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SOME REMARKS ON THE OPTIMAL DESIGN
OF PERIODICALLY REINFORCED STRUCTURES (*)

by Dominique AZE (:) and Giuseppe BUTTAZZO (2)

Communicated by E. SANCHEZ-PALENCIA

Abstract.—We present a naîural optimality criterion for periodically reinforced structures.
Some examples of optimal structures are given. More specifically we consider a non trivial
optimal two dimensional honeycomb structure in dimension 2.

Résumé. — On donne un critère naturel d'optimalité pour les structures périodiques
renforcées. Quelques exemples sont étudiés. En particulier on met en évidence une structure en
nid d'abeille optimale non triviale en dimension 2.

1. INTRODUCTION

The aim of this paper is to give an optimality criterion for the design of a
periodically reinforced structure and to make explicit calculations in some
simple cases.

Our work is based on the paper by H. Attouch and G. Buttazzo [2]
concerning the homogenization of periodically reinforced structures, and we
shortly indicate now the framework of this study. Consider a bounded open
subset fi of Un (n = 2 or 3 in the applications) with a Lipschitz boundary,
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54 D. AZE, G. BUTTAZZO

and assume that it is filled with many periodically distributed thin highly
conducting layers. More precisely, let

Y = [0, 1 [n be the unit cube of R ".,
S ç Y be a piecewise smooth n — 1 dimensional

surface ,

Ss = {e(x+y):xeS, y e Zn} ,

Se>r = : dist

if

a if x e IRn\5£jr

where e, r, \ , a are positive parameters.
The network Se (see ^g. 1) will be called a periodically reinforced

structure, and we want to study its behaviour (in terms of the potential
obtained with a given charge density g(x)) as e -• 0.

— - -=->- v

Figure 1.

To do this, define on the Sobolev space the functionals

and consider the solutions we r x of the variational problems

(1.1) min F£)rjX(w)+ J gudx:ueHl(n)\
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ON THE OPTIMAL DESIGN OF STRUCTURES 55

where g e L2(fl) is a given function. In [2] (see also [C5-S]) H. Attouch and
G. Buttazzo studied the asymptotic behaviour, as (e, r, X) -• (0, 0, + oo ),
of the functions we r x ; by using the F-convergence theory, they proved that
if Xr/e -^ k, then wE)r>x tends in L2(fl) to the solution of the problem

(1.2) min i f fOL(Du)dx+ | gu dx: u e Hù(Sl)\

where fa(z) is the quadratic form in Rn defined by

(1.3) / a ( z ) = min fa j \Dv\2 dy +

+ k f \DTv\2dHn-x:v- <z, .> e w\ .

Hère H"'1 dénotes the n - 1 dimensional Hausdorff measure, DT v is the
tangential derivative

DT v = Dv - v (Dv7 v) (v is the unit normal vector to S) ,

and W is the space of ail functions in Hf;0C(Rn) which are Y-periodic. For the
sake of simplicity, in the following we shall assume k = 1. The function
f(z) defined by

(1.4) f(z) = lim fa(z) = inf fa(z)
CL->Q a>0

is a quadratic form on 0?n, and we have

(1.5) / ( z ) = i n f | J \DTv\2dHn~x:v- (z, .) e w\ .

Dénote by A the n x n symmetrie matrix

by T its trace, and by 15*1 the n — 1 dimensional measure of S. The main
resuit of this paper is the following.

THEO REM 1.1: We have T^(n —1)|5|. Moreover, the eigenvalues
\t of A satisfy the inequalities

(1.7) o^x,.^ \s\ . m
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In this way, we say that a periodically reinforced structure is optimal if

T= (n-l)\S\ .

In Section 2 we shall prove Theorem 1.1, and in Section 3 we shall give some
examples of optimal periodically reinforced structures in dimension 2 and 3.

2. PROOF OF THEOREM 1.1

With the notations of Section 1, we define, for every p :> 0

^ ; » - (z, •> ̂  w

It is proved in [6], [3], [1], that the n x n symmetrie matrix

a f i _ 1 32/ap
17 2 3z, 3zy

is the G-limit as 8 -> 0 of the séquence of matrices

Dénote by \fp the eigenvalues of Aa^. In order to obtain informations on the
\fp, we use a resuit of F. Murât and L. Tartar.

THEOREM 2.1 (see [7], [9]) : The eigenvalues \f verify the following
estimâtes (for simplicity we omit the indices a, p) :

(2.1) ^_ ^ kt ^ fx+

" 1 1 1
y ^ , ^ ~~ i

. ^ X(. - a ^ n - - <* fx+ - a

(2.3)
- X,

6 \ - i

)

0 = meas (Y n Sïti/$).
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Proof o ftheorem 1.1 : We remark that

e = l^J- + co(p) with lim Po>(p) = 0 ,
P p-» + oo

so that

(2.4) lim |x_ = a and lim |x+ = a + \S\ .
P - • + 00 p-^ + 00

By (2.3) it follows

O - |x+ )(p - -̂ ) £ n (p - X;) ^ [»P - M.+ - (» - 1) M-- ] f i O - h)

i = 1 j * i / = 1

which can be written in the form

(2.5) (p - n+ )((3 - M._ ) £ [(3"-1 - P"-2 £ X, + P„_

where ^ „ - 3 0 ) , ^*n_2(P) a r e polynomials of degree n — 3, n — 2 respect-
ively.

After some simple calculations, (2.5) becomes

(2.6) (3"[TrAHp-^_ - ( n - l ) M . + H J \ - i ( P ) .

Multiplying both sides of (2.6) by 3~", passing to the limit as (3 -> + oo, and
taking into account (2.1), (2.4) we get

(2.7) lim Tr (Aap) =s na + (H - 1 ) |S | .
K + 00

It is well known (see for instance [4], [8], [1]) that

(2.8) fa(z)= lim / a p (z ) , for every a > 0 and zeUn ,

where / a is defined in (1.3).
Coming back to (2.7), by (2.8), we get

Tr (Aa)^na+ (n
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where Aa is the n x n symmetrie matrix

Passing to the limit in (2.7) as a -• 0, (1.4) yields

TrA=s (n-l)\S\ .

Finally, (1.7) follows from (2.1) and (2.4). •

Remark 2.2 : Theorem 1.1 provides only an estimate on the trace and on
the eigenvalues of the matrix A. But in gênerai, if L :> 0 is fixed, the set
ML of all matrices given by formula (1.6), where S runs over all surfaces with
\S\ = L, is smaller than the set of all matrices with

j (n-l)L
JO as X,- *s L .

For instance, if n = 2 and L <: 1, it is easy to see that the set ML reduces to
the only null matrix, whereas the set Mx consists of the two matrices

(è l) - (o î) •
It would be interesting (and as far we know it is an open problem) to
characterize explicitely the set ML, or at least the matrices of ML which are
optimal.

3. SOME EXPLICIT CALCULATIONS

In this section we give some examples of optimal periodic reinforced
structures in dimension 2 and 3. Let us assume first n = 2. If 5 is a curve
y (s) parametrized by its curvilinear abscissa, then formula (1.5) becomes
(see [2])

(3.1) (Az,z) =inf

where L = \S\ and the infimum is taken over all functions w(s) satisfying
the periodicity conditions. By the first order necessary conditions, it is easy
to see that the solution w(.) of (3.1) is such that w'(s) + (z, 7'C*)> is
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constant on [0, L] . A formula analogous to (3.1) holds if S is the union of
finitely many curves 7, (s) (/ = 1, ..., N)

(3.2) (Az,z) - inf (z,y;(s))\2ds\ .

Consider now the structure whose elementary cell is represented in figure 2.

Figure 2.

It is easy to see that if ô = 0 or 5 = - the structure above is optimal ; in

fact we have

if 8 = 0 (Azyz) =

if 8 = 1 <^z;z> =

and | 5 | = 3

and | 5 | = 2 V2 •

PROPOSITION 3.1 : For 0 < 8 < - ?̂ e structure of figure 2 w optimal if and

only if Ô = -— .
o

Proof: We want to use (3.2) to compute the quadratic form <̂ 4z? z) . Let
us define

' 1
Xo = 1 - 2 ô and X = ^ /ô2 + - ;

vol. 23, n° 1, 1989
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in this way, if 7,(5) (i = 1, 2, 3, 4, 5 ) are parametrizations of the segments
EF, AE, BE, CF, DF respectively, we have

yj = ( 5 / \ , 1/2X)
i = (8/X, -1/2X)
J = ( - S A , -1/2X)

Analogously, for the functions w,(s) (i = 1, 2, 3, 4, 5), denoting by 0, b the
values on is, F respectively, we obtain

w[ = (b-

2=wï = a/X

= w's = & A ,

so that, by (3.2) we get

(3.3) {Az,z) =inf f l ( è - a
0,6 l ^

The optimality conditions for a, b give

a = — b = Xn 2
X - 2 8

hence, after some calculations, (3.3) becomes

Since \S\ = Xo + 4 X, the structure is optimal if

(3.4) Xo + 4 X = T _ L _ + i .
X + Xo X

Equation (3.4) can be written in the form

that is X = 2 ô, which gives ô = — .
6
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Let us conclude by a simple example in dimension 3. Consider the case of
the cross structure

S = | (xl9 x2, X3) G Y : x1 = - or x2 = - or #3 = - J .

In this case we obtain

and this shows that the structure is optimal, because
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