

\2dx, by (3.4) and (3.8) . (3.19)

AVx.dx ,

since V . vk = 0,

f | V ^ | 2 l | V < p s | 2 ^ + ̂ f f <p6\d,Avx\

o ^ , , i J a
, by (3.6) and (3.8) . (3.20)

- \ ! " VX 98 9/Afx, dx . (3.21)

, ' /V 9»a i AP > ,dr = - , ' j V x ; 9»A£>,/(i>

[8/
n \ y/t\+D„(vx)

- (3-22)

According to Lemma 1.1,

f ( 3, , D"{Vx) ) cp8 d,D„(.vx) dx&O. (3.23)
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Since

and, for each i, j , l,

| |a /a /((3 I<P8)^) | |^C| |A((8 /cp6)i ;x) | |^ ) (3.24)

we deduce

3 r 2 3 f

C f 2 C 2

by (3.4), (3.8), (3.9) and (3.14) . (3.25)

Consequently, we have from (1.5), (3.21) through (3.25),

r / A,(»x) \ A .

Ja \ y/v+Dnivi)/

LI f 9 CC

=sct: <p5|Aux(
2dx + -^ + — ||H||L2. (3.26)

Next we find

f f
I Y P \ • *P5 ̂ ^x dx = — Z'XC^I^PB) ^ ^ M dx

Ja Ja

since V . vx = 0,

2dxy
n, by(3.5)

, by(3.8). (3.27)

Now we combine (3.17) through (3.27) to conclude

f C
<PBIAi7xI rfx^— ( | | / / | | 2 2 + | | / / | | 2 + M ) , (3.28)

J a ôz ^
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from which it follows that

| |cp 8At;J |L 2^^( | | / / | | i 2 + M) (3 29)

Since cpô ux e Wl 2(H)3 n W2 2(H)3, we have

by (3 29)

by (3 4), (3 8) and (3 13),

§ | L 2 +Af) (3 30)

With the aid of (3 4), we can extract a subsequence still denoted by
{vx} such that

vx -> v * weakly in V as X -• 0 for some function v* (3 31)

In the meantime, each vx satisfies

a(vX9w-vx) + .
(3 32)

for all w e S
By virtue of

lim HAvx, Aw - AvK) ^ hm \(t?K, A2 w) = 0 , (3 33)
X-^0 X-,0

iim/,(^)^/,(^); (3 34)

and

hm *0>x>vô* <*(?*>»*)> (335)
X-.0

we can pass \ -• 0 in (3 32) to obtain

for all w e S , (3 36)

and hence, for all w e V By the uniqueness of solution of (3 1),
v*=v Consequently, (3 30) yields (3 2), and the proof is complete
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Next we consider the regularity of solutions to the problem : for given
um~l e V, find um e V and pm e L2(Q,) such that

i. (um- um~\ w) + a(um, w) + b(um~l, um,w) +
K

+ W O , w) + (Vpm, w) = (ƒ", w) (3.37)

for ail w e W^2(ftf. Hère, k = T/N, u°eVandfe C ([0, T] ; L2(Q,)3)
are given data, and fm = f (km), m = 1, ..., N. Existence and uniqueness
of um can be easily shown together with the estimâtes

m a x \ \ u m \ \ 2 ^ M (3.38)

X k\\um\\2
v^

M> (3-39)
m = 1

where M dénotes positive constants independent of k and r\t Since
V - X6, we can use the resuit of [14] with r = 6 to conclude that there are
positive numbers T^^^T and cr1 independent of k and TI such that

|| um || L6 === M , M being a positive constant

independent of A: and TI , (3.40)

provided k^<rl and &m ̂  Tj. Let us substitute - (um - um~l) for w in

(3.37) :

\\~k U IL2 2k '" Yk 'U *

, u , i ( « - u ) ) I, (3.41)
/C / |

for m = 1, ..., iV. We proceed to estimate the last term of (3.41) by writing

um = xm + ym + zm (3.42)

where xm e V, ym e V and zm e V are solutions of

a(x
m,v) = - (J^(um),v) , for all v e V , (3.43)

«(y m ^) - - è ( M m " \ w m , ü ) + (/m
?u) , for all v e V , (3.44)

a(zm,v)= l - l ^ - u " 1 - 1 ) ^ ) , for all t; e V, (3.45)
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respectively. With the help of Cattabriga's theorem [2] and (3.40), we find

\\ym\\wi.3*sM9 for allm = ! , . . . , # * where kN* ̂  T x , (3.46)

and
\\xm\\wi,3^M , forallm = 1, ...,iV , (3.47)

where M dénotes positive constants independent of k and r\. We next
consider the operator A : q -* ij/ where i|i € V is the solution of a(ty, v) —
(q,v) for all veV. Then, A is a bounded linear operator from
L3(O)3 into V O W2>\af, and also from W"1>3(a)3 into V n Wh3(Ù)3

according to Cattabriga's theorem [2]. Therefore, A is a bounded linear
operator from [L3(O)3, W-l>3(af]m into [W2>3(O,f, Wh3(Qf]mnV,
where [,]1/2 is an intermediate space defined by the complex interpolation
method. We note that [W2>3(Û)3

? W
h3(ùf]m = if3/2'3(lî)3, where Hs•*(«)

stands for the space of Bessel potentials restricted to O. Since [L3(O)3,
W-h3(üf]V2 is the dual of |Wo

lt3G(n)3> L3a(af]1/2 and [W^3l2(nf,
L3/2(O)3]1/2 = JFf1/2'3/2(Ü)3 is densely imbedded into L2(O)3

? we see that
L2(O)3 is imbedded into [L3(O)3

5 W-1 '3(O)3]3/2 ; see [19]. Therefore, we
have

\\Aq\\Hm,3^M\\q\\L2, for all q e L 2(O )3 (3.48)

M being a positive constant. Consequently, we obtain

In the meantime, we have by (3.40), (3.46) and (3.47),

and thus» by interpolation,

It now follows from (3.46), (3.47) and (3.51) that

um-\um,^(um-um-l)\\ «

(3.49)

(3.50)

(3.51)

:M i (M m ~w m - 1 )
L1

(3.52)
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which, together with (3.41), yields

Z II K \\Ll L l

+ ^a(um - um~\ um - um-1) ^ Jy](u
m~1) - J^{um) + kM , (3.53)

for m = 1, ..., TV*, M being a positive constant independent of k and -q.
Hence, we obtain

N* II 1 m I I 2

w , w ) + 2/^(1/ ) + M , (3.54)

which is valid for any TV * s= 1 such that kN* ^Tv In view of our purpose,
we may assume 0 < -n === 1. Then, we dérive from (3.45) and (3.54),

£ k\\z-\\2
w2>2^M (3.55)

m = 1

and

for ail TV* s* 1 such that kN* ^Tly where M dénotes positive constants
independent of k and i\. By means of (3.46), (3.47) and (3.55), we can
estimate

I k\\um\\2
wh3^ M , (3.57)

m = 1

and hence, by recalling (3.44) and using Cattabriga's theorem,

N* N*

m = \

k\\f%2 +

+ C £ fc||Mm-1|i^||Hm||2vl,3=sM, by(3.56). (3.58)
m = l

Next we can use Theorem 3.1 by putting

to obtain

( M + | | i ( " m M ' n ~ 1 ) | L + H / m l l + \\"m-% I I ^ H ) • ( 3 - 5 9 )
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Combining (3.54) through (3.59), we have

where M is a positive constant independent of 6, k and r\. Finally, according
to Cattabriga's theorem, (1.5) yields

wp < /?< oo , w = l, ...,JV, (3.61)

where Cp is a positive constant depending only on p. We have proved

THEOREM 3.2 : There are positive numbers TX^T and cr1 independent of
k and T\ such that the solution um of (3.37) can be written as um = xm +
ym + zm

y where ym and zm satisfy (3.58) and (3.55), respectively, and
xmsatisfies (3.60) and (3.61)yprovided0 < k ^ a1? kN* ^ 7\ and 0 < T| =S 1.

4. ERROR ESTIMATES

To obtain error estimâtes, we need solutions more regular than those in
Section 2. Here we assume uoe G, f e C ([0, T] ; L2(O)3) and
Btf e L2(0, T ; W~1)2(fl)3). Then, according to Theorem 3.2 in [13], there
is a unique solution u of (0.1) to (0.4) on some interval [O, r 2 ) .
0 < T2 =s; T. Furthermore,

u e L°°(05 T2 ; Wo1'6^)3) n C ([0, T2] ; V) (4.1)

dtu e L2(0, r2 ; V) n L°°(0, T2 ; X2) . (4.2)

Our intent is to estimate the error between the true solution u and the
approximate solution uh constructed by the scheme (2.1) and (2.5). For this
purpose, it is necessary to introducé two intermediary fonctions which
bridge the gap between u and uh. The first one is the solution u^ of the
regularized problem with 0 < r\ ̂  1 :

(6,1^, w - uj + a(u^, w-u^ + b(wv u^ w) +

for every weV , for almost ail t e (0, T) , (4.3)

S G L2(0, T; F), dtu^ e L2(0,T;V) , (4.4)

Uj](xy0) = u0^x) in n. (4.5)
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The second one is the time-discrete approximate solution uk constructed in
[14] ; see also (3.37). Our error estimâtes consist of the following three
estimâtes.

(Estimate I) Estimate the différence between u and u^.
(Estimate II) Estimate the différence between u^ and uk.
(Estimate III) Estimate the différence between uk and uh.

4.1. Estimate I

First of all, we have to choose uQy] in (4.5).

L E M M A 4.1 : Let uQ e G. Then, there is uo^eV n W^6(ftf such that

I K - K O A ^ C V 4 ,
C being a positive constant depending only on fl , (4.6)

a(u0^ v -Mot,) + *("ov «o-n» *0 + ̂ nOO - ^ O o J ^
^ (H^v-uoj, forallveV, (4.7)

where H^ e L2(fl)3 with

\\HjLi*M, (4.8)

and M is a positive constant independent of rj.

Proof: By the same argument as in [13], there is a unique function
w0T1 in F n W0

1>6(n)3 satisfying

Ö(WO T I , I ;-WOT 1) + / T 1 ( Ü ) - / Ï 1 ( M O T I ) ^

^ (H,v ~ UOJ]) -b(u0, u0, v - u0^) (4.9)

for ail v e V, where H is the function associated with u0 in the définition of
G. Hère the norm of uOy] in Wo'6(H)3 dépends on the L2-norm of H and
u0] b}u0, and is independent of r\. Meanwhile, w0 satisfies

^ (if, w0T1 - w0) - &(MQ, W0? WOTI - M0) (4.10)

since MQ^ € V. Substituting u0 for t; in (4.9) and adding the above two
inequalities, we have

a(uOl]-uo, uo^-u0)^C V^ ; by(1.6), (4.11)

where C is a positive constant depending only on Q, and g. Next we set
H^ = H - u0]b yw0 + WOTU d} wOtl. Then, MOTI satisfies (4.6) and (4.7) with this
H^, which satisfies (4.8).
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The assertion on the solution u^ of (4.3), (4.4) and (4.5) is

PROPOSITION 4.2 : There is a unique solution u^ of {43), (4.4) and (4.5) on
some interval [0, 7^), 0 <: 7^ =s T, with uOr] constructed in the above lemma.
Furthermore,

un € Lœ(o, T3 -, wl>6(nf) n c([0, r3] ; v), (4.12)

6,M„ e L2(0, T3 ; y ) n L°°(0, r3 ; X2) , (4.13)

3^6l2(0J3;7'). (4.14)

Here, T3 and the norm of u^ in the function class of (4.12), (4.13) are
independent of 0 «= ti « 1, and

where M is a positive constant independent o f 0 <c TJ ̂  1.
The proof of the above assertion is the same as that of Theorem 3.2 in

[13]. In the process of this proof, the estimate of u^ in the norm of the
function class in (4.12) and (4.13) follows. It is also seen that T3 can be
chosen independently of T̂  on account of (4.8). To dérive (4.14) and (4.15),
we note that (4.3) implies

= (ƒ, w) , for every w E V , (4.16)

for almost all t e (0, T3). By virtue of (4.12) and (4.13), it is apparent that
bfu^ e L2(0, r 3 ; V') and that for all 0 < t\ ̂  1,

Ul. (4.17)
L2(0,Tz,L

2(ü))

Hence, (4.15) is obtained. We are now ready to estimate the différence
between u and u^. Let us set

T4 = min (T2, T3) . (4.18)

Substitute u^ for w in (0.1) and u for w in (4.3), and add the resulting
inequalities :

1 d n
u u / \ i ï*^ \ i%/ \ i

+ |^(Mn) - ^ ( s ) l + \J(u)-J-r)(u)\ ' for almost alH e (0, T4) , (4.19)
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which, combined with (1.6), (4.1) and (4.12), yields

^ \\u - \u - Mj£2) , (4.20)

for almost ail te (0, T4), M being a positive constant independent of
0 < in =£ 1- From this and (4.6), we deduce

sup | |u(0-^(0 | |^M-n 1 / 2 , (4.21)
16 [o, r4]

r (4.22)

where M dénotes positive constants independent of 0 < *c\ =s 1. In f act, we
shall need the discretized version of the above estimâtes later on :

u^{km)\\\ï^M'<\m , for m = l,...,N*, (4.23)

k\\u(km) - u^km)\\2
v ^ Af (V 2 + k2) (4.24)

m = \

where foV* ^ T4, and M dénotes positive constants independent of k and
0 < : T > ^ 1 < (4.24) follows from (4.22) and the fact that the norm of
dt{u - u^) in L2(0, r4 ; V) is bounded uniformly in 0 < r\ ̂  1.

4.2. Estimate II

Let us define

Uk(t) = um, for (m- l ) fcs£f <mfc, m = ! , . . . , # , (4.25)

where wm's are determined through (3.37) with u° = uQ^ which is the same
as in Proposition 4.2. According to [14], a solution of (4.3), (4.4) and (4.5)
can be obtained as a limit of the séquence {uk}. By the uniqueness of
solution, this solution has to coincide with u^ of Proposition 4.2 on the time
interval [0, T5], where

T5 = min (Tu T4) . (4.26)

Hère, [0} 7\] is the time interval associated with the estimate (3.40) where
the solution exists according to the method of [14]. T4 was defined by (4.18).
We shall estimate the différence between uk and u^ on the interval
[0, T5] by using the argument of [8]. Since (4.13) and (4.14) imply
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dtu^ e C ( [O, T3] ; X2) possibly after a modification on a set of measure zero,
it follows from (4.3) that

( \ («,(*„) " «„(<m-l)). » ) + «(«,('«)> ») + &K('m-l). «,('«)» ») +

+ (/;(«„(*„)), o) = (/(ïm), »)+(/?", ü) , for all o e V , (4.27)

where fm = mk, m = 0, 1, ...,N*, kN*^T5 and

+ ^ K(^-l)-^(^))9;^('m)- (4-28)
; = i

We next set

em=u^(tm)-um , for m = 0,1, ..., N*, kN* *sT 5 . (4.29)

Subtracting (3.37) from (4.27), we have

(em- em~\ v) + ka(em, v) + kb(em~\ u^tj,v)

+ kb(um~\ em,v) + k(J^uA(tm)) - J^(um), v)

-k(Rm,v), for m = l,....N*, kN**sT5. (4.30)

Putting v = em, we obtain

+ \ \\em-em-%2 + ka(em, em) ̂ k\b{em~\ u^tm), em)\

+ k\{Rm,em)\, for m = 1, ...,N*, kN* « T5 . (4.31)

Since the norm of M,, in C ([0, T3] ; V) is bounded uniformly in 0 < r\ « 1,
we estimate

W | ^ »-1!!^ | | e 1 y (4.32)

for m = 1, ...3iV*, kN*^T5 and, foïlowing [8],

1̂ ) A , (4.33)
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which yields by (4.13) and (4.15),

where M dénotes positive constants independent of k and 0<T}===1.
Combining (4.31), (4.32) and (4.34), we dérive, for ail TV* such that

1^*11^ + l \\em-em-1\\2
L2+ £ ka(em,em):

m = 1 m = 1
N*

' , (4.35)

where M dénotes positive constants independent of k and 0<cin^ l .
According to Lemma 2.4 of [8], (4.35) yields

max ||em||^2+ £ k\\em\\2
v^ Mk2l - + M \ (4.36)

for kN* ^ T5, where M dénotes positive constants independent of k and

4.3. Ëstimate III

For convenience, we shall use the foUowing terminology.

DÉFINITION 4.3 : A number is called « universal » ifit is a positive constant
independent of h, k, s and r\.

As before, we assume that O ^ i q ^ l , and retain the meaning of
T5 defined by (4.26). (2.1) can be rewritten as

+ fc ( « V . < , V . (vh - u%)} ^ k(fm, vh - u%) , (4.37)

for all vh e Vh, m = 1, ..., N, where we take

4 = rhu0, (4.38)

/ m = / ( * m ) , m = l , . . . s iV. (4.39)
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Her e u0 is the same as in the previous section, and rh is the operator defined
by (1.13). In the meantime, (3.37) can be rewritten as

(um -um-\w~~um) + ka(um, w~um) + kb(um~\ um, w-um) +

+ kJ^(w) - kJ^{um) ~ k(pm, V . (w - um)) & * ( / w , w - um) (4.40)
r

for all w e Wla(Q,fy m = 1, ..., N. Requiring that pmdx = 0 for each

m, it follows from (3.37) and (3.54),

l k\\p"\\2
L2*sM, (4.41)

m = l

where kN* ^T5 and M is universaL By Theorem 3.2, each um e Wo'
and hence, we can substitute rh u

m for vh m (4.37) :

uh — uh fu - uh) + Ka\uh,u ~uh) + KD{uh ,uhfu — uh ) -f

where

Kh - Kuh ~uh >u —rhu)^r

-r fta \Uh , U — ,hU ) -r r€D {Uh , Uh , U — ThU )

+ kJ^(um) - kJ^{rh u
m) + k ( IV . < , V . («" - r, wm))

+ i t ( / m , ^ M
m - « » ) , (4.43)

for m = 1 , . . . , TV. Putting w = u™ in (4.40), we write

(um -um~\ wjp - wm) + fez (M"1, «jj1 - um) +

+ kb(um-\ um, uZ-um) + kJ^uï)

- kJ^um) -k(pm,V. (u%- um)) ^ k{fm, < - um) , (4.44)

for m = 1, ..., N. Adding (4.42) and (4.44), we have

{ut - um, ut - um) - {ut ~l-um-\ut- um) +

+ ka {ut - um, ut - um) + kb{ut^-um-\ um, ut - um)

,V. {ut~um))

-R?, for m = l,...,N. (4.45)
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For m = 1, .., N *, where kN ¥ ^ r5 , we use (3 40) and intégration by parts
to estimate

l_um-l9Um9 u% - Um)\

— u
m \112

|'Wiri 2
0

; 1 | | « " I I L .

II ;v u \ \
\\Uh ~ U || w l 2

y m - l m - I I I 1 /
w ||

j | 7 . m - 1 „
2 w/i - u

1/2

uT - u"

(4 46)

where Cx appears in (1.8), and M and 0 dénote universal constants It
follows from (4.45) and (4 46) that

1 1 1 - I M I 2

L \ \ u m ~ l — w " 7 " 1 ! ! 2

2 " £
i - 1 jl 2

, m - 1 „ m = 1||2 (4 47)

for ail m = 1, ..., TV*, where £iV* ^ T5 and 0 is a umversal constant From
now on, we assume

k =s <r9 (4 48)

Hère we choose cr2 to be a universal constant such that a2 =s= o^ which

appeared in Theorem 3.2 and a2 0 =s - , where 0 is the same as in (4 47)

Now (4.47) can be wntten as

, (4 49)
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, , u • 1 + 2 fc0 ,and thus, by setting p = T - T ^ > 1,

-U
2 1 - 2 k® iU

' + i l ^ \ R h \ • (4-50)

for m = l,...,7V*, where kN*^T5. Multiply both sides of (4.50) by

y m - l

and add over m = 1, ..., TV* :

. 1 N' ^N*-m ek p r u !*" I • (4-52)
m= 1

Recalling that k - T/N, kN*^T5^T and the assumption (4.48), we find

l < p m ^ e x p ( C T ) , for all m = 1, ..., Af* , (4.53)

where C is a universal constant.
Since ŵ  = rA u0 and M0 e F Pi Wo>6(n)3, we obtain by means of (1.10),

(1.11) and (4.6),

L V / 4 ) , (4.54)

Ik* « o - "011^1.2+ K - « o J l w i , 2 = s M , (4.55)
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where M dénotes universal constants. It now follows from (4.41), (4.48),
(4.52) through (4.55) that for kN* «s T5,

max \\u^-um\\2
L2 +

(4.56)

where M dénotes universal constants. In order to estimate the last term of
(4.56), we shall dérive some basic estimâtes. As before, let <3>ft = U K*

For each 8 ^ 0 , we dénote by <ï>̂  s the union of all K such that
Ke¥>h and distance (K, 3O)5=ô. Then, there is a positive constant C
depending only on O such that

sup distance (3Û, x) =s C (h + 8), for all h and 8 . (4.57)

This follows from the assumption on T5A. We can now estimate by virtue of
(1.10), (1.11), (1.12) and Theorem3.2:

m = 1

+ 2 £ *«x'"-rfcx'»||;,î, (4.58)
m = 1

by (4.57)

s M(/t2 + (A + S f 3 ) ^ M/Î273 , (4.59)
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by choosing 8 = 0 and assuming h === 1, where C's and Af s are universal
constants.

N*

L
m = 1

(M + Cp) A(2 - 4 / p ) / ( 3 " 2 / / ; ) (4.60)

by choosing 8 = h2//^3 ~~ 2/P\ M and Cp being universal constants. Combining
these estimâtes, we obtain

y *||«'"-rhu
("||L.2=s^/«M + C

(4.61)

for all 0 <= h m 1 and 3 </> < oo. Similarly, we have

2

iV*

+ 2 ^ Arll*"1-^*"1!^, (4.62)

m = 1 '

+ | ^ l i ^ + ̂ - ^ ^ - ^ ^ l l ^ . ^ ^ . (4.63)

Using (1.12) and Theorem3.25 we obtain
N*

Yj + zm~rhy
m~rhz

mf1 * Mh4. (4.64)

m = l * h'h)

To estimate the other term5 we set for each h > 0 and 8 ^ 0

ftfci8 = {x e O ; distance (x, aft) ^ C (h + 8)}
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where C is the same as in (4.57), and notice that for all v e WQj

(4.65)

M being a positive constant depending only on O. By the same manipulation
as in (4.59), we get

I - rh z ^ ^ g) ̂  M(h + ôj2 0 . (4.66)
m = 1

Hence, combining (4.65) and (4.66), we choose 8 = 0 so that

î û(a^H^ (4.67)
m = 1 '

which, together with (4.64), yields, assuming h ̂ 1,

_ rhy
m - rh z»|^2 ̂  Mhm , (4.68)

where M is a universal constant. In this manner, we can also obtain

l l l ^ ^ j + C/A + S)3-2/*, 3< jP<oo,

^(M + Cp)h^2-s^^5-2/"\ (4.69)

by choosing 8 = / J 4 / ( 5 -2 /P ) an (j assumjng fc^^M and Cp being universal

constants. It follows from (4.68) and (4.69)

£ k\\um - rhu
m\\2

L2*, Mhm + Cph<n-&/PW-z/p)

^Cph^-^rW-W (4.70)

N*

for ail 0 < h =s 1 and 3 <p < oo. We are ready to estimate Y \R™\ •

( N* \ 1/2 -, / N* \

V \\um um-l\\ \ l V 1r\\um r um\\2 \
L \\Uh~Uh Wtf) - 7 = 1 2 , kWU "rhU \\L2j

1/2
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by means of (2.13) and (4.70)

< 6 W Q 2 / \ (4.71)

Note that (2.13) is still valid with the initial condition M° = rh u0.

1/2
x

m = 1 \m = 1 /

( N* 2 \ 1 / 2

m = l /

using (2.13) and (4.61),

^Cphï-WQ-VPK (4.72)

£ k | b (u™ " 1 , M™, wm - rft w
m) | === using intégration by parts ,

m = \

N*

m = l ° °

To estimate the right-hand side, we dérive from (1.10), (2.13) and (4.48),

max || M;7|| wlt2 ^ ~j= , M being a universal constant . (4.74)

Thus, it foliows that

V k\h(u?-\uj?,um-rhu
m)\ ^^= ( ^ fc||MJT||^i

x ( I ^ll«m-''/."m||L2||"m-'-ftMm||<2)
\m= 1 '

by means of (2.13), (4.61) and (4.70),

^ J-Cph
(3 -2//>)/<5-2//>)+ (1/2 -l/P)/ (3- 2//»)̂  (4>75j

1/2

kM ™\\

m=1 m = 1

using (4.61),

u™-rhu™\\wl,2
l,
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iv.Mft
m ,V. (um-rhum)j

V e \m = 1

using (2.13) and (4.61),

1/2

J/1.2

1/2

( 4 ? 7 )

1/2 1/2

p , by(4.70)

It now follows from (4.71) through (4.78) that

^ 1 A(l

V e

(4.78)

where 0 < /i ^ 1, and Cp dénotes universal constants depending on
3 < p < oo. Consequently, (4.56) yields

m o v \\um iim\\^

max ||MA - M | | L 2

(4.80)

We combine estimâtes I, II and III to arrive at

THEOREM4.4. Let uoeG and f e C ( [0 , T] ; L 2 ( H ) 3 ) mïA 3 f / e
L2(0, T ; W 1 ' 2 ^ ) 3 ) . Dénote by u the strong solution obtained in [13] and
by uh the approximate solution constructed through (2.1) and (2.5) with
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ui = rk u0 and fm = f (km), Then, there are O < 7* ^T and O < a *= 1 such
that for a// O < /z === 1, O < k^cr, e :> O, O < ti === 1 we have

max
m=\

(4.81)

provided kN* =s= T* and 3 </? <: oo, w&ere 71*, a, M and C^ «re positive
numbers independent of h, k, s and r\, and Cp dépends on p.

Remark 4.5 : If the conditions for the existence of global solutions set
forth in [13] and [14] are satisfied, then r* = T. For example, if
WO=EO, and ƒ, 3,/ are sufficiently small in C([0, T] ; L2(O)3) and
L2(0, T; W"1>2(a)3), respectively, then T* = 7\
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