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HOMOGENIZATION OF THE STOKES SYSTEM
IN A THIN FILM FLOW WITH RAPIDLY VARYING THICKNESS (*)

by Guy BAYADA (1) and Michéle CHAMBAT (?)

Communicated by E SANCHEZ-PALENCIA

Abstract — We study a problem with two small parameters, that models a fluid flow between
two close rough surfaces We study the convergence by the energy method of the 3-dimensional
Stokes system solution when the ratio N = m /& 1s constant (n is linked to the fluid thickness and
to the size of the roughness period) Then making \ tend to infimity (resp to zero) we show that
the case in which the thickness is greater (resp smaller) than the period is an asymptotic imit of
the intermediate case

Résumé — On considere un probléme de passage a la himute a deux petits parameétres
modélisant I'écoulement d’un fluide entre deux surfaces rapprochées supposées rugueuses Nous
étudions d’abord la convergence par la méthode de I'énergie de la solution du systéeme de Stokes
tndimensionnel lorsque le rapport X = m /¢ est constant (n est ié a l'epaisseur du domaine et € a
la péniode de la rugosité) Ensuite en faisant tendre N vers U'infint (resp vers zéro) nous montrons
que le cas ou Iepaisseur est plus grande (resp plus petite) que la periode est imite asymptotique
du cas intermediaire

I. INTRODUCTION

We study the asymptotic behavior of a viscous fluid flow in a narrow gap
with mean thickness m whose surfaces are supposed to be rough, with a
periodic roughness of wavelength &, when the two small parameters € and m
tend to zero. This problem falls in the scope of the hydrodynamic
lubrication.

In the mechanical literature most papers are based upon the Reynolds

(*) Recewved 1n November 1987
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206 G BAYADA, M CHAMBAT

equation which 1s derived from the Stokes system by taking account of the
small parameter m assoctated to the film thickness To evaluate the surfaces
roughness effect, two different ways exist

First, lots of papers are concerned with the so called « Reynolds
roughness » This approach which retamns the validity of the Reynolds
equation 1s commonly used 1if the characteristic wavelength of the roughness
1s much greater than the film thickness Proposed averaged equations
appear 1n [9], [14], [16], some of them being devoted to the particular case
of roughness pattern with small peak to valley height

The second way 1s associated to the « Stokes roughness », where the
authors claim that the applicability of the Reynolds equation 1s not vald,
especially when the roughness wavelength 1s small i front of the gap height
The related studies retain the assumption of small roughness height, and use
asymptotic expansions [15], [19]

All the results have given rise to many controversies both at view of their
numerical results than for the heuristic assumptions on which they are based
[8], [21] , intercomparisons are very difficult due to the various assumptions
introduced

We are concerned with the mathematical aspect of this problem The
most rigorous of the previously mentioned papers are based on formal
asymptotic expansions , though this last method has already proved its
effectiveness no real proof appears in the literature, the statistical surfaces
descriptions rendering any mathematical proof very difficult We consider a
determuiustic way and assume a penodic roughness and the basic equations
are the Stokes system Problems depending on two «small parameters »
appear 1n various physical areas hke electrnical engmneering {17], thermal
effects 1n periodical structures [6] and mostly in the two dimensional
approximation of the three dimensional plate models [7], [11], [12] Ths last
problem 1s related to our study, especially when a rapidly varying thickness
for the plate 1s considered

In most of the two small parameters problems, the way how the
parameters tend to zero 1s primordial and the hmuting equations are
different whether ¢ tends to zero faster, slower or at the same rate as m In
this paper, we show that this result 1s also true and it describes all the
possibilities Mathematical tools are both asymptotic expansions [13] and
the homogenization theory [5], [18]

The second section 1s concerned with the notations and a recall of the
asymptotic equation that 1s proposed for the pressure 1n [2] by way of formal
expansion when m/e 1s a constant ratio A

Section 3 15 devoted to the vahdity of this equation m a rigorous way by
the energy method [20] The result 1s obtamed via a conjecture on the
asymptotic behavior of the pressure we show the weak L% convergence and
we have to suppose that the convergence is actually strong
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HOMOGENIZATION OF THE STOKES SYSTEM 207

In Section 4 we study the limit equation when the roughness is an actually
periodic one and existence and uniqueness results are proved.

In Section 5, we study the limit of the previously mentionned equation
when M\ tends to infinity. The obtained equation can be associated to the
Stokes roughness and seems to indicate that no flow occurs in the oscillating
part of the gap. The last section is devoted to the limit equation obtained
when A tends to zero (Reynolds roughness). In that case, the study can be
rigorously made by making first m tend to zero and then &, which is nothing
else than the homogenization of the classical Reynolds equation [4].

For a mechanical use, we summarize the conclusions so :

— all the three limiting equations are of the Reynolds type but different,

— the height of the roughness has no influence on the qualitative aspect
of these equations,

— the second equation representative of the Stokes roughness is of very
easy and cheap treatment, but a complete mathematical proof is missing,

— in the last case (Sect. 6) the results of Christensen [9] can be used with
confidence for small roughness spacing.

A complete mathematical study is not yet available. If the assumptions of
the full periodic roughness seems to be overcome by way of a space
discretization, the conjecture of Section 3 is related to a finer difficulty. It is
to be noted also that in the case of a thin plate with rapidly varying
thickness, no complete proof of the different cases related to the ratio of the
two small parameters exists at this time {12], contrary to the problem of a
thin composite structure where only the elasticity coefficients are periodic
and not the shape of the plate [7].

II. BASIC NOTATIONS AND ASYMPTOTIC PROPOSED EQUATION FOR CONSTANT
A=7/¢

II.1. Geometrical data and notations

We shall write X = (x,, x,, x3) for a current point in R® and x = (x;, x,)
for its projection in RZ.

 is an open set in R? with a Lipschitz boundary dw.

¢ is a small parameter related to the roughness wavelength scale. 4 is a
smooth function, defined for x in w and y in R?, periodic with period
Y;iny, (i =1,2).

We set Y = [0, Y] x [0, Y,], the periodic cell.

The real gap between the two surfaces is given by :

mh(x) =mh(x,x/e) xem.
The three dimensional domain occupied by the fluid is :
Q,={XeR’,x€w,0<x;<mh(x)} .

vol. 23, n° 2, 1989



208 G. BAYADA, M. CHAMBAT

I1.2. The basic equations

We are concerned with the thin-film hydrodynamic lubrication of rough
surfaces, that is the study of an incompressible viscous fluid flow between
two surfaces in motion as the thickness of the gap is small. To make the
model easier to study, we suppose that one of the surface is horizontal,
smooth and moves with a constant velocity whereas the other one is rough
and motionless.

The basic Stokes system is : (the viscosity is taken equal to 1)

AU £V . pT =0 2.1)
(Seq) in Q.
div (") =0 2.2)

Boundary conditions are added to solve equations (2.1) (2.2) ; classical
operating conditions are Dirichlet ones :

u™ = (k",0,0) on 3Q,, (2.3)
with

0
k“:[ on e (2.4)

s on (seR*")
where X, is the oscillating boundary of 3Q,, (fig. 1)

Ay v

Ligy = {A € Ra, X € w, X3 = 'qhs(x)} .

Figure 1. — Domain Q.
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HOMOGENIZATION OF THE STOKES SYSTEM 209

We denote by I',, the lateral boundary 8Q},, — (w U Z,,) ; £*" is not easy to
evaluate experimentally on I',, and we are led to make first the assump-
tions :

ke H'(T,,) and J k*cos (n,x,)do =0 (2.5)

a0,

(n is the outward unit normal vector on 3}, and do denotes the surface
measure).

Following [2], we introduce a supplementary condition for £*". According
to the rescaling, we suppose that there exists a regular link between 0 and s
which does not depend on & and N such that :

k"™(X) = K(x, x3/X\e)

and K(x,z)=0 for hy,(x)<z (2.6)
where
hyn(x) =minh(x,y) Vxeo and h,,=0.
yeY
We define :
tx)=Y, YZJ K(x,z)dzcos (n,x;).
0<Z<hmm(x)

Due to (2.5) there exists a unique solution

@M p™) of (S.,) in HY(Q.)xL*Q,)/R [10].

I1.3. The new variables and the local auxiliary problems

We define first the rescaled thickness z = x;/Ae and we introduce the
following operators :

. 0 ] 10
divy = — 4+ — 4+ = —
dy; 9y, Aoz
3 3 1 9

A T c— +__._
Yyl oy Nzl

A=m/¢e

v, = (i b 13
M \ay, "8y, naz )

We introduce three auxiliary problems (L%)(L')(L?) in the following
weak formulation :

vol 23, n° 2, 1989



210 G. BAYADA, M. CHAMBAT

B,={(y,2)eR’,yeY,0<z<h(x,y)}
HY = {& € (H'(B,)), ¢is Y periodic in the y, variables }
HY = {6 e HY, $(»,0) = ¢, h(x,y)) = 0}
d la 2 Y la 2
) % ¢'+ij : 84
B

oz 09z

a(d', ¢%) = L
I:ZI,S/:I,Z /B, 9, ay, A?

Problem (L?):
Fin ¢’ in H” and ¢°in L?(B,) such that :

a(g°,¢)=f q°div, (¢) Ve Hy
B

x

j Edivy () =0 VEe LXB,)
B,

Q’-O(y’ h(x’ y)=20 (_"O(y’ 0) = (5’0’0) .

Problem (L*) i =1,2:

|Fin o in HY and ¢'in L?(B,) such that :

a(g',¢)=f g div, (@)—f b, VoeHY

B,

x Bx

J £div, (@) —0 Vie L%(B).
Bl

I1.4. Asymptotic proposed equation

A formal study by asymptotic expansion (see [2]) for & and m tending to
-2

zero with a constant ratio A =m/e shows that p“‘~1—7—2— such that
€

p~? is solution of :

S Find p~?in H'(w) such that :

op 2 ad 04 0
[of] S —dx + f [a,]—dx=f tbdo (2.7)
( "’;'2 @ ax, ax] =12 Y0 ax, 3w

where [¢] denotes the integral of ¢ on B,.

MZAN Modélisation mathématique et Analyse numénque
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HOMOGENIZATION OF THE STOKES SYSTEM 211
III. THEORETICAL STUDY OF THE ASYMPTOTIC BEHAVIOR OF THE FLOW

In this section we prove the result obtained first by formal asymptotic
expansions in [2]. From now on we suppose :

h®(x) =h(x/¢).

If we want to cancel this assumption, regularity results for solutions of
Stokes problem with respect to the domain have to be obtained.

The behavior of the velocity is easy to study because it can be extended by
zero to a fixed domain including .. We use the technic introduced by
Tartar ([18] appendix) to extend the pressure and then the standard energy
method [20]. We suppose the strong convergence of the pressure to have a
complete proof, but only the weak one is proved ; as the formal limit doesn’t
depend on the micro variable this seems to be a reasonable conjecture.

III.1. The rescaled weak formulation

We use a mixed weak formulation for the Stokes system (2.1)-(2.3) in the
rescaled domain

Q. ={(x,2)eR*x€w0,0<z<h(x)}. (3.1)
We point out that in spite of the rescaling, this domain is not a fixed one
and this will lead to further difficulties when letting ¢ tend to zero.
Therefore we need to introduce a fixed () involving ., in which
convergences can be proved :
Q= {(x,2)eRx€w,0<z<hp,}
S={(xz2)eR, x€w,z="hp)

Q = {(X,Z)ER3,xew,0<2<hmm}
2= {(X,Z)ER3,wa,z=hmm}
where
Pmax = max A(y) .
yevY
Set :
¢ - du, 3b, 1 du, 3,
¢ (E,Q)—, J ( ax ax +)\2 237 8z )dxdz (3.2)
¢ 8¢2 1 9ds
be(q, = P
(g, ¢) JQ(a + = +)\saz>dd (3.3)

LY(Q,) = [ € LZ(QE),J q dx dz :0} .
‘Q'b:

vol. 23, n” 2, 1989



212 G. BAYADA, M. CHAMBAT

We denote by (u°, p©) the rescaled solution of (S, ) because the two small
parameters are of the same size. So (u°, p®) satisfies :

a*(uf, &) =b(p%, &) Vo€ H}(Q,) (3.4)
b*(q,u*) =0 Vg e L*(Q,) (3.5)

u®/3Q, = (K,0,0) where Kis given by (2.6) .

II1.2. Behavior of the velocity

We introduce
v, = {v e LZ(Q)3 e LZ(Q)3}

For any function v defined on ., we denote by U the function equal to v
on Q. and extended by zero to Q. Obviously v € H'(Q,) and v =0 on
3, imply ¥ € H'(Q). We set for ¢ in H(Q,)*:

2 12
) ) . (3.6)
L¥Q,)

b,
ax,

b,
oz

1
L) AN€

lel,= (5 (%

=13 1=12

THEOREM 3.1 : There exists u™ in V, such that :

o — L*(Q) weak ,
a—E
SN L*(Q) weak ,
0z z
a_E
eZ 0 L¥Q)Y weak, i=1,2.
ox

Moreover ujf =0, u*=0on 2, u* = (5,0,0) on w.

Proof: From (2.5) and (2.6) we are able to construct a fixed
J in H*(Q™ )* such that :

J=(K,0,0) on 98~ and div/J/=0.
Setting K* = (J;, /5, eNJ3) in 7, extended by zero in €,

oK} K 1 oK;
L s N (3.7)
x4 3 )\8 0z

w3 [ () o (]

M?AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis

K* e HY(Q),




HOMOGENIZATION OF THE STOKES SYSTEM 213

We choose & = (u° — K*) as a test function in (3.4) and g = p®in (3.5).
So:
a*(u’, u*) = a*(u*, K°)

and |IZE”5 < ”ISs”Es C/Ez (38)

C being a constant with respect to &, by taking the Poincaré inequality in the
z-direction we obtain :

. om;
N
ou;
and — =C/e i=1,3 j=1,2
ax] LXQ)

on’ ou®

b

and we can extract subsequences such that z°,

weakly converge
]

a—e
in L*(Q)*. This implies that % also converges in D’(Q) and the last a
]

priori estimate gives that the limit of e is zero. Moreover for each

X
function in V,, we can define a trace on 3() such that the application
v —» vn, is a linear continuous operator from V2 in H~2(8Q)’. So the values
of @, on the boundary 2 U w which are constant are preserved by letting ¢
tend to zero.
(3.5) is true for any ¢ in L?(Q). Taking the limits of all terms in
be(db, u?), it follows :

qus*
b dxdz=0 VbéeD(Q)
Q 4

and uj* = 0 because of its values on the boundary. O

II1.3. A priori estimates for the pressure

PROPOSITION 3.1 :

Proof: Taking successively (¢;,0,0), (0, d,,0) and (0,0, ¢;) with
b, € H}(Q,) in (3.4) we get fori =1,2:

T ad, ous 8, us d
p‘_-—dxdz=J » P LS PN
ox o

ap*®
ax,

<C/ (j=1,2); HEIL
oz

H™(,) HY(a,)

— s —
Ja, , S, 0x, 0x; g2 0z 0z

vol 23, n° 2, 1989



214 G BAYADA, M CHAMBAT

and the estimates on the velocity induce

<gz£

R ,> = C|
ax, H @) H)@,)

Id->l ”H(}(Qs)

By the same way

(o)
9z H (9,) H}Q,)

=C ” b3 ”H&(QE)

which ends the proof [J
Q. being a bounded Lipschitz domain, we have [22]

llg ”Lg(ns) =C(Q,)]Vq ”H I,y

where the constant depends on the domain, that 1s to say on € and we don’t
know how 1t depends on ¢ So we have to define a continuation of the
pressure to £} to prove convergence

II1.4. Continuation of the pressure to {2

L Tartar has mtroduced a continuation of the pressure for a flow 1n
porous media (see [18] appendix) This construction apphies to periodic
holes 1n a domain ()., when each hole 1s strictly contained into the period
cell We cannot use directly the results in our case because the « holes » are
along the boundary ., ot {2, , moreover the scaies of the geometry of the
actual domain 2, are different in the x-direction (the macro one) and in the
x5-direction (the micro one) This fact will induce several limitations 1n the
results obtained by using the method, especially in view of the convergence
for the pressure

Recalling that 4 1s a function of y only, the basic cell B, defined in § IT 2 1s
now a fixed one

B={(»,2)eR’ yeY, 0<z<h(y)}

We suppose from now on

H1  the surface roughness i1s made of detached smooth humps periodically
given on the upper part of the gap (*),
H2  ® 1s covered by an exact finite number of period Y,

We consider a smooth surface included in B and surrounding the hump
such that B 1s split into two areas By and B,, such that (fig 2)

H3 8B, 1s a C! mamfold

(*) From the fluid point of view !

M?AN Modelisation mathematique et Analyse numerique
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Hmax | /7\)\ /‘*;7'[
// .. z-h(y)/Bm Vs
//\/\\)-—/ /1//'///;
/ /// ///S‘/-/_ -/ 4 / "

A 4

e

S
2 /,/ // L, 7 /B // // 1
/‘ 7/ / e ]

4 // , /'/FV // / i

ayd
ST
Z// LSSy ]
0 Y

Figure 2, — The basic cell B.

We note
II=Yx 0, Ayl
Bs = H\(Bm ) Bf)
S =8B, NaB;.
We set

V={veH'), v=00nZ}.

In the following, we’ll use the Poincaré norm both in H'(IT) and
HY(B,,), all the function involved being zero on a part of the boundary.
Moreover C denotes constant with respect to ¢ which can be function of \.

LEMMA 3.1: For given v in V, there exists w in Hl(B,,,)3 such that :
w/S=v/S and w/3B,\S=0.

Moreover there exists a constant C which does not depend on v such that :

” w ||H1(Bm)3 =C “ v ” iy
and 3.9
div, () =0=div, (w)=0

vol 23, n° 2, 1989



216 G BAYADA, M CHAMBAT

Proof First we construct a hft of the boundary condition From H3
v/8B,, hes m (H'*(8B,,))’ and we define B! m H!(B,,)’ by

—AB'=0, B'=vonS, B'=00ndB,\S
By regulanty theorem
1 N N
” 91 ”HI(B,,,)j = ” § ||H”2(aB,,,)3 =C, “k ”Hm(aB,,,)} = CZHQ “H‘(H)3

from H3 and classical trace theorem
Secondly we introduce

F = —dw, (B) +dw, (v) + (J dw, (v)dy dz)/mes (B,,)
B

§
J F=—J El-ﬁ+j 2-ﬁ+f v-A
B, 3B,, 9B, 3B,

where 7 = (ny, ny, A\n3), noutward normal to B,,
H1 and the defimition of 91 1mply

J F=0
B

m

So there exists B? mn H{(B,,)’ such that [22]
le)\ (@2) =F, ” EZ“H‘(B,,,f =C ”F”LZ(B,,,) =sC ”2”111([1)3 (by H3)

It remains to solve an homogeneous Stokes system There exists a pair
(B3, g) m Hj(B,,)* x L*(B,,) such that

AAE3 =4, - 91 - E2) + V\g
div, B> =0

For this problem the classical estimation gives

” ES ”H1(Bm)3 =C ”2 - E’l - §2 |IH1(B,,,)3 =C ”Q ”Hl(n)3

Then w = B! + B>+ B> 1s solution 1 H(B,,)’ of the following Stokes
system

Aw = A\ + Vyg

divy w =dwv, v + (J

w/S=v/S w/oB,\S=0

div, 2) /mes (B,,) (3 10)

s

M?AN Modelisation mathematique et Analyse numerique
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HOMOGENIZATION OF THE STOKES SYSTEM 217

and obviously we have :

Iwll gz 3 =< C 12l gy »

which ends the proof. O
This lemma allows us to construct a restriction ° defined in the physical
variables (x, x,, x3) and to deduce a continuation of the pressure.

LEMMA 3.2 : There exists an operator :
R*: Hy(Q,) - Hy(Q, )’ such that :
ve HY(Q, ) = R'@) = v
[R*(@)|| < C x| : (3.11)
div v=0=divR,(v) =0

Proof: For any v en V, lemma3.1 allows us to define R(v) in
H'(I1)’ by :

v if (y,z)e By
Rw)=1w if (y,z)eB,
0 if (y,z)eB;,
which satisfies
||R(Q)”H1(H)3 =sC ”2 ”H‘(H)3 . (312)

Suppose that Cy = |0, eY;[ x 10, eY5[ x 10, nhy,, [ is contained in 2, and
define C, where k = (ky, k,) by :

Cl_(= {Xe R3,xem, (xl—kl €Y1,XZ—‘k2 EYZ,X3)E Co}
H2=0=|_JC.
k

We define R® by applying R to each period. More precisely for any
v in  Hi(9,”, we call v, its restriction to C,, and
0, (y1, ¥2, 2) = vy (ey, + ky €Yy, ey, + k3 €Y5, z) is defined on II. So R is
defined on each C, by applying R to b,. Obviously R°(v) lies in
H;(,,)’ and is equal to v if v is zero on Q,\Q,,. Now using (3.12) we
obtain :

IR@I = ¢ T ROy = €2 T 4]

Iy

= Cllz|*

(3.11), is obvious from (3.9), and the definition of R®. 0O

vol. 23, n° 2, 1989



218 G. BAYADA, M CHAMBAT

THEOREM 3.2 : There exists P* in LZ(QH) such that VP ® is an extension of
Vp°©. Moreover there exists P*in L*(Q)/R such that a subsequence verifies :

e2P*—P* L*Q)/R weak (3.13)
P *
=0 (3.14)

Proof : For any ¢ in H}(Q)?, we define F® by :

(F*, &) = <%:;,Rf(¢)> . <"£E,R5(¢)> . <2—§5,R§(¢)>

0x,

where ( , ) is for the duality product between H~ ! and H(} either on  or
on Q,

< ORi(¢)  3R3(¢) L OR3(®)

F*, = —
(% &) J;l P ox, ax; 0x,

) dX = —a(u, R%(¢)) .

From (3.8) and (3.11) :

| (E2 &) | = u || |R*(@)]| < C Ve|w| ll¢] < Ce 2| ¢ . (3.15)
So Ff e H Y(Q,).

If div (¢) = 0 then by (3.11) div (R°(¢)) = 0 and (F*, &) = 0. So there
exists P°in L*(Q,) such that :
F*=VP*. (3.16)

We remark that if & belongs to Hj(£,,)’, R°(¢) = ¢ and F* reduces to
Vp©. So we have constructed a continuation of the pressure gradient. We use
(3.15) to give a priori estimates on the « new pressure » in the fixed domain
Q. (To simplify we keep the same notation for the pressure in Q*):

) d 0
J Ps( e S P ﬁ) dx; dx,dz < Ce™?| 9], .
Q

EZ 0x, \e oz
We get :

€
.2 0P
ax,

aP°®
0z

=sC (=12)
H (@)

€

=C

)

M?AN Modélisation mathématique et Analyse numérique
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and (3.13) follows from the inequality
”PE“LZ(_Q)/R <C ||VPE”H—1(Q)3

and (3.14) by noting that e a;: converges alsoin H~1(Q) weak. O

II1.3. The limit equation
THEOREM 3.3 : With the conjecture that the pressure convergence is strong

in L*(Q), P* satisfies :

0

ox,

(,:uaix, (l] P*)) =0

1=1,2

with the boundary condition :

y(x o (] P*)+ (6] ) = V1 Y300
=12 V=12 %Y

Proof : New rescaled problems (L!) can be defined in (€2,) from problem
(L") defined in the basic cell, which doesn’t depend on x, like function 4.
We extend the functions o' and ¢' used in the proof of lemma 3.2 by
periodicity for y in R? and 0 <z < A (y).

Setting o'® = o' (x/¢, z), ¢'* = ¢'(x/¢, z) and

= {¢e HY(Q,), o, = les =0, ¢ is £Y periodic in x}.

Rescaled problems L. are: (i =1,2)
Find (a'%, ¢**) in H* x L(,) such that :
Li|a®(e? o', &) = b*(eq*, &) — J Ffe.bdxdz VoeH* (3.17)
Q "~

b%(q. &) =0 Vg e L¥Q,) (3.18)

fle = (190’0)> _fZE = (0, 1,0)

and problem L? is defined in the same way with goslm = (s5,0,0) and
foE = 0. Extending o' by zero to the whole {2, we have for i =0,1,2:

“ gle ”L2(0)3 =C, ”qlE”LZ(Q) =<C (3-19)

and taking account of the rescaling in z:

vol. 23, n® 2, 1989

datt

ax,
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12(9)3$C G=1,2). (3.20)
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Now we use the energy method [20] to prove convergence. For any ¢ in
P (w), we use &(u® — a’®) as test function in (3.17) and & bo'® in (3.4).
We obtain: (i =1,2)
03(82 gls’ d)’;‘s) — bs(eqls’ ¢'(L_£E _ QLOE)) + aE(SZ gts, d)(}OE)

- J duf— o) dx dz
QE
and
as(ge, ¢o82 (_XIE) — be(pe’ 82 ¢QL15) .

We calculate :

Ile — ae(EZ gts’ d)L_lE) _ ae(82 Es, d)gte) (321)
I7 = b(eq™ &, L_f—g‘“)+J ' T 2 (- af) 4 at(e o, $a’)
Q, j=12 axl

e e - [ py R | e -atara:.

1—12

The bilinear form b°® are zero because of (3.5), (3.18). Moreover :

b e
[ eq™ 5 3 rm o] < Collg™l g lu - o <Ko = 0
|Ja, j=1,2 %% | (e>0)

and using ¢a'® as test function in problem L?:

da’ 3a?
ae(€2 gte’ d)(}oe) — 5(82 O¢ ¢(_xu:)+ Z Z 82% <__J_a3)__la;>

k=1,2;=1,3

So

€m0 ) 5, 9%,

lim I} = lim (—j e? p* ﬁajsdxdz) —J d(u* — a®*)dxdz .
o Q

On the other hand, the right handside of (3.21) can be written :

3 oy’ ouy,
I,E:J = a_¢ T (_a_"u,:_a_"a;f dx dz .
o ;532%3 X X
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The estimates of theorem 3.1, (3.19) and (3.20) easily induce that the
limit of this last writing is zero. So fori =1,2:

J dw* - a”)dxdz = — lim Y J szP‘&a;edxdz. (3.22)
-0 1,2 vQ axl
J=

As already mentioned, to take the limit in this product we have to
suppose something better than the convergence in theorem 3.2, for instance
the strong L2 convergence of €2 P*. Then the limit equation for P * is easy to
obtain.

By classical lemma for Y-periodic functions (see for instance [7]), we get :

P e ded 1 , a
L o' 2) dx “W[Y]Laz(w) y dz =
= [«]/Y, Y, in L%*(w) weak .

32)= ¥ 90 pxlat]dx =

L Y. Y1 Yzj ox,
hmax
([ ) o
™) 0

hmax
Y a——- ([]1P*)+ [?] = Y, Yzj u¥(x,z)dz in 2'(w). (3.23)
0

1=12

which is :

Now, we use (3.5) with ¢ € Z () as a test function.
We obtain :

which implies :
hmax
div, (J L_¢*dz) =0 in 2'(»). (3.24)
0
Combining (3.23) and (3.24), we obtain the limit equation for P * :

Z < Z —([a,]P*)) + Y %[a?]=0. (3.25)

1=1,2

1=

The last term is zero because o’ doesn’t depend on x with the hypothesis
made on A.
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Now (3.23) induces that VP * lies in L2(w) while (3.24) induces that, as
J o u® dz, - 7* dz lies also in:
0 0

H(div, ) = {ve L), div, (v) € LY (w)} .

From theorem 3.1 the convergence takes place in H(div, ) and

nhmax h‘max thm
J u*.ndz = lim Lts.leZ:J K(x,z)cos (n,x)dz =t(x).
0 €0 Jo 0

By (3.23) VP * lies also in H(div, ) so that V,P* . n makes sense and
0
S5 P l)n=vivaw (29
1=1,2 j=12

(3.25) and (3.26) are nothing else than the strong formulation of
equation (2.7).

IV. STUDY OF THE HOMOGENIZED THIN FILM EQUATION
IV.1. Existence and uniqueness

From now on, to recall that the limit equation (3.25) is obtained when ¢
and m tend to zero with a constant ratio A = m/e, we write p* instead of
p~? (in Sect.2) or P* (in Sect. 3).

So we consider the problem :

Find p*in H'(w) such that :
AN ,]ap ¢dx+ 5 [ao] a‘*’ dx = 4.1)

1,7=1,2 1=1,2

:J tbdo Vée H (o)
ow

hmll’l
where [¢] = J b(x,y,z)dydz and t =Y, YZ(J K(x, z)dz) (n.xy).
B 0

By taking o' as a test function for the local problem L’, we remark that :
[ed] = —a(e!, &) i,j= (1,2) (the bilinear form a is defined in § I1.3).

Setting
A = (a,(x)) with a,(x)=a(d, ). 4.2)

A is a symmetric matrix, moreover :
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LEMMA 4.1: A is a positive definite matrix.

Proof: Set g = ¢ o for any £ in R?
1=1,2

I= Z aljgl g1= z gz g/a(g‘l,(_x]):a(g: 9)20
,7=12 ,7=1,2
For any ¢ in Hy with div, & = 0, one has
a(g) é) = Z g; a(gt: Q) = - g; J\ (bz dy dz (43)
i=1,2 1=1,2 B

by definition of problem L°.
We choose

E = (6 gl Z(Z - hmm)/Yl YZ hr3m.n > 6§ZZ(Z - h'mm)/Yl YZ hgmn 0)

for z < h,,, and we continue it by zero to define it on B. B lies obviously in
H{ with

diVyEZO’ [Bl]=_§z’ and a(gaE):_J Z ngzdde=Z§,2

B,-1,2

If we suppose I =0 then a(0,0)=0=0=0=a(o,B)=0. Then
¢ = 0 Vi, which ends the proof. O
We can now show the existence of the homogenized pressure :

THEOREM 4.1: There exists a unique p* in H'(w)/R solution of
PN
Proof: Lemma 4.1 induces that the bilinear form :

v, 0= Y | a, 2Ny

1] A
R P ox, ax,
is definite positive but it is not coercive on H'(w). As the solutions of

v(d,v) =0

are the constant functions, a necessary and sufficient condition for the
existence of p* in H'(w) is that the second member is orthogonal to the
constants but from (2.5)

r

J tdo:YlYZ[ —K(x,z)(n.x;)dxdz =0.
0w

v Q)
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Then all the solution of (4.1) differ from one another of a constant and
there is one and only one solution in H'(w)/R.

IV.2. A priori estimates

In this section C will denote any constant with respect to A.

LEMMA 4.2 : We have the following estimates :
0z ayk

= C\?

2
60y = N || 52 [ =

=C\
L%B)

i,k=1,2 j=1,2,3.
Proof: We take ¢ = o as a test function in problem (L'); so:

1
ol @) =~ | atdydes B all g = 1B | o
B

2(B) E LZ(B)
by Poincaré inequality. So :
oo oo’ |]2 oo’
12 — <C and — = ||— <=CN\N. O
A2 || 9z || xB) Yk ||L2(B) 9z ||LyB)

LEMMA 4.3 : We have the following estimates for problem L°:

[=3]

CXO
=sC, !
LX(B) 7

a0
ax
”(’L!O”L?(B)s c, ”a_z]

= C/\
L%(B)

k=1,2 j=1,2,3.
Proof: We have to find a function of H*(B)® periodic in y which satisfies
the same boundary conditions as a’.
Let:
d(Z) _ (hmmﬁz)s/hmm for 0<Z<hmm
0 for hy,<z

(e —d, a3, a?) is then a test function for L° so that :

oa 9a?
a(g°,9t°)=—1—zj——lgc—ldydzs£ — :
A\ Jp 0z 0z A || 9z ||y
So:
l o)
—_— <C.
9z llLxs)

The other estimates follow as in lemma 4.2. O

MZAN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



HOMOGENIZATION OF THE STOKES SYSTEM 225

Remark : The previous estimates induce the rewritting of the weak
formulation (4.1), so:

7 ax,

N9 2y 00 04 0
5 22 gx = 9 dgx - 4
) a ( p)ax]dx ,=12L [a,]ax'dx Lmtd)do (4.4)
with a}) = a,,/\2

V. THE STOKES ROUGHNESS (A - + ©)

We are dealing now with the limit of p* when X\ tends to infinity ; this
describes the situation when the roughness wavelength is very small both in
front of the gap and the roughness height.

We denote by B* the upper part of B and B~ the lower part of B:

B = {(y,z) € B, hmm<z<h(y)}
B~ = B\B*.

LEMMA 5.1: When N\ tends to infinity, for i =1,2, j=1,2,3
ot /N~ ot*  H'(B)weak
where
a* =0 on B?*
q*=z(z—hpy)/2, &;*=0 on B~ i#j=1,2
o3*=0 on B~ .

Proof: From the estimates of lemma4.2, it is clear that o'/A%
1

aa’ o
a__z /A and ? /N have a limit in L%(B)® weak after extraction of a
k

o
subsequence. Moreover é? /A% tends to zero in L2(B)® which induces that
k

oot *

o /N converges in fact in H'(B ) to o' * with =

5 = 0. A direct consequence
k

of the condition o' = 0 on the boundary z = A (y) which is preserved when
N\ — + o0 because the convergence takes place in HY(B)?, is :

=0 on BT.
Let 6(z) be a function of Z(]0, hy,[) extended by zero to B. We use
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successively (6(z),0,0) and (0, 6(z), 0) as test functions in L’. Letting A
tend to infinity, we find the limit equations :

0% 30 40 4 5| e@)dydz (,j=1,2
_aZEyZ—_) (Z)_}’Z(l,]~,)

aza; *

=3 in 210, hmal) - (5.1)

Moreover :
J gdiv, (¢’) =0 Vge L*B).
B

oy *

0z

Taking g = 1 and the limit of each term we find = 0 and the proof is

ended by integrating (5.1). O
LEMMA 5.2 : When \ tends to infinity, for j =1,2,3

(x? — a?* H'(B) weak

where
o®* =0 on B*
% =s(1 —z/hpyn), o5*=0 on B~

od* =0 on B,

Proof: The existence of the limit is obvious via the estimates of
900 *
]

Vi
previous lemma but the boundary conditions (s, 0, 0) on Y and (0, 0,0) on
z = hy,, give different values for «°*. O

lemma 4.3 and we have again

= 0. The proof is the same as that of

THEOREM 5.1 : When \ tends to infinity, the sequence \* p* converges in
H'(w) weak to the unique solution in H'(») N L3(Q) of:

L B T

1=1,2

P*® ad b J
—~dx = —dx — td do . .
ox o, dx L 6 sho, ox, dx — 12 N bdo. (5.2)

Proof: We use the formulation (4.4) of 2*. A = (al)}) is a symmetric
definite positive matrix for each fixed \. As a,’} =— [o] /A%, lemma 5.1

induces that A* converges to A*® with :

Ri./12 0
*00 _ min
A —[ 0 h?,,m/lz}
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with non zero diagonal entries. So for sufficiently large A\, there exists
Cy = 0 such that:

Taking & = A\?p* in (4.4)

Co ¥

1=1,2

8 2
— (\“p
ox (

y L,a ( “) (2p*)dx

2
(m) 1,1=12

=C ” )‘Zp)‘”HI(m) .

If we choose the element of H'(w)/R which belongs to L(w), we may
take the Poincaré norm [22]. This last inequality implies :
20| oA
A ”P ”111((,,)/93 =C
and we can extract a subsequence that weakly converges in H'(w). O
Now we can find the limit equation.
We make A tend to infinity in (4.4). We know the limit of all terms and ¢ is

independent of . So (5.2) is obvious and it has a unique solution in
H'(w)/R by same arguments as in theorem 4.1. [

Conclusion : If we come back to the basic equations (2.1)-(2.3) which
describe the flow of a fluid between two surfaces in relative motion, with a
roughness length ¢ and a gap between the surfaces of size m, it has been
shown that the way how the two small parameters tend to zero leads to
different results. If ¢ tends first to zero and then m tends to zero, the limit

pressure is solution of a Reynolds equation with an effective height
P [3) :

ahmm
div (k3 Vp) =65 o (5.3)

n-0 0

hmm
hfmn W (6 P — 12 lim K(x,z) dz> (n.x;) (5.4

J by, pdx=0 (5.5)

(o]

where h,,, defines the non oscillating part of the rescaled domain
@~ and K the velocity of the fluid given on:

I ={(x,2),x€ 80,0 <z<h,}.
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p is the H'(»)/R solution of the Reynolds problem (5.3)-(5.4), the constant
being fixed by (5.5). As A, is independent of x, the right handside of (5.3)
is zero.

We find exactly the same result in these two cases :

— ¢ and m — 0 with constant A = n/e, then A - + 0 ;
— € — 0 first, then n — 0.

VI. THE REYNOLDS ROUGHNESS (A - 0)

It is less straightforward because we cannot compute the exact values of
the limits of the solution of auxiliary problems as in lemma 5.1 and 5.2. The
way to overcome this difficulty is to point out that making X\ tend to zero is
nothing else that making the height of the gap tend to zero. So the
asymptotic behavior of o' and ¢° are studied by the same way as in passing
from Stokes to Reynolds [1], the difference being the periodic boundary
conditions partly substituted to Dirichlet conditions.

LEMMA 6.1: When \ tends to zero fori, k=1,2; j=1,2,3

a;/)\z—wx;* weakly in L*(B)

P ne 0" kiyin L*(B
E/ > weakly in L*(B)
ooy /A =0 weakly in L*(B)
Yy
q —q'* weakly in L(B) .

Lk

Moreover da ~ _
oz

Proof: The first three limits are direct consequences of the estimates of
ot o *

lemma 4.2. Because W] /A% converges to 3 ' in 2'(B), the third limit is
k Vi

equal to zero.
Now we choose any ¢ in Hj(B) and we take successively ¢! = (¢, 0,0),

&* = (0,4,0) and &> = (0,0, ¢) as test functions in the local problems

L'. Estimates of lemma 4.2 implies :

1 3q"

=C d e
an H)\ 0z

Ha_q‘
Y

L2(B) being weakly closed in H~!(B), then :

o) = 6.1)

H™'(B)
1
”q “L%(B) =C
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which insures the last limit. Now, by (6.1) —i—aaiz also converges in

L%
H~(B) weak when \ tends to zero and this induces that agz =0. 0O

LEMMA 6.2 : When \ tends to zero, for j =1,2,3:

o) = a’*  weaklyin L*(B)
9a? ool

L L lyin L2
P % weakly in L“(B)
Bat) S 12
A— =0 weakly in L*(B)
7
A2q° g%  weaklyin L3(B).
aqo*

Moreover : =0
a9z

Proof: The same as lemma 6.1. O
We give now the equation of these limits :

LEMMA 6.3: g'* is the unique solution in L§(B) N H,(Y) of:
- ah3 1
h’Vq Vo= | — ¢ dy, VéeHy(Y) (6.2)

with Hy(Y) = {¢> € HI(Y), bis Y-periodic}.

Proof We still have o5* = 0 on B by the divergence equation. Taking
= (¢,0,0), and (0, ¢, 0) in HY, we obtain for the limit :

820_;* a
] q ..
— + 9] i,j=1,2). 6.3
=, (ay, ) Gj=12) 63)

The second member doesn’t depend on z and we can integrate these
equations. The convergence of o takes place in LYY ; H}(10, (y)[)) in
which there is a trace defined on the boundary 8B such that b — d(n.z)isa
linear and continuous application in H~2(3B). o/ A =0 on the bound-
aries z = 0 and z = A(y) and this value is kept also by the limit.

We just have to suppose that there is no part of the boundary
{z = h(y)} which is vertical and of non zero measure. But this is actually
not a restriction for the shape of the roughness.

The integration of (6.3) with respect to z gives now :

o * = (aaqy +8/> z2(z-h)/2 (i,j=1,2). (6.4)
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Taking & = £€(y) in the divergence equation of problem L‘, with £ in

D(Y):
. oa]
0= gdivya' dydz = < — | dydz
B ;=12 ay]

vB

0 (& [
J‘Yg(/=1,2a—y;(0l])>dy (D_Jo U(y,z)dz)_

When X\ tends to zero, this gives a conservation law in Z2'(Y):

a

I_Zmay’ (@*)=0. 6.5)
From (6.4) :
&;*z—f—23<aai;—‘+8{). (6.6)
Putting it in (6.5) :
K2 (hsaq’*> Y 6.7)
&, 3y, 3y,

Using the same arguments as 1n ([1] theorem 8) by mean of {(6.6) it is
possible to find the boundary conditions associated to (6.7). & * belongs to

ik
H(div, Y) and aaq—n /8Y which exists in H~Y2(3Y) is Y-periodic and given
by :

1
h3§gT=—h3n,+12§’*.n. (6.8)

By regularity, we can show also that the traces of g'* are equal on each
opposite side of Y. Now for any ¢ = (4,0, 0) with ¢ in H,O,, we have :

3™ ¢y J b
—dydz = ‘*—dydz—J bdydz.
jB dz oz Bq Y, B Y

2 1%

(6.3) =

belongs in fact to L?(B) and by Green formula :

daf *
:J 3 cb(n.z)dc:f qg'*éd(n.y,)do
B 9%

aB
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and this gives the Y-periodicity of ¢'*, so ¢'* € H)(Y). The weak
formulation in H}}(Y) of (6.7)-(6.8) is then exactly (6.2) which has a unique

3
solution in H,(Y)/R because J %;l— =0. O
Y ]

LEMMA 6.4 : q°* is the unique solution in L3(B) N H;(Y) of :

J h3Vq°*V¢:—6sf ﬂ¢dy Voe Hy(Y).
Y y 91

Proof: Same as lemma 6.3. We find the corresponding of (6.6) :
—-——1 _4Zs. O (6.9)

The local problems L' being completely known when A tends to zero, the
limit of p* can be given :

THEOREM 6.1 : When \ tends to zero, the sequence N> p* converges in
H'(w) weak to the unique solution in H'(w) N L(Q) of :

*0
[y a0 [ 5 gedb_ f tbdo  (6.10)
] ®=1,2 axl 3w

where a;}‘o is given by (6.11) and :

h3 aqo*
B =— | = dy + | hsdldy.
' y 12 dy, y

Proof: We consider the weak formulation (4.4) for A\ p*.
A™ converges to A** = a* given by (see (6.6)) :

h3 aq'*
a'*oz_J&l*dy:+J_( +8{> dy . (6.11)
/ y ! y12 ay,

We prove that A* is symmetric definite positive : We choose ¢ = ¢’* in
(6.2). Setting IL(y) =y, :

Ra o,
0o [ B2 e p)) y

a =
Jy 12 3y,

_ ( n 3(‘1'*+H1(J’))a(‘1]*+H,(,V))dy
Jy12 £ )78 )72
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which proves that the matrix is symmetric and positive. Now for any £ in
R?, we set :

o= Z gl(ql* +H,()’))

1=1,2

*0 h? 2 hglm 2
1,7=1,2 Y

I = 0 induces :

3 \? J ( 2 aq'*
— ) dy = £€+2 § & —
jYL;LZ(ayl> Y Y \i=1,2 Z ’ By]

aqt*Z
+22(Z§’3y,>>:0

=12

Due to the periodicity of g'*, the second term is zero.
So I =0 implies Y & =0 and then & = 0.
1=1,2
This proves that the matrix is definite positive. The estimates for
p" and the limits are obtained as in the proof theorem 5.1. O

Remark : It can be shown that the matrix A * is definite positive even if
we don’t suppose that % is uniform in x [4].

VII. CONCLUDING REMARKS

If we want to relax the assumption « A (x, y) doesn’t depend on x » we can
first consider the case where

h(x,y)=f(x)g(y).

For a mechanical aspect such a gap is well suited to take account of the
elastic deformation of the surface coupled with the roughness appearing for
instance in the gears.

In this case with minor changes all the coefficient estimates are still valid
but the limit behavior of the pressure cannot be proved in a rigorous way.

If we want to consider a general form for 4, regularity results for Stokes
problem with coefficients are needed and this doesn’t fall into the topic of
this work.

The overall results can be summarized in a diagram with two small
parameters ¢ and m and A = n/s.
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PRcyn i e 0 PRcyn homo

e—0 /

(1) A0
AN=m/¢e
Problem P..(\) P,
(2.1)-(2.3) @

n—0 Stokes Aot o

in hmin 0 PRcyn in hmin
€ —

There are three ways to make & and m tend to zero : ways (1) (2) and (\).
Each gives a different result. But if way (\) is driven on (A >0 or
A - + o0 ), then the diagram is commutative. But ways (1) and (2) have
strictly different issues.
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