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ON THE SIMULATION OF INCOMPRESSIBLE,
MISCIBLE DISPLACEMENT IN A

NATURALLY FRACTURED PETROLEUM RESERVOIR (*)

by Todd ARBOGAST (X)

Communicated by J. DOUGLAS

Résumé. — Un modèle « porosité double, perméabilité double » est présenté pour la
simulation d'un déplacement incompressible miscible dans un milieu poreux naturellement
fracturé. L'écoulement des fluides est décrit dans le système des fractures et dans chaque bloc
matriciel par une équation elliptique pour la pression et une équation parabolique pour la
concentration. L'échange de fluide entre les fractures et les blocs est modélisé en imposant des
conditions au bord sur les équations matricielles et en incluant un terme de source distribuée dans
les équations dans les fractures. Une méthode d'éléments finis est donnée pour approcher la
solution. Elle utilise une méthode mixte pour la pression, une méthode modifiée des
caractéristiques pour Véquation pour la concentration dans les fractures et une méthode ordinaire
de Galerkin pour la concentration matricielle. La procédure converge asymptotiquement avec
une vitesse optimale.

Abstract. — A double porositylpermeability model is presented to simulate an incompressible,
miscible displacement in a naturally fractured petroleum réservoir. Fluid flow is described in the
fracture system and in each matrix block by defining for each an elliptic pressure équation and a
parabolic concentration équation. The matrix/fracture fluid transfer is modeled by imposing
boundary conditions on the matrix équations and by including a macroscopically distributed
sourcelsink in the fracture équations. A finite élément procédure is defined to approximate the
solution. It uses mixed methods for the pressure équations, a modified method of characteristics
for the fracture concentration équation, and standard Galerkin methods for the matrix
concentration équations. It is shown that the procédure converges asymptotically at the optimal
rate.

1. INTRODUCTION

1.1. Opening remarks.

It is fairly well understood how to model the flow of two completely
miscible, incompressible fluids in a single porosity réservoir. An elliptic
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6 T. ARBOGAST

pressure équation and a parabolic concentration équation are obtained [8],
[9], [19].

It is not so clear, however, how to model such flow in a double
porosity/permeability réservoir. The usual approach is to assume that the
exchange of fluids between the matrix and fracture Systems is always in a
quasi-steady state [5], [29], A single function is defined to describe the
matrix/fracture fluid transfer. The primary term of this function is pro-
portional to the différence between the matrix and fracture system pressures
(or flow potentials). The constant of proportionality, as well as the addition
of smaller terms, is the subject of much debate [27].

An alternate approach is to model the matrix/fracture fluid transfer
explicitly [1], [2], [4], [11]. This should give a physically more meaningful
model, and no ad hoc terms or parameters need appear.

Fluid flow within each (single porosity) matrix block can be modelled in
the usual way. One obtains pressure and concentration équations posed
over each block. The flow in the fractures affects the flow in an individual
matrix block only at its surface. This can be modelled as a boundary
condition on the équations.

Fluid flow in the fractures needs to be viewed macroscopically. Provided
that the fracture system is highly interconnected and the matrix blocks are
relatively small (as compared to the size of the entire réservoir), the system
of fractures may be thought of as a porous médium distinct from that of the
matrix. Flow in the fracture system can then be considered to be of Darcy
type and spread out over the entire réservoir. Again, the usual set of
équations describes this flow, except that an additional source/sink term
must appear. The fluid that flows out of (or into) the matrix blocks through
their surfaces will appear in (or leave) the fracture system. In some way, this
transfer must be modelled as a macroscopically distributed source/sink.

The flow of a single phase fluid of constant compressibility has been
modelled in this way [1], [2], [11]. An incompressible (immiscible)
waterflood has also been modelled [4], [11]. Hère we shall model an
incompressible, miscible displacement. The model will be related to an
extension of the single phase, single component model described in [2],

1.2. A Preview of the rest of the paper.

Using the approach described above, we shall dérive our model in
Section 2.

In Section 3, we shall define a finite élément procédure for approximating
the solution of the differential model. The approximation of a single
porosity réservoir has recently received a good deal of attention by several
authors [8], [9], [10], [14], [16], [17], [18], [19], [20], [25], [26]. We will adapt
two of the existing methods to our double porosity/permeability model in
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DISPLACEMENT IN A PETROLEUM RESERVOIR 7

such a way that the resulting procédure is particularly well suited to solution
on parallel computers.

We shall observe in Section 3 that the solution to the fracture System
concentration équation has a tendency to develop relatively sharp fronts,
though the solutions to the matrix concentration équations do not That is,
the formally parabolic fracture concentration équation is more nearly
hyperbolic in practice. It should be discretized in a manner that is capable of
resolving the fronts in the solution. The matrix concentration équations may
be handled in a more standard fashion.

For the matrix équations we will consider the adaptation of a procédure of
Douglas, Ewing, and Wheeler that uses a mixed finite élément method for
the elliptic pressure équations and a relatively standard Galerkin method for
the parabolic concentration équations [9], [10]. Concentration is the
quantity of physical interest. We will see that the concentration équations
dépend on the pressures only through the Darcy velocities, so it is
appropriate to approximate thèse directly with mixed methods. This will
give a better approximation of the velocities (which is critical) than a more
standard Galerkin approach [19] would yield.

The above approach could be used for the fracture équations as well. The
resulting procédure has been shown to converge at the optimal rate [3], and
it is somewhat simpler than that to be presented below. However, it would
be unsatisfactory unless a very small time step were used.

For the fracture équations, we shall use a modification of the method of
characteristics considered by Douglas, Ewing, Russell, and Wheeler [13],
[17], [18], [25]. For technical reasons, we shall consider the model in a
spatially periodic setting. We shall move the fracture concentration forward
in time along the (approximate) characteristics of the hyperbolic part of the
équation. Along the characteristics, the concentration should change very
little ; consequently, we should be able to take a reasonably large time step.

Because the velocities change less rapidly in time than the concentrations
[8], [10], [14], we shall allow for the use of a longer time step in solving the
pressure équations than is used in solving the concentration équations.
When the fracture concentration front passes an individual matrix block, it
may be désirable to reduce the time step used in solving the matrix
équations. We will allow for this possibility in the case of the matrix
concentration équations.

Because the matrix blocks themselves are small, the linear Systems that
arise in the finite élément approximation procédure can be expected to be
fairly small. Hence, it is appropriate to use direct solution methods on them.
We shall incorporate a technique [10] that allows one to refactor each such
matrix only once per pressure time step while retaining the order of
accuracy obtained by refactoring once per matrix concentration time step.

In the final section, which is easily half of the entire paper, we shall prove
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8 T. ARBOGAST

that solutions to our approximation procédure converge asymptotically at
the optimal rate to the solution of the differential model. We shall présent
the analysis in a relatively simple form that will not properly account for the
smaller time step used in solving the matrix concentration équations. To
control the matrix/fracture coupling, we will need to impose a mild but
evidently artificial hypothesis.

As in most of the analyses of miscible displacement, we shall assume that
the external sources/sinks are not concentrated at points (Le., wells), but
are instead smoothly distributed over the entire réservoir. If we allowed
actual wells, the solution would be singular near them, so any approximation
attempt and analysis would require spécial treatment [20], [26].

2. THE INCOMPRESSIBLE, MISCIBLE DISPLACEMENT MODEL

2.1. The quantities of physical interest.

Let (1 c R3 be a naturally fractured réservoir with disjoint, two-connected
matrix blocks H(- cz H. It is important that the diameters of the matrix blocks
be small compared to the diameter of the réservoir itself. Since the fractures
are thin, we shall simply assume that M Ùt = Ô. Let / = (0, T],

i

T>0, be the time interval of interest.
Within the réservoir, two incompressible, completely miscible fluids will

flow in a single phase. Some of the fluid flows in the interconnected System
of fractures, while the rest flows in the matrix blocks. The fluid and porous
structure both of the fracture System and of the matrix must be charac-
terized. The quantities associated to the (macroscopic) fracture System are
defined on £1, while the quantities associated to the ith matrix block are
defined on fl(-, We shall often use a single symbol to dénote a matrix
quantity. It will be defined on Cim = { J O;, and the location x détermines

i

the block in question. When a physical quantity exists for both of the
fracture and matrix Systems, we shall use an upper case letter for the
fracture quantity and the corresponding lower case letter for the matrix.

Let the fluid properties pressure, Darcy velocity, and concentration (of
one of the two components) of the fracture System be denoted by
P(x,t), U(x,t), and C(x,t), respectively. The corresponding quantities
for the matrix fluid are then/?(x, t),u(x, t), and c(x, t). Let \x and p dénote
the viscosity and density of the fluid mixture, respectively ; thèse dépend on
the concentration C or c.

The porous System properties of the réservoir are the permeability tensor,
porosity, and diffusion/dispersion tensor. Let K(x), ®(x), and D(x, U),
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DISPLACEMENT IN A PETROLEUM RESERVOIR 9

respectively, dénote thèse quantities for the fracture System, and let
£,•(#), <$>i(x), and dt(x, u) dénote the corresponding quantities for the ith
matrix block (where the subscript i may be omitted). The diffusion/disper-
sion tensors are velocity dépendent. Following [9] and [23],

(2.1.1) D(x,U) = ̂ (x){dmolI m

where the (j, &)-th entry of the tensor E(U) is

UUk
(2.1.2) Ejk(U) =1

\U\2

and E^ (U) = I — E(U). A similar expression defines d{x, u) :

(2.1.3) dt(x, u) = 4>i(x){dmoll+ \u\ [dlongiI. E(u) + dtmnsJ E^u)]} .

The matrix permeabilities are much smaller than the fracture permeabi-
lity ; hence, the following physical assumption is customarily made : the
matrix blocks do not directly interact with each other, nor with the external
sources/sinks ; they interact only with the fracture System.

2,2, The flow in the fracture System.

The flow in the fracture System is described by the usual pressure and
concentration équations [8], [9], [19], except that a macroscopically
distributed source term must appear to take into account the fluid transfer
between the matrix and fracture Systems. The pressure équation will be
derived first.

Darcy's law states that

(2.2.1) U= -A-\C)(VP -y(C)) in fî x / ,

where A~l{x, C) = K(x)/^(C) and y(x, C) is the product of p(C), the
gravitational constant, and the downward directed unit vector. We assume
that the fluids do not change volume due to their mixing ; that is,
p(C) is just the linear interpolant of the (constant) densities of the two
components. Then incompressibility and the assumption that the external
volumetric source/sink f(x,t) acts only on the fracture System requires that

(2.2.2) V -U= f in O,xJ .

We hâve omitted any effect of the matrix above since no net volumetric fluid
transfer occurs between the matrix and fracture Systems. A boundary
condition is needed ; simply take the no flow Neumann condition :

(2.2.3) £/-v = 0 on 3ft x / ,

vol. 2 3 , nQ 1, 1989



10 T. ARBOGAST

where v(x) is the outer unit normal to dft. Then, f(x) dx = 0 is required
Jn

for consistency. Note that (2.2.1)-(2.2.3) defines P only up to a constant.
The concentration équation reflects conservation of mass of the fluid

components. Net component mass flow does occur between the matrix and
fracture Systems, so a matrix source term must appear in this équation. Let
the operator gt{x ;c,u) dénote the volumetric source/sink from the ith
matrix block of the fluid component whose concentration is c (equivalently,
C). This function will be defined below in Subsection 2.4. The fracture
concentration équation is then
<PCt + V . (CU - D (U) VC ) =

/+) + £0|.(c,u) in ftx/,

for which (2.2.2) gives the nondivergence form as

(2.2.4) <3>Ct + U- VC - V-D(C/)VC -

= ( C i n j - C ) / + +£&(<:, w) in ftx/,
i

where the subscript t dénotes partial differentiation in time, Cm)(x, t) is the
concentration of the injected fluid, and f+(x,t)is the positive (injection)
part of / . Requiring no net component flow across d£l gives the condition,
with (2.2.3),

(2.2.5) D(U)VC -y = 0 on 8ft x / .

Finally, the initial fracture concentration C°(x) must be given :

(2.2.6) C = C° on ftx {0} .

2.3. The flow in the matrix.

We will now consider the flow of fluid in the ith matrix block. The
fracture System affects the block only at its surface, so the équations
describing interior flow are the usual ones, with no external source/sink
terms.

The pressure équation is

(2.3.1) u = -a-\c)(Vp-y(c)) in ft,. x /

and

(2.3.2) V.w = 0 in ft^ x / ,

where a~1(x, c) = k(x)/\x.(c) (and afl(x, c) = ^
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DISPLACEMENT IN A PETROLEUM RESERVOIR 11

The concentration équation is

(23.3) <t>c,-V.$(c, M) = 0 in fl(. x / ,

where we hâve written the volumetric flux as

(2.3.4) q(c, u) = d(u) Vc - eu .

Again, the initial concentration c°(x) must be given :

(2.3.5) c = c° on Of x {0} .

At the surface of the block, matrix fluid contacts fracture fluid ; we must
enforce continuity of pressure and of concentration there. Pressure is easy :

(2.3.6) p = P on aa(. x / .

Continuity of concentration cannot be imposed so straightforwardly. The
matrix fluid that leaves the block at a point x e 8O,- must be macroscopically
spread out so that it enters the fracture System in some région about x. It is
inconsistent to hâve only the fracture fluid at x influence the matrix flow ; ail
the fracture fluid in the région about x must affect the matrix flow. A
consistent way for this to occur, which is related to the procédure of [2], will
be described in the next subsection. There we will define an operator
A(- so that continuity of concentration can be expressed as

(2.3.7) c = Ai(C) on aft,- x / .

The matrix concentration initial and boundary conditions need to be
consistent ; hence, the following relation should hold :

(2.3.8) c°=Ai(C°) on ftf .

2.4. The matrix/fracture coupling.

Let {Xi(x)} t>e some partition of unity over O such that each
Xi is or is approximately the characteristic function of IV Specifically, we

f
require that the support of Xi^^-> Xi(x)dx- \fli\ = volume of

Jn
fli, and 0 ^ Xi: • The function x, will define and weight the région of space
over which the zth block and the fracture System influence each other.

Since the blocks are small and the fracture flow is faster than the matrix
flow, let us assume that, at each fixed time, the variation in C over
H, is small. Following [1], [4], and [11], we might like to assume that this
variation is so small as to be negligible. However, in that case, it is not hard
to see that no transfer of fluid would occur due to convection. Our fluids are

vol. 23 , n ° l , 1989



12 T. ARBOGAST

incompressible and mix without changing volume, so there is no net
volumetric flow into or out of an individual matrix block. If the concen-
tration over the surface of a block was constant in space, then the net
convection of a mass component in through the block's surface would
exactly equal the net convection out (though diffusion and dispersion could
lead to some net component mass flow). Since viscous displacement is an
important physical process in the recovery of oil by miscible techniques, we
must assume some variation in the concentration over the surface of each
block. As in [2], we will assume that the variation in the fracture flow is
essentially linear.

To define the linear nature of the fracture flow near flt, let {\-î0, ...,
\- 3} be an orthonormal basis of the linear functions with respect to the
inner product given by intégration against the weight Xi- Now define the
linear operator A(- mapping L1^) onto the set of linear functions by

(2.4.1) A » ( x ) =

A macroscopically spread matrix source/sink that is consistent with this is
defined as

(2.4.2) gi(x;c(.9t),u(.9t)) =

= - I ( f {•(y)c,(y,O**,,-(y)
7 = 0 ^ n ( .

+ q(y, c(y, t), u(y, t)) • VX^OO} dy\ k{J(x) Xi(x) .

That is, the fluid that flows through 3 ^ is

-q(c, u)-vt = - (di(u)Vc-cu)-vi

(where vt(x) is the outer unit normal to 3^) , and this distribution,
supported on dftt, agrées with the action of gt up to the linear order of the
test function used :

(2.4.3) - f q(c,u)-viAi(<*)ds= \ gi(c,u)<*dx, a,eC°°(O),
J an,- J n

by the divergence theo rem, (2.3.3), and the orthonormali ty of {\itQ9 . . . ,
Xz- 3 } . Wi th < o = l above , we see that (2.4.2) gives us a matrix source/sink
that conserves mass in a global sensé ; it also conserves mass in a local sensé.
Without loss of generality, we can suppose that Ki0 is a constant . Then it is
easy to see that the 7 = 0 t e rm in (2.4.2) alone accounts for the global
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DISPLACEMENT IN A PETROLEUM RESERVOIR 13

conservation of mass, while the other terms simply locally redistribute the
matrix source/sink somewhat. Consistency has been maintained in the mass
transfer between the two porous média because each matrix block affects
and is affected by the fracture System as if the fracture System flow were
linear in the vicinity of the block.

3. THE FINITE ELEMENT APPROXIMATION PROCEDURE

In this section, we first consider whether the concentration équations tend
to develop fronts, as this strongly influences our choice of an approximation
procédure. In the second subsection, we clarify the mathematical assump-
tions that are tactily assumed throughout the rest of the paper and define
some gênerai notation. Once this is done, in the third subsection, we can
write down a weak form of our model. This weak form is appropriate for
finite élément approximation, the notation for which is given in Subsection
3.4. We are then ready in Subsection 3.5 to define our approximation
procédure. Finally, in the last subsection, we include a few words on
implementing the procédure on a computer.

3.1. The expectation of concentration fronts.

It is well known that miscible displacements in unfractured petroleum
réservoir simulation are dominated by the convection of the fluids rather
than by their diffusion/dispersion [14], [17]. This means that the formally
parabolic concentration équation is almost hyperbolic, and so fronts can and
do develop in the concentration that are relatively sharp when viewed on the
scale of the entire oil field. The sharpness of the front increases with the
hyperbolic velocity, which is the Darcy velocity divided by the porosity
(roughly speaking, this is the actual microscopic velocity of the fluid), and
this velocity must be scaled by the size of the réservoir.

Estimâtes of the fracture System permeability and porosity and of the
diameter of the matrix blocks hâve appeared in the petroleum literature
[21], [27], [28], [29]. Typically, the fracture System may hâve a permeability
that is forty to several hundred times Iarger and a porosity that is ten to a
few hundred times smaller than that for an unfractured réservoir. Hence,
the hyperbolic velocity in the fracture System may be several thousand times
greater than in an unfractured réservoir. It is difficult to estimate the effect
of the matrix on the front, but it does act in a regularizing manner [1]. It will
smooth out the front to some significant degree, but let it suffice to say that
the fracture concentration will develop relatively sharp concentration
fronts.

The matrix has a hyperbolic velocity comparable to that for an unfractured
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14 T. ARBOGAST

réservoir. However, the diameter of a matrix block is several hundred times
smaller than that of the réservoir itself ; therefore, the flow in a matrix block
will hâve a much reduced tendency to develop fronts. It is also true that the
small size of the block allows us to discretize it fairly finely if we wish, so that
in any case the matrix concentration can be approximated rather easily.

3.2. Some mathematical assumptions and notation.

We shall implicitly assume that ail of the quantities defined in the second
section above are sufficiently smooth ; in particular, assume the quantities
A, <ï>, D, y, /, Cinj, C°, and c°, and, for each i, ah <\>t, dh and
X; to be so. In addition, <E> and <(> shall be bounded above and below by
positive constants, and A and a shall be uniformly positive definite. The
same will be true of D and d once we assume that the molecular diffusion
coefficient dmoï is strictly positive. For convenience in the analysis to follow,
let

0 < <ï>* =s <E> , 0 -=: 4> * ^ c}> , and D * = dmol.

We shall assume that fl is a two-connected domain in IR3 with a smooth
boundary. Each ilt should be convex ; otherwise the solution may hâve
some singular behavior near the reentrant corners.

Under thèse assumptions, it is reasonable to expect that the solution is
smooth and regular enough that the approximation procédures to be
defined below can be analyzed as in the last two sections of the paper. We
shall tacitly assume that this is the case.

Each of our assumptions is physically reasonable except for those made
on the external source/sink term / ( a s mentioned in the introduction).

Let us now define some additional notation, most of which is relatively
standard. With * being blank, i, or m, W*'p will dénote the usual Sobolev
space of a times differentiable functions in the Lebesgue space L* over a
domain H*5 and || -||a p , will dénote its norm. We will simply write
Hi for the Hilbert space W%>2 and II. Il for its norm. Dénote the inner

r II M a, *

product on L? or (Li)3 by (.,.)*. Let HQ(CI*) dénote the closure in
Hl of C<5°(ft*)> the infinitely differentiable functions of compact support in
H*. For a Banach space X and a nonnegative integer a, let Wa^(J' ;X)
dénote the space of maps <p : / ' -• X with the norm

Wa'*(J';X) - dt

where the right-hand side must be modified in the usual way if p = oo, and
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DISPLACEMENT IN A PETROLEUM RESERVOIR 15

where / ' will be omitted if / ' = / . It will be convenient to define the
following spaces :

H(div ; fi,) = {i|i e (L2(^O)3 : V - i|i e L 2 ( n 0 } ,

HN(div ; H*) = {*|/ e H(àiw ; £1*) : t|i • v* = 0 on 811*} ,

L£(nO = L2(n0/{<p: «Ps constant} ,

Hl
L(£l.) = ̂ ( n O + span {\it09 ..., \it3} .

Finally, let Q and E dénote generic positive constants, where e may be
taken as small as we please.

3.3. A weak form of the differential System.

Assuming that the differential model has a bounded solution, it will
satisfy the weak form of the équations that follows. The weak form in ii)
below is easily seen by noting that (2.3.1) can be rewritten with (2.2.1) as

a(c)u + V(p-P) - y(c)-WP - y(c)+A(C) U-y(C) .

i) The fracture pressure équation :
Find maps {£/, P} ;J -+HN(div ; n ) x Le (il) such that

(3.3.1)
(3.3.2)

ii) The zth matrix block pressure équation :
Find maps {u,p} : / -> //(div ; £ll ) x Lf such that

(3.3.3) (a(c)u, iH-- ( V - ^ P ) i = (7(c),*)i +
+ ( [A(C) t / -7(C)] , i ( ;X- ( V . ^ P ) , . , i(iG/f(div;fl ï.),

(3.3.4) (V-M,q)),. = 0 , ( p e i ? .

iii) The fracture concentration équation :
Find a map C :J-+Hl such that

(3.3.5) (OC, + £/.-VC,<o)+ (D(U)VC, Vo>)+ (C/+,o>) =

(3.3.6) C ( X , 0 ) = C°(JC)» for* e O .

iv) The ïth matrix block concentration équation :
Find a map c:J^H\(H() such that

(3.3.7) (<K, «X + (<?(c, M), Vo>)r. = 0 ,
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16 T. ARBOGAST

(3.3.8) c(x,t) = À(-(C(., *))(*) > f o r feOe ant- x / ,

(3.3.9) c(x, 0) = c°(x) >

Note that the boundary conditions (2.2.5) on C and (2.3.6) on p hâve
been imposed implicitly above. Recall that gi9 q, and At are defined by
(2.4.2), (2.3.4), and (2.4.1), respectively.

3.4. Discretization of space and time.

For Hp and Hc in (0, 1], let ^Hp(CL) and 15^(H) be partitions of H into
simplices or rectangles of diameters bounded by Hp and Hc, respectively.
Each of thèse families of partitions must satisfy the nondegeneracy
condition, namely, that there is some bound on the ratio of the diameter of
each simplex or rectangle to the diameter of the largest bail inscribed within
it. Furthermore, the second family T5H (H) must be fully quasi-regular ; that
is, there is also some overall bound on the ratio of the diameter of the
largest simplex or rectangle to that of the smaUest for each partition.
Analogously, for hp and hc in (0,1], partition each ftt into 7SA (fi(-) and
1S/,c(nz). Of course, hp and hc could vary from block to block, but for
notational convenience we will not consider this possibility.

Let each of the spaces *rHp x ifHp and TT(- X HT. = -yh^ x WhpJ (for

each i) be that of Raviart-Thomas-Nedelec [22], [24], Brezzi-Douglas-
Fortin-Marini [7], or Brezzi-Douglas-Durân-Fortin [6] associated to the
partitions ^GH (H) and *&h (OJ, respectively, of indexes such that the
approximation properties (3.4.1)-(3.4.6) below hold. (Actually, any mixed
finite élément spaces having the properties described in Subsection 4.2
below can be used.) Let

H H N ( ; )
and

HT = nrHp = iFHp/ {<?:(?= constant} c L\ ( H ) .

Then, for any (v, w) e HN(di\ ; il) x L^(fl) ,

(3.4.1) inf \\v-^\\0^Q\\v\\RH^, 0 ̂  R *s R* ,

(3.4.2) inf | | V . ( c i | , ) | | 0 « g | | V . i > | | #

(3.4.3) inf \\w-^\\0^Q\\w\\RH^
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where i?** = / ? * ^ l for the first two spaces [7], [22], [24] and
/?** = /?* — 1===1 for the other space [6], and, with r** defined anal-
ogously, for any (v, w) e / /(div ; H(-) x L2(Hï-)?

(3.4.4) inf | | » - * | | O l . ^ G I M I r i - * ; , O ^ r ^ r * ,

(3.4.5) inf | | V . . ( i ; - * ) | | 0 . ^ G | | V - i ; | | r i . * ; , O ^ r ^ r * * ,

(3.4.6) inf | | w - 9 | l o ^ G | | w | | r i / i ; , O ^ r ^ r * * .

Note that the numbers R* and r* may be as small as one.
Let Ji = JtH <= H1 and, for each /, Jt^ = *M\ti c H\{fl{) be standard

finite élément spaces associated to ^ ( H ) and 75^(11; ), respectively, such
that

(3.4.7) inf | | 0 -<o | | i a

(3.4.8) inf ||G — o> ||lai 3

for any © G H1 and 0 e HQ(SÏ( ). Hère, 5* and s * must be at least two. It will
be convenient to define the space

Next, let us define some notation that will be used to discretize the time
variable. Schematically, / will be partitioned as shown in Diagram 3.4.1.
First, some Atc >- 0 is chosen to represent the fracture concentration time
step. Then for some positive integer /*, we can define the matrix
concentration time step ô*c by

As we will see later in the analysis, the first pressure time step should be
chosen to be smaller than the rest. Hence, for two positive integers
m*'0 and m*, the first and succeeding pressure time steps will be

Atl = m*>° Arc and Atp = m* Atc ,

respectively. Finally, let n* be the number of pressure time steps in
/ ; that is,

(extend the end time T if necessary).
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18 T. ARBOGAST

Diagram 3.4.1. — The time Une.

For notational purposes, let ra*'n = m* for rc === 1. In fact, there is no
reason why Atp and even Atc and btc could not vary with time ; moreover,
while each block is near the fracture concentration front, a temporary
réduction of the matrix discretization parameters is probably to be desired.
This extension is straightforward but cumbersome, so we will not pursue it.

Let

and

m Atc + / htc

ln,m,i ) v j + ( « _ l ) A ^ + mA^ c + / ô ^ c if « 3 = 1 ,

where we omit / if / = 0 and both m and / if m = l = 0. Note that

Also let

y — 1 , Wl + 1 ,**fl> ÏM

ft«,m + l _ 9 ' - 9 ' n n, W j ;+ l _ <P f ' ~ 9
n,m,l

and

1 ~" vn> ' n + 1 J ' " ' B , m + 1 ~ vra, m ? ^n, m + 1 J

The sum of 9"'m + x over ail n and m for which 0
denoted simply by

TV, M A T - 1 m * ' n - l

fn> m + j *£ * # , M + 1

n = 0 m = 0

We will need to extrapolate functions defined at pressure time levels. We
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can use a two point linear extrapolation beyond time tl9 and a constant
extrapolation over the first pressure time intervaL Hence let

nn,mj _ <p if n = 0

where, again, we will drop the / if / = 0. We will also extrapolate to the
midpoints of the pressure time intervais. So, for half integers, let

ifn =
m*

; wr

Finally, dénote interpolation of the fracture concentration time levels by

We will approximate U, P9 and C by Uh e TT, Ph e iT9 and Ch e Jl,
respectively, and we will approximate M, p, and c on each block
n, by wA e TT,-, pft e Tjrf, and ĉ  6 ^ f , respectively.

We will approximate the hyperbolic part of the fracture concentration
équation by viewing it as a directional derivative in (x, r)-space [13]. Let

(3.4.9) r(X,t)=

dénote the unit vector in the characteristic direction (£/, 4>). Then the
hyperbolic part of the fracture concentration équation is

(3.4.10)

and this will be approximated at (x,tnm + 1) by

I 7\C n"> m + 1
/O yi 1 1 \ / I TTfl.m + 1 I 2 . Jk?. OU

9T

/^| n, m + 1

n, m + \
h
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where

(3.4.12) C£'m = C

(3.4.13) jp.m + 1 = x

This can be done so long as xn>m +1 always lies in fî. Obviously this is not the
case. It is possible to define xn>m + l when (3.4.13) would give a point outside
of Cl, for example, by an appropriate reflection [15]. However, in petroleum
réservoir simulation, the effect of the boundary is of little importance ;
consequently, it is reasonable to instead consider a periodic version of our
problem. This has been done in most of the papers on the application of the
modified method of characteristics to miscible displacement [16], [18], [25].
We can then avoid many technical détails since %"' m + * is always defined in a
completely natural way by (3.4.13).

We shall assume that ail of our functions are H-periodic in*, in particular,
those of i^ x HT and M. We must then drop the Neumann conditions on
the differential System (2.2.3) and (2.2.5), and on the approximation space
-V (so that then iT = -fHp H {\\t : i|/ is fl-periodic }). The weak form of the

problem in Subsection 3.3 is unchanged, except that the test functions in
(3.3.1) should not hâve the Neumann condition. (Also, as just mentioned,
ail test functions should be fl-periodic.)

3.5. A description of the approximation procédure.

Our approximation procédure is defined by the following algorithm. The
order of solution will be given after a description of the équations.

i) The fracture velocity and pressure :
Find {£/£, P%} e TT X HT for n = 0, ..., n* such that

(3.5.1) (A (C£) Ul *) - (V . *, PI) = (7(CJÎ), *) , * e r ,
(3.5.2) (v.c/»,<p)= (/», 9 ) , c p e i T .

ii) The matrix velocity and pressure :
Find {u%,p%) e Y\ x H^t for each i and for n = 0, ..., n* such that

(3.5.3) (fl(c£) ul ^\ - (V .

+ ([A(Cn
h) U£-y(CS)], n - (V . *, P£)& , * e r{ ,

(3.5.4) (V-MJÎ ,9) £ = 0 , cpeTT,.

We will découplé the calculations for the concentrations from those for
the velocities by employing the extrapolation operator E.
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iii) The fracture concentration :
Find C£'m + 1 e M for n = 0, . . . , « * - 1 and m - 0, . . . ,m*>"-1 such

that

where C£'m is defined above by (3.4.12)-(3.4.13) and g?&m + 1 is defined
below by (3.5.13) as an affine function of Cj?'m + 1.

The computation for the matrix concentration will be split into several
pièces. This will enable us to découplé it from that for the fracture
concentration.

The matrix concentration problem is coupled to the fracture concentration
problem through the boundary condition (2.3.7). We can approximate this
condition over Jn m + x as follows :

By solving the matrix concentration problem over Jn m + j with only the first
pièce A((C"'m) of the boundary condition, we could détermine the flow of
fluid that would occur in the block due to the concentration distribution at
time tn^m if no change took place on the boundary. On the other hand, we
could also détermine the flow of fluid over Jn>m + 1 due to a unit change in the

boundary condition to the value Atc \-ï7-(^) if the block originally had

zéro concentration everywhere. Multiplying this by the actual change
(aC/î)ffï + 1, kitj Xi) an<3 summing on j , we would hâve (approximately) the
flow of fluid due to the actual change in the boundary condition.

We will prescribe calculations in iv) and v) below to approximate the
problems described above. In none of thèse problems will the fracture
concentration at the advanced time level tntTn + 1 appear. The approximate
matrix concentration will be defined in vi) in terms of C£'m + 1 implicitly
before this quantity is known and explicitly thereafter.

We can avoid changing the coefficients of the linear Systems that define
the matrix concentrations at the advanced time levels during each pressure
time interval by a judicious use of the extrapolation operator E [10]. As
mentioned in the introduction, thèse linear Systems should not be large, so it
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is appropriate to use direct solution techniques on them. In that case, a
single factorization for each block for each pressure time step is needed. If,
for any reason, itérative solution techniques are used instead, then the
preconditioners need not be changed over the entire pressure time step.

iv) The matrix concentration assuming no change in the fracture concen-
tration during the time interval :

Find clti)il + 1 e M^ for each i and for n = 0, ..., n* — 1, m = 0, ...,
m*'" - 1, / = 0, ..., /* - 1, and / = - 1 such that

(3.5.6) <(> -^ _ â— , to

i
(3.5.7) q\m*1 + 1 = ^ I T^ii'-^2 \ \J^^m,l + l _ nntm,l + \

£>m>l + 1)

7*n, m, l \ p n m, l + 1 l?,,n + 2\

(3-5.8) c-^H", ^ ^

(3.5.9) c ^ V + 1(*) = A,(C^™)(*) , for A: e an, .

v) The matrix concentration correctors for unit changes in the boundary
condition during the time interval :

Find cfi;mJ + 1 e Jlf for each / and for n = 0, ..., n* - 1, m = 0, ...,
m*>n - 1, / = 0 , ..., / * - ! , and y =0 , ...,3 such that (3.5.6)-(3.5.7) above

if/

hold

(3.

(3.

.5.

.5.

with

10)

11)

vi) The matrix concentration itself :
Definecjî'm + 1 e Jt\- for each i and for n = 0, ..., n * - l a n d m = 0, ...,
* ' " - 1 by

Ch =C-lh + 2,
j=0
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vii) The matrix/fracture coupling :
Define for each / and for n = 0, ..., n* — 1 and m = 0, ..., m*'" — 1,

1 3 l*-l f / rn,m,l +
1 V V / A " l f e1 V V

1 k 0 / 0k = 0 / = 0 l \ O r /

viii) Initialization :
Define C° € ̂ # and cl e «/#/" for each i in any manner such that

(3.5.14) | |C0-CA°| |0+

(3.5.15)

There are many ways to do this. One such procédure will be defined in
Subsection 4.3 below.

This complètes the description of the algorithm's équations, though it
may be easier to conceptualize the algorithm if we include a few more.
Thèse additional équations will, in fact, be used in the convergence analysis
to follow. First let us extend the définition of c£'m + 1 given by (3.5.12) to
matrix concentration time levels. On Ctt, let

rn,m,l +1 _ rn,m,t
Ch —c-lh

; = 0

for n = 0, ..., n * - 1, m = 0, ..., m*>n-l, and / - 0, ..., / * - 1 . Now the
équations of iv) and v) can be combined to show that c£'m>/ + 1 satisfies the
équations

(3.5.17) (4>8cfrM'/ + 1, o>X + (qn
h'

mJ + \ Vco),- = 0 ,

(3.5.18) ç£' 'n ' / + 1 =

(3.5.19) c^m ' / + 1(^) = A£(/Cf »-/ + 1)(x) , forx e an, ,
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Finally, then, (3.5.13) can be rewritten as

(3.5.20) g^m + 1 = - Y

1 / * - 1

1 1=0

for n = 0, ..., n* — 1 and m = 0, ..., m*1" — 1.
The order of solution of the algorithm will now be described. After the

initialization viii) for C^ and c°, we can solve i) for {[/£, P®} and then ii) for
{uh*Ph}* Now we can successively step through the pressure time levels.
For the nth, we must first détermine the concentrations at the fracture
concentration time levels. This is done for the mth by solving iv) and v),
/ = 0 , . . . , / * — 1, for the five pièces of the matrix concentration cfym'l + 1,
j = — 1, ..., 3. With thèse, iii) and vii) must be combined and solved to
obtain C£'m + 1. Once C£'m + 1 is known, vi) gives us c£'m + 1. Finally, when
the fracture concentration time level has progressed to the (n + 1 )-st
pressure time level, we can again use i) and ii) to solve for the velocities and
pressures U% + 1, P£ + 1, u% + 1, and/?£ + 1, completing the pressure time step.

3.6. Implementation of the procédure.

We end this section with two brief remarks on implementing the
approximation procédure.

In practice, it is not necessary to know the state of the matrix fluid in each
block. The pattern of flow (and, more importantly, the total amount of oil)
in an individual block can be inferred from the situation in nearby blocks.
Consequently, it is sufficient to calculate approximate solutions to the
matrix équations on a représentative set of blocks. Such a set of blocks can
be determined from the fracture équations. In any field-scale simulation,
the spatial partition 15^(11) will necessarily be coarser than the partition of
H arising from the physical fractures. That is, every finite élément of the
fracture System will sit over many matrix blocks. A reasonable choice for the
représentative set of blocks consists only of those that contain the
quadrature points of the fracture concentration calculation. This, then,
significantly reduces the number of équations that need to be solved.

As in the case of simulating the flow of a single component in a single
phase, the approximation procédure is well suited to solution on a parallel
Computing network [1], [11], since the block équations are independent of
each other and there is relatively little transfer of data between the fracture
and matrix calculations.
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4. AN ANALYSIS OF THE CONVERGENCE OF THE PROCEDURE

In this section we give an asymptotic analysis of the convergence of the
solutions of the approximation procédure to smooth solutions of the
differential model. The quantities that hâve been assumed to be smooth in
Subsection 3.2 above will be taken as such without further comment. We
begin by stating two theorems that describe the convergence results. The
rest of the section is devoted to their proofs. In Subsection 4.2, we dérive
équations for the pressure and velocity errors and bound them in terms of
the concentration errors. Thèse concentration errors are systematically
analyzed in the last five subsections. It is often valuable to analyze parabolic
équations by first considering the error associated to an elliptic projection of
the true solution [30]. This we do in Subsection 4.3. Once this is done, in the
foliowing subsection we can dérive an équation for the projection of the
fracture concentration error and bound ail of the terms that are not coupled
to the matrix. Similarly, in the subsection after that, an équation for the
projection of the matrix concentration error is derived and ail terms not
coupled to the fracture System are bounded. Then, in Subsection 4.6, we
obtain a bound for thèse coupling terms. Finally, an induction argument is
applied in Subsection 4.7 to control the effects of some of the nonlinearities,
completing the analysis of the concentration errors.

4,1. Statement of the convergence results.

For the appropriate R, r, S, and s, let the main error be represented by

(4.1.1)
JHÏ

+ [ II C II L«>(HS) + II C II ff1^)] Hc

+ [ I M I L - ( H ; ) + IMIffi(fli)]*c>

where TE is defined below in (4.4.8).

THEOREM 4.1.1 : If àtch~2 = o(l) as Arc, hc -> 0, and if asymptotically

(H* + hr
p+ (Atpf + Ml

p + HS
C + K +
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as the discretization parameters tend to zéro for some R, r, S, and s such that
l^R*zR*, 1 ̂  r ^ r*, 2 ^ 5 ^ S*, and 2^s*zs*, then for suffidently
small discretization parameters, the following estimate holds :

Moreover,
(n*-l,m*-l „ \ 1/2

1/2

where S' = min (5, 5* — 1 ) and 5' = min (5, s* - 1 ),

== g {* + II P y ̂ . ^ . j tf«' + <

iî' = min (R, R**) and r' = min (r, r**).

THEOREM 4.1.2 : For any R such that 0 *s R « R**,

max | |V.( t /»-^) | | o«G IIV.I/H^^H",
n

and, for ail n,

V. (*"-«£) = 0 .

Since 5 * ^ 2 and 5 * ^ 2 , the assumptions of the first theorem are quite
reasonable. They merely say that Hc and hc cannot tend to zéro too fast
compared to the other parameters. Thèse two convergence theorems are a
combination of (4.7.7) and Lemmas 4.2.2 and 4.3.1 below.

4.2. Analysis of the pressure error équations.

For n = 0, . . . , « * , let

Yn = un-ui en = pn~p%,
»n = un -u£ , eB =/?* ~pt.
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Thèse errors satisfy a set of équations given by subtracting (3.5.1)-(3.5.4)
from an évaluation of (3.3.1)-(3.3.4) at the time tn :

(4.2.1)

(4.2.2) (V.Y", 9 ) =

(4.2.3) (a(c^) u", ^), _ (V -1(,, 6»),

(A(Cjf) Y", *),• - ([7(C») - 7(CJÎ)],

(4.2.4) (V-iA cp); = 0, <pei^t.

Equations (4.2.1)-(4.2.2) hâve been analyzed in [9] by making use of a
certain projection of {£/", Pn} into *V xif. The resuit can be refined as
described in [4] by making use of the duality ideas of Douglas and Roberts
[12]. The refined estimâtes show that L2-norms of the errors Y" and
%n are bounded by the sum of Hp to the optimal power and || Cn — C£|| ,

where the regularity needed of the solution is optimal and where quasi-
regularity of the partition TSff (fl) is required to bound the L°°-norm of the
projection of Un.

We will use a more direct approach to analyze (4.2.1)-(4.2.4). Standard
projections of {Un, Pn} into Y x if and of {un,pn} into TT(- X HTi will be
used rather than the spécial projections of [9]. The advantage of this
approach is that it is easy to understand and it does not require that the
partition be quasi-regular. Let us start by considering the situation on

With Hl
N denoting the space HN(di\ ;fl) n (H1)3, each of our mixed

finite élément spaces [6], [7], [22], [24] has the property that there exist
projection operators n : H# + *V -> if and & = L2-projection : L2

c-+1f
such that for (u, w) s Hjf x Lç,

(4.2.5) ||t?-ni7||0^G \\v\\RH*> l^R^R^,

(4.2.6) \\V'(v-nv)\\0*:Q\\V.v\\RH*9 O^R^R^,

(4.2.7) \\w-0>w\\Q^Q \\w\\RH*> OZÏR^R** ,

vol. 23, n° 1, 1989



28 T. ARBOGAST

and, on y ,

(4.2.8) div n = 9 div .

Also, div TT = nT ; in fact :

L E M M A 4.2.1 : Given w G KST, there exists u e f such thaï

V-v = w and \\v\\H{âlv.a)^Q\\w\\0,

where the H (div ; Cl)-norm is given by

This lemma was proven by Raviart and Thomas [24, Theorem 4] for the
spaces of their paper. The lemma is true for any of the spaces y and iV
satisfying the properties mentioned above. For the sake of completeness, we
présent a simple proof below. A more gênerai version of this kind of proof
appears in [12].

Proof. Modulo the constant fonctions, one can solve the elliptic System

Acp = w in 11 ,
Vcp . v = 0 on ai l .

It is well known that

Let

v = IÏVcp G iT .

Then, by (4.2.8),

V - v = V - IIVcp = # Acp =

and, by (4.2.5),

Analogous properties hold for the projections II,- and ^{ associated to
iri x -TV

With thèse preliminaries out of the way, it is easy to analyze (4.2.1)-
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(4.2.2). First, take »|> = IIY" in (4.2.1) and cp = 0>%n in (4.2.2). Add the two
équations together to see that

") Y", nY") - (V • IIY", 0") + (V • Y",

= ([7(C")-7(C f c")] ,nY»)- ([A(C)-A(Cn
h)] UMIY")

^Q ||C"-CA»||J + 8 ||IIY»||J.

The last two terms on the far left-hand side above cancel by (4.2.8) (since
& is L2-projection). Consequently, since Y" - IiY" = Un - TIU",

(4.2.9) \\Yn\\2
0^Q{(A(Cn

h)Y
n,UYn)+ {A{C^)Yn,Un-UUn)}

Next, (4.2.2) shows that V • t/jj = 0>V • U" (= &f"), so

(4.2.10) | |V.Y"| |0= | | V . f / " - ^ V . C / n | | 0 .

Finally, in (4.2.1) let <J/be the function associated to ^ 0 " by Lemma 4.2.1.
Then

= (V • *, ©") = (AiCl) Y", *) - ([7(C») - y(C"h)],

Since ©" - ^ © " = P" - f P " and 0> is bounded on L2,

2 = (pn- e?p",©")+ (^©",©n)

" ^ P 1 2 ||Y»||2 | |C-C» | | ;} +e

Analogously, we can analyze (4.2.3)-(4.2.4) to dérive the following

(4.2.12) I K I I l i *

(4.2.13) V-u" = 0 ,

(4.2.14) W\\^
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Combining (4.2.9)-(4.2.14) with (4.2.5)-(4.2.7) and the analogous estimâ-
tes on the i^i x Wt gives the following lemma.

LEMMA4.2.2. For n = 0, . . . ,«*,

\U"\\RH* + HC--CJÎIIJ,

onClm,

+ \\P»\\RH*+ ||Y"||0+ IIC'-C^

The nonoptimal regularity required of the pressures appears to be
avoided in [4] at the expense of requiring quasi-regularity of the partition.
However, the concentration estimâtes will dépend on the velocity errors, so
this additional regularity is needed in any case.

4.3. Some projections of the concentrations.

Following [9], let C:J-*Jl be defined by

(4.3.1) (D(U) VC, Vco) + ((a + / + ) C, co)

= (Z)(C/)VC,Va>)+((a

where a is large enough to ensure coercivity of the elliptic form
(as* a* :> 0 suffices), and where the last equality above is from (3.3.5).

Similarly, on each ftt, let c : / - • ^ f be defined by

(4.3.2) (?(c, M), VO>), = (9(c, M), VCO), = - (<f>cp «),., <*e

(4.3.3) ff(x,t) = c ( x , 0 =

(f,
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where we hâve used (3.3.7)-(3.3.8). Recall that q is defined by (2.3.4), so
the form in (4.3.2) is elliptic. It is also coercive on Hl{Clt) since
V . u = 0.

The usual analyses of finite élément methods for elliptic problems show
that

LEMMA 4.3.1 :

- C)

I l O . m

|c-c| |0 +

a(c - C)
Vt

Hr

\\C\\SHÏ,

\\Ct\\s}Hl

S * S

1 , 1 7 1

The function Af (C ) does not appear in the norms on the right-hand sides of
the last two estimâtes above since \\c — A(-(C)|| =s Q ||o|j 1 m [2].

It is also possible to show that, if the solution is sufficiently smooth, the
W1)00-norms of C and c are bounded (since the concentration partitions are
quasi-regular) :

(4.3.4)

Let

G-

it remains to estimate the sizes of thèse errors.
Note that Lemmas 4.2.2 and 4.3.1 together imply that

(4.3.5) £ ||Y"
n, m

(4.3.6) £ llu"llo
n, m

for any Af and M.
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In the rest of the analysis, we shall tacitly assume that

C°h = C° a n d €% = <?>

so that

H° = 0 and Ç° = 0 .

By (3.5.14)-(3.5.15), any other reasonable initialization will hâve the same
final convergence estimate.

4,4. An analysis of the fracture concentration error équations.

We will now analyze those terms that arise in the fracture concentration
error équation that are not coupled to the matrix quantities. Such analyses
hâve appeared elsewhere [13], [16], [18], [25]. For our purposes, the paper
of Ewing, Russell, and Wheeler [18] is the most convenient. Their work
requires an asymptotic restriction that we shall remove in a manner that is
based on the work of Durân [16].

The above authors make use of évaluations of functions at not only
x (defined in (3.4.13) above), but also at x, where

TTTTfl, m + 1

(4.4.1) jgn.m + 1 =x_ElïL_ A , ^

Let

(4.4.2) ô>"'m = o>n>m(xn>m + 1) = u(x?-m + \ tn,m) ,

(4.4.3) j / 1 ' " 1 = o)"'m(xn 'm + 1 ) =1a>(in>m + 1 , ^ m ) .

An équation for the error £n>m + * is obtained by combining (3.5.5) with an
évaluation of (4.3.1) at time tnm + 1, We hâve after some manipulation that

(4.4.4)

VS"'m + 1, Vco) + (S"'
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(C-C)n>m- (C - C)">m \ / *nim_ztn,m

S

We choose the test function o> = Sn 'm + 1 e M in the error équation. The
left-hand side of (4.4.4) is bounded from below by the expression

(4.4.5) r(<j>Hn'm + ! £">m + 1) _ C(j)2"'m 2n>m)l + D* IIVS">m + 11|2

The first four terms on the right-hand side of (4.4.4) are easily dealt with
(see [9] and [10]). Firstly, we hâve for n ^ 1 that

(4.4.6)

( + l)-D(EU£m + 1)] VCn'm + 1, VEn>m + 1)

T1 I I 2 f A / "»3 _i_ II F Y " ' m + ! I l 2 _i_ II W . m + 1 I I 2

where we hâve used (4.3.4) and the Lipschitz character of D(U) (see [9,
(7.4)]). If n = 0, then we hâve the same bounds except that

ll^'ll^(/n+1n/n;L2)(A'/>)3 must be r e P l a c e d b y I I ^ I I L V I ; ^ 2 ) ^ s ince the

extrapolation operator E is only first order accurate on Jl7 and we must
interpret the term at time level tn_1 as zéro. Secondly, with Lemma 4.3.1,

(4.4.7)

ffffC'"1 + 1 — Cn'm +1) g
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The next three terms are estimated with the aid of a change of variables.
In [13], [18], and [25] it is shown that the mapping x^xn>m + 1 is, by
periodicity, a differentiable homeomorphism of Q onto itself for Atc small
enough. The déterminant of the Jacobian is 1 + O(Atc). Hence, intégrais
involving xn*m + 1 can be converted into intégrais involving x alone quite
readily.

With the approximate characteristic direction

(4.4.8)

for t eJnm + l, it is known that the fifth term on the right-hand side of
(4.4.4) satisfies

(4.4.9)

( EUn
n, m + 1

Atc

dC n, m + 1 n,m + l

,|S»,

W*, m + 1

since
Cn>m

to the derivative EU

is essentially a backward différence approximation

• . It is (4.4.9) that shows the+ 4>2

value of the modified method of characteristics. The analysis shows that the
bound on the fracture time truncation error is proportional to

82C
Atc ; whereas, in a more standard Galerkin approximation

L\L2)

procédure, this bound is proportional to ||Cff|| 2( 2 Atr. Because the
\ r 2 f T 2 ,

acfracture concentration équation is convection dominated, — ^ 0, so we

expect that

\Cn\ •
32C

Hence, in theory it should be acceptable to take a reasonably long fracture
concentration time step ; this has been observed in practice for miscible
displacement in an unfractured réservoir [17].

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



DISPLACEMENT IN A PETROLEUM RESERVOIR 35

To obtain an optimal order estimate of the sixth term on the right-hand
side of (4.4.4), the expression

(c ~ - (c -cy>m

which acts as if it were a spatial derivative, is estimated in the norm of the
dual space of H1. A change of variables argument shows that

(4.4.IO) - I *
(C - C)n'm - {C - C)n'm

- — — — , S"'

using Lemma 4.3.1. Similarly, the seventh term satisfies

» " A~ " , S»-™*1 j ^ g||S"-"Hg + e | |S»

The eighth and ninth terms on the right-hand side of (4.4.4) can be
bounded easily. The aforementioned papers contain the ideas needed for
the simple estimate that

( -n , m • n, m

pv". m + 1 \ \
£ l _ A ( ^ • EYn'm + l ds, ^ \

Hence, with (4.3.4) and an inverse inequality,

®- ^± j S » , m + l \ + / ^

lVCn

I
ll
Mo, oo

|
" 0 , co
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Upon summing (4.4.4) on n and m, we obtain from the above estimâtes
and (4.3.5) the resuit that

(4.4.14) i a>*j |S i V ' M + 1 | | ^ + (£>* - e) £ || VE"'m + 1 1 | 2 Atc

n, m

i N,M
ê 2 + y | | S - , m + l | | 2 A

n, m
N,M

Z (11*15 +
n, m

Only the last term on the right-hand side above needs to be estimated. It
is coupled to the matrix quantities, so we leave its estimation to a later
subsection.

4.5. An analysis of the matrix concentration error équations.

An équation for g">m>/ + 1 [s obtained by combining (3.5.17) with the
interpolation of (4.3.2) at times *„ m and tnm + 1 to the time tnmj + 1. That is,

(4.5.1) / \

where q = q(c, u). Also, (3.5.19) and (4.3.3) show that

(4.5.2) e'mJ + 1(*) =

= A ï(/S"' '" ' ; + 1)(Jc) + Ai.(/(C - C)"'m ' / + 1)(x) for xe an,- .

In the analysis, we will assume that /* is a fixed integer ; distinguishing
the rate of asymptotic convergence with respect to btc, in place of
Atc, will not be obtained below, though improvement in calculated values
should be expected. Choose the test function

in (4.5.1). After multiplying by btc, summing on i, n, m, and /, and canceling
two terms, we obtain the équation
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(4.5.3) £ £ {(4,8g».».' +1, g-.». ' +1 )m
n, m / = 0

n , m 1 = 0 i

n, m / = 0 i

^ ) n ' m > ' + 1

n, m / = 0 J

Let us begin our analysis of this équation by estimating the L^-norm of
the flux error expression. By définitions (2.3.4) and (3.5.18), it can be
written as follows :

(4.5.4) (Iq-qh)
n'm'l + 1 = I(d(u)Vc - du)n'm'1+ 1

+ 1) - d

1 1

'l + 1 Eu 2 + £">m'/ + 1 Eu" 2

1
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For now we shall leave the first term on the far right-hand side above as it
is. The L^-norm of the second term satisfies the trivial bound

(4.5.5)
m, m

The L^-norm of the third term can be estimated by using an inverse
inequality which holds on the spaces Jt^ because of the quasi-regularity of
the partition TSft ( ^ ) . In three space dimensions, we hâve that

(4.5.6) " + 12
0, m

E» M £«> m, / + 1 ||

0 , m " O.oo, m

(again, if n = 0, interpret quantities at time tn_l as zéro).
The fourth, fifth, and sixth terms on the far right-hand side of (4.5.4) can

be combined. Since

we hâve that

(4.5.7) 7(rf(w)Vc)rt'm^ + 1 - ^ f £ w h 2 \ w g n , ™ , u i _

'm'l + 1

The L^-norm of the first two terms above can be estimated easily using the

Lipschitz nature of d(u) once we expand the expression as below :

(4.5.8) \\l(d(u)Vc)"-m-l + i -d(Eu£m>' + ï)VIcn'm'l + 1

0, m

>0,m

|
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1

39

' - ' ; + 1 |

\\un,m,l+ 1 _ E u n 7 m , t + l n \\ E\>n

0,m

where, again, E is only first order accurate if n = 0, so II««11,2/, « 72X

(A^)3/2 must be replaced by || ut || L2 . £ 2 } (A^)1/2 in that case.

The last term of the right-hand side of (4.5.7) is more interesting. Its
L^-norm can be bounded by expanding the expression and applying the
inverse inequality :

(4.5.9) a(huh* j (V3c"'
0,m

0,m

x

| | V € - m - ' | | O m )| O i m

Note that Lemma 4.3.1 implies that
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Analogously, the bounds of (4.5.8)-(4.5.9) also hold for the L^-norm of
the last three terms on the far right-hand side of (4.5.4), provided only that
the gradients of c and ch are replaced by the corresponding functions
themselves. Thèse bounds and those of (4.5.5)-(4.5.6) enable us to obtain
from (4.5.4) the useful estimate that

(4.5.11) Y Y
n , m 1 = 0

n,m l = 0

x

n , m

n,m 1=0

where we hâve used (4.5.10) and (4.3.6) in the second inequality above.
Finally, another useful resuit is that

(4.5.12) Y ' i l|(^-^)">m'/ + 1 | l L ^
n,m 1=0

n , m / = 0

2

0, m

+

|

" + 2) j K
0,ml
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2

0, m

41

n + i
Z Z

« , m 1 = 0

where an analogue to (4.5.6) has been used.
Now let us return to (4.5.3). The left-hand side can be bounded from

below in terms of the expression in (4.5.11). We hâve that

(4.5.13) " 1 " ' ' + 1

Z*"z
n,m 1=0

^ m ' / + 1

n,m / = 0

n , m 1 = 0

2

0, m

Since the first two terms on the right-hand side of (4.5.3) do not dépend
on the approximate fracture concentration, they can be treated directly. For
the first we see that

(4.5.14) -
n, m l = 0 i

e j z
n , m 1 = 0

2
0,m

'0,m

N,M l * - l

n, m / = 0
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For the second term on the right-hand side of (4.5.3), first note that
summation by parts yields

n,m / = 0

1))i btc

hence,

(4.5.16)

n, m 1=0 i

JV.Af / • - !

n, m / = 0

n,m / = 0

n,m 1=0

'm-l + 1

^ '
l O . m

2 )

^ 1 2

l / i , m / = 0

Hère, indeed, e can be taken as small as we please. Later we will apply
(4.5.12), so the Q there will need to be counteracted by a small enough £
hère.

Finally, combining (4.5.13)-(4.5.14), (4.5.16), and Lemma 4.3.1 with
(4.5.3) gives us that

(4.5.17) (-<{>* —e) | | ê N ) M + 1 1 | 2 + d* Y Y || vg«» m, / +1 y 2 §^
n,m 1=0

n,m 1=0

N,M l*~l

n,m 1=0

n,m 1=0
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n,m / = 0 i

qhT'm'l + 1

where (4.5.11) bounds one of the terms on the right-hand side above. The
term that is coupled to the fracture concentration error H has not been
estimated. We turn now to an analysis of the coupling terms.

4.6. A bound for the main matrix/fracture coupling error.

The last term on the right-hand side of either (4.4.14) or (4.5.17) is too
strong to bound in any direct manner. The sum of thèse two terms,
however, can be shown to be small. We shall call this sum the main
matrix/fracture coupling error. We shall now dérive an expression for it.
First, the last term on the right-hand side of (4.4.14) can be rewritten with
the définitions (2.4.2) and (3.5.20), and then the intégrais can be simplified
by noting the définition of A[? namely (2.4.1). The resuit is
(4.6.1) ( ^ ^ I _ ^ ^ I S M + I) =

Now, since / S " ' m J +1 - S" ' m +1 = (/ + 1 - / * ) 9S" ' m + x §tc, the main mat-
rix/fracture coupling error is given by

(4.6.2) N£ £ { ' £ [(4>{Ici'm'l + 1- Sc£."•• ' + !), A,(7Sn-m'l + 1 ) \
1

n , m 1 = 0 i

/ +l-l*K*tef

n , m 1 = 0 i

+ (Iqn<m<l + 1
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If / * = 1, most of the right-hand side of (4.6.2) vanishes ; a term that is
related to the error of the matrix concentration projection remains, but no
term that contains both £ and S appears. Ail of the previous analyses of
naturally fractured réservoir simulation [1], [2], [4] hâve assumed that the
time step used to solve the matrix équations is the same as that used for
solving the fracture équation ; consequently, the main matrix/fracture
coupling term could be handled relatively easily. For / * === 2, we must give a
new argument to relate quantities at matrix concentration time levels to
those at the following fracture concentration time leveL It should be
possible to do this by completely analyzing the discrète time différences
gçn.m,/ +1 ancj 32"'m + *. In the relatively simple analysis given hère, we will
analyze only the matrix concentration time différence. This cannot be done
in full without including an analysis of the fracture concentration time
différence. Instead, as mentioned in the introduction, we will impose a mild
hypothesis.

The last term on the right-hand side of (4.6.2) présents no major
difficulties. Note that by définition

,t + l _qn,m + l = j ^ m j + l __ ~n, m + 1 + ^ _ q yi, m + 1

= (/ + l - l*) dqn>m + 1 §tc - qn>m + 1((c - c), u) .

Hence, intégration by parts with (4.3.3) gives that

(4.6.3) (Iqn'm'l + 1 ~qn'm + \VAi(^
m + 1))i

+ ((c - c)n>m + lun>m + \ VA(.(Stt'm + 1)

We hâve already observed (4.5.10), so
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and the last term on the right-hand side of (4.6.2) satisfies the inequality

(4.6.4) £ £ £ {(4>(/c"'m'/ + î - c " ' m + 1 ) , A ï-(Sn'm + 1 ) ) .
n, m / = 0 i

We will now estimât e the first term on the right-hand side of (4.6.2) by
giving a partial analysis of the matrix concentration time différence. Choose
the test function

x

in (4.5.1). After combining two terms and summing on i, n, m, and /, we
obtain an expression for our term :

(4.6.5) X Z Z
n, m / = 0 i

N , M / * - l

= y y
n , m 1 = 0

n, m / = 0 i

), 8f'm-' + 1 -A,(a(C-C)"'m + 1
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The last term on the right-hand side above has an extra factor of
btc, so it is easily bounded with (4.5.12). We hâve that

(4.6.6) - Y ' ! ' ? {(4>S€B'm'/ + 1 ,A i(3(C-Cy'm + 1))I.
n, m 1=0 i

' m ' ' + 1 - 3 c " ' m + 1 ) , 8f-m ' ' + 1 - A , ( 9 ( C -

n,m l = 0

n, m / = 0

n, m / = 0

Atc.

The first term on the right-hand side of (4.6.5) contains a nonpositive
expression that helps us and an expression containing Vô£rt'm'/ + 1 that is
troublesome. We would like to extract a collapsing sum from the latter
expression, but the factor (/ + 1 - / * ) prevents this in gênerai. However, it
is possible to proceed by extracting a sum that partially collapses provided
that / * =s= 5 [3] (recall that this part of the main coupling error is zéro if
/ * — i). We shall content ourselves hère with an argument that holds for ail
/*. This requires that we restrict the overall size of Atc as compared to
hç, as will be seen in the next subsection. By an inverse inequality we hâve
that

(4.6.7) Y ' i
n,m 1 = 0

N,Ml*-l

n,m 1=0 î

n, m / = 0 i

n,m / = 0
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Finally, we can combine (4.6.4)-(4.6.7) with Lemma 4.3.1 to obtain that
the main coupling error (4.6.2) is bounded by the expression

(4.6.8) 'Z Z
n,m 1 = 0

N,M / * - l

n , m 1 = 0

N,M

O, m

4.7. The combined analysis of the concentration error équations.

We are now ready to complète the analysis of the concentration équations
by applying an induction argument to the bounds derived in the previous
three subsections. Add (4.4.14) to (4.5.17) and bound the main coupling
error by (4.6.8). We obtain the single inequality

(4.7.1) ±

N
N , M l * ~ l

Z Z
n, m 1=0

n''"'' + 1 |

N,M l * - \

(4>.-e) £ Z
n , m 1 = 0

n,mj + 1 M 2

N,M
Ht, m, / -

n , m 1 = 0
Ho, m c

Z Z
n,m l = 0

N,M

( I q - q h y > m > l + 1 - d ( Euh
0,m

( H Y " l l o + l l ^ - '
n, m

n , m 1 = 0

We need to control the right-hand side. Assume the asymptotic relations
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as the discretization parameters tend to zéro. Also make the induction
hypothèses that

From (4.5.11) and (4.5.12), thèse assumptions are enough to give us the
bounds

(4-7.4) X Z
n,m l =0

2

0,m

N,M

n, m 1=0

N,Ml*-l

n, m l = 0

and
N,M / * - l

I Z
«, m 1 = 0

(4.7.5) x Z. l l (^-^r m > / + 1 l lo , m ^

2J I I " l'o ^ 2^ i "^
«, m / = 0

N,M i*~l

+ z z n,m,l + 1 ij 2
110, m

By induction, then, we can assert that (4.7.1) implies that

(4.7.6) \\ZN>
0,m

N,M / * - l

1 = 0

«, m / = 0

provided only that the induction parameters are small enough. Gronwall's
inequality can now be applied to see that in fact

(4.7.7) \\^'

N

n, m l - 0
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It remains only to verify the induction hypothèses. But it is clear that
(4.3.5)-(4.3.6) and the initialization requirements (3.5.14)-(3.5.15) enable
us to start the induction, and (4.3.5)-(4.3.6) with (4.7.7) at no more than
two previous pressure time levels enable us to continue the induction.
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