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EVERTED EQUILIBRIA OF A SPHERICAL CAP :
A SINGULAR PERTURBATION METHOD (*)

Andréa SCHIAFFINO (X) and Vanda VALENTE (2)

Communicated by P. GEYMONAT

Abstract. — A singular perturbation method is used to construct an explicit branch of solutions
ofa System ofnonlinear differential équations governing the axially symmetrie equilibria ofa thin
spherical cap,

The physical interest lies in the construction ofa branch o f solutions depending on a parameter
e (to be thought o f as the « thickness » of the cap) which approaches the « everted » configuration
as e -+ 0.

The existence ofsuch a branch is proved in [1] via topological methods ; the main resuit ofthis
paper, namely theorem 4 .1, provides an explicit « Taylor » expansion of the solution.

Résumé. — Une méthode de perturbation singulière est utilisée pour construire une branche de
solutions explicites d'un système d'équations différentielles non linéaires gouvernant l'équilibre
axial symétrique d'une calotte sphérique mince.

L'intérêt physique est dans la construction d'une branche de solutions dépendant d'un
paramètre e (qui est supposé mesurer la « minceur » de la calotte) qui approche la configuration
« renversée » lorsque e -• 0.

L'existence d'une telle branche est prouvée dans [1] via des méthodes topologiques ; le résultat
principal de cet article, le théorème 4 .1 , nous donne un développement de Taylor explicite de la
solution.

1. INTRODUCTION

This paper deals with the axially symmetrie equilibria of a thin elastic
spherical cap. The référence configuration is given, in spherical coordinates,
by the inequalities :

(*) Received in october 1987, revised in February 1988.
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where the radius R of the middle sphère, the half-thickness s (s < R) and
the opening angle 0O are given. Throughout the present work the cap is
supposed to be free from loads and a linear constitutive assumption as well
as an appropriate version of the Kirchoff-Love hypothesis are supposed to
hold.

The équations governing the System are deduced in [1] together with the
appropriate functional setting which is shortly described in § 2.

In [1] a topological argument is used to prove the existence of a branch of
solutions (with respect to the parameter k defined below) approaching the
« everted » configuration (i.e. the configuration obtained turning inside-out
the cap) as the « thickness » of the cap goes to zero.

More precisely, the « thickness » parameter beeing :

k := (R/s) V3(l - v)/2 , v = Poisson ratio ,

the equilibria of the cap are described by the following System of two second
order ordinary differential équations :

where the functions g and h are required to satisfy the boundary conditions :

Remark : ActuaUy in [1] the unknowns are g and f •.= —2 + h; hère we
think of the unknown h as a perturbation of the « everted » configuration :
/o=-2.

Because only axially simmetric déformations are considered and because
of the thickness of the cap, the displacement is described by the components
in the méridional and normal directions to the cap's middle surface ; let's
dénote them with t>(0) and w(d), where 0 is the polar angle. Hère (see [1])
we have :

where E is the Young modulus and S is the méridional stress.
The boundary conditions at 0 = 0 take in account the symmetry of the

cap ; on the other hand the boundary conditions at 0 = 0O express the
requirement on the displacement to have null vertical component at the rim
of the cap.

We define the parameter :

(1-3) e =
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EQUILIBRIA OF A SPHERICAL CAP 181

and multiply both équations of (1.1) by k'1 ; we can now think of (1.1)-(1.2)
as a singular perturbation problem (in [2] a similar idea is applied to the
theory of nonlinear plates).

We refer to [3] and [4] for a systematic survey of the singular perturbation
theory together with many applications and to [5] for an interesting abstract
approach to the theory.

The aim of the present paper is to construct a branch of solutions to (1.1)-
(1.2) of the form (here ra -* 1 is an integer) :

(1.4)

0(6, e) = ]

£ s>/*;.(O + s m + 1 / * ( e , s )

where the independent variable t is defined by :

(1.5) 0~2 = 0ö2 + et O < t < + oo .

The functions gj and hj (j > O ) are thought of as the coefficients of an
appropriate Taylor expansion in s and are defined by means of some linear
inhomogeneous Systems which are deduced and studied in § 3. The
functions g and h are now the very unknowns of the problem ; their
existence is deduced in § 4 by using the contracting mapping principle.

2. THE FUNCTIONAL SETTING

In order to study problem (1.1)-(1.2) we first observe that :

so to define the weak solutions of (1.1)-(1.2) it is quite natural to introducé
the following weighted Hilbert spaces [1] :

K = space of the square integrable functions in (0, 60) with respect to the
weight G3,

K1 = space of the functions whose first derivative belongs to K,
KQ — subspace of Kl of the functions vanishing in 90.

The scalar products and the norms are :

in K (A, /2)0 - f° de e3 A (e) / 2 (e) , \\.\\

i n * 1 (fl9 f 2 \ = (f[, n ) 0 + 9 2 ( 1 + v ) ̂ ( 0 0 ) / 2 ( 0 O ) , « . H , .

vol. 23, n° 1, 1989



182 A. SCHIAFFINO, V. VALENTE

In [1] the following inequality is proved to hold :

J n

accordingly, the right sides of both équations of (1.1) belong to K if both
g and h belong to K1.

In [1] it is also proved that K1 is compactly imbedded in K ; hence for any
q e K unique weak solutions Go q and G1 q are easily proved to exist for the
problems :

( P 1 ) " " m = e0 /'(eo)+ (i + v)/(eo) = o.

As a conséquence, both Go and Gj are linear and compact operators from
K into KQ (K1, respectively) ; therefore problem (1.1)-(1.2) takes the
functional form :

= -kG0(h
2-2h)

= 2 + kG1[g(h-l)]

or, equivalently,

(2.2) 0 = F(h) := h - 2 + k2Gx[{h - 1) G0(h
2- 2 h)]

where F maps K1 into itself.
Simple algebraic manipulations prove that F is the Frechét derivative of

the functional :

(2.3) J(h)-.= i | | / l - 2 | | 2 + ̂ - 2 | |G 0 ( / I
2 -2 / ï ) | | 2 ;

moreover the Frechét derivative of F at h e K1 is associated to the bilinear
symmetrie form :

It is clear that / attains, for every k => 0, its absolute minimum in
ho=2 (that is the référence configuration) ; in [1] a topological argument
provides, for large values of k, the existence of a second branch of solutions
approaching 0 as k-+ oo. In the rest of the present paper we prove such
solution to be stable and to have the form (1.4), which is also usefull from
the numerical point of view.
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3. THE TAYLOR COEFFICIENTS

We can think of g and h as the components for a two-dimensional vector
u ; therefore we define the matrices :

0 - 2 ] B=\°
 - 1

1 OJ ~ Ll 0
and we write System (2.1) in vector form ; actually it is convenient to use the
variable t defined in (1.5) to write (1.1) in the equivalent form :

(3.1) (1 + eist)3—~- + Au = hBu
dr

—~
dr

Remark : In this section we shall use the symbol « ' » for the derivative
with respect to t.

The boundary conditions are :

J = 0 2 ft' (0) - eg e(l + v)h(0) = - 2 0 § E ( 1 + V ) .

We try to solve the problem (3.1)-(3.2) by means of the formai series :

(3.3) ö(',e)~ £ sju}(t) u^ig^hj).
7 = 1

Formai algebraic manipulations provide the équations for the Uy's :

(3.4)1 u'{+Aux = 0 , •

(3.4)2 u'i + Au2 = hx Bul - 3 eg tu'{

(3.4)3 M̂ ' + Au3 = ftx 5w2 + ft2 BMJ — 3 eâ?2 wf - 3 0̂  tu%

and, for ƒ > 3 :

We impose the boundary conditions

(3.5)y 0/(+oo) = O, A;(+

(3.6)y 9/(0) = 0 , 2/1/(0) =

vol. 23, n° 1, 1989
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Problems (3.4)/-(3.5)r(3.6)/ have the form :

v" + Av = q{t) 0 < £ < + oo

(3.7)

where the vector-valued function # (0 and the real number a are given.

The identity A2 = —21 (/ = unit matrix) suggests to consider the matrix-
valued function :

t\ cos rt - %/2sin rt(3.8) G(t) =
L x/l/2 sin rt cos

sin rr 1
rt J

•>-l/4

G"(t)+AG(t) =
G(0) = I, G(t),

1 = 0(e r t),

which satisfies :

(3.9)

Further algebric manipulations yield the following formula :

(3.10) K(0 = G ( O E ( 0 ) - G ( 0 ^ T G ( T ) - 2 dsG(s)q(s)

for ail solutions v of (3.7), the initial value v(0) beeing :

(3.11)

»2(0) = - . ds e~rs{2~112 qx(s) sin r5 + q2(s) cos

Formulae (3.10) and (3.11) show that the family of problems (3.4)-(3.5)-
(3.6) has a unique solution {ujy j e N} , each w;- vanishing exponentially as
t _> + oo. In next section we need the explicit form of gx(t) :

(3.12) £i(0 - - 6§(1 + v) 23/4 e~n sin rr .

4. THE BRANCH OF SOLUTIONS

The series (3.3) is not expected to converge even for small values of e ;
nevertheless, for given m 5= 1, the « Taylor polinomia » :

(4.1) g*(t,e)-.=

will be of use.

e' h^t) - em hm(0)
; = 1
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Remark : The term — em hm(0) in the right side of the second équation in
(4.1) takes in account the boundary condition on h at t = 0.

Actually the « coefficients » #; and hj are functions of both 9 and £
because of (1.5) ; throughout this section we shall think of g* and
A* as fonction of the variable G ; they don't satisfy (2.1) but :

(4.2)
gr* = -*G 0 ( f t* 2 -2f t*) , e)

** = 2 - 0 , e)

where both S and T are uniformly bounded ; accordingly h * doesn't satisfy

(2.2) but

(4.3) F{h*) = £m" 4Z(e, E)

where Z is also uniformly bounded. Lemma (4.2) below implies :
(4.4) ||F'[/**(., e)]"11| ^const

Remark : The norm in (4.4) dénotes the norm in the space of bounded
linear operators in K1.

Piek m + 5 instead of m9 (4.3) takes the form :

(4.5)

Let's look at solutions of the form :

(4.6) A(6, e) = A*(9, e) + em + 1 h(Q, e) h uniformly bounded .

The équation in h is :

(4.7) 0 = F(h) - F (ft*) + s

where :

(4.8) ||r(e,ft

F'(ft*) h + e2m + 2 T(e5

in a fixed sphère of Kl.
Comparing (4.5) and (4.7) we get :

(4.9) 0 = Z(., E) + F'(ft*) h + Em + 1 r (e , h) .

It is now easily seen that, if e < 1, the contracting mapping principle
applies to a bail whose radius is independent of e. We have just proved :

THEOREM4.1 : Problem (1.1)-(1.2) has a branch of solutions of the form
(1.4) where g and h are bounded independently of E <g 1.

vol 23, n° 1, 19S9
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Next lemma proves (4.4) :

L E M M A 4.2 : The least eigenvalue of F' (ft* (e, .)) goes to 1 as e goes to
zero.

Proof: From (2.4) we deduce :

(4.10) F'(h*,4>)& ||<f>||2+ *(<?*, <t>2)0.

We observe :

(4.11) g* = £0! + e2 02 + e 3 0**

where || #**( . , e ) | | 0 is uniformly bounded. Let's remark

(4.12) | (7, 4>2)O| ^ const||7||oll4>ll? ; yeK^eK1.

From (3.4)2 we deduce that ||02(->
 e ) | | 0 -* 0 5 e 2 ^ beeing constant the K-

norm of the last two terms of the right side of (4.11) vanish with e ; the term
egx is more difficult to handle. For, let's first consider the case :

(4.13) | + (eo)|*s8||<l>'|lo>

8 > 0 to be choosen later.
As <|> is (l/2)-hölder-continuous we have :

(4.14) | 4 ( e ) | ^cons t (8 + (e 0 - e)

in any subinterval of (0, 0O) bounded away from zero.
From (3.12) we have :

(4.15) p d O ^ I ^ C e , e ) | = 0 ( e ) .

Let 0 < p and choose 0e such that :

clearly 60 - 0E ~ e In e as e -• 0.
From (1.3), (3.12), (4.14) and (4.15) we have :

(4.16)
1 f

Jo
f
o

const d& 03 p |4>(0) | 2 + const max {<4>(9)2 ; 0e ^ 0 ^ 0O}

const p ||<Hlo + const [Ô2 + e In e " 1 ]
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Hence, for every CT > 0, we can choose p = (3 (a) and 5 = 8(a) in such a
way that :

if e <§ 1 and <|> satisfies (4.13).
Finally we consider the case

(4.17)

Accordingly :

From (2.4) we have :

where jx(8) is positive because || Go 7 j| x attains a minimum in the set

7(e0) = i,

This complètes the proof.
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