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ON THE APPROXIMATION OF THE SPECTRUM
OF THE STOKES OPERATOR (¥)

by Tunc GEVECI ('), B. Daya REDDY (?) and Howard T. PEARCE (%)

Communicated by R. TEmam

Abstract. — Error estimates are derived for the approximate calculation of the eigenvalues of
the Stokes Operator. These estimates are valid for the regularized versions of mixed methods that
satisfy the uniform Ladyzhenskaya-BabuSka-Brezzi condition.

Résumé. — Nous obtenons ici des estimations d’erreur pour le calcul approché des valeurs
propres de I'opérateur de Stokes. Ces estimations sont valables pour les versions régularisées des
méthodes mixtes qu satisfont la condition uniforme de Ladyzhenskaya-BabuSka-Brezzi.

THE BACKGROUND AND THE CONVERGENCE RESULT

Let Q<cR” (n=2 or 3) be a bounded domain with boundary
0Q). The Stokes problem consists of finding «, an R"-valued function, and p,
a scalar function, such that

(1) —vAu+gradp=f in Q,
divue=0 in Q,
u=0 on dQ.
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130 T. GEVECI et al.

Here, v = 0 is the viscosity, fis a given R"valued function, A denotes the
Laplacian acting componentwise, grad denotes the gradient, and div
denotes the divergence.

H}(Q), H(Q), r=1, denote the standard Sobolev spaces, (L*(Q))",
(H3(Q))", (H'(2))" denote the spaces of R™-valued functions with compo-
nents in the respective spaces. (-,-) denotes the inner product in
L*(Q) or (L*Q))", |||, denotes the induced norm. The norm in
H'(Q2) or (H'(Q2))" is denoted by |- [|,.  is assumed to have sufficiently
smooth boundary so that the assertions that follow are valid.

Let

V= {ve (Hy(Q)):divv =0inQ},
H={ve (LQ)):divv =0inQ,v.n=00noQ }

where n denotes the unit normal to the boundary, as in Temam [12].
It is assumed that the solution u of (1) is in V N (H*Q)),
pe {ge L¥(Q): (q,1) =0} and

lel, + Ilpll, < C DI fll,-
Thus, the Stokes operator
A=—-vPyA: VN (H(Q)'cH-H,

where Py : (L*(Q))" — H is the orthogonal (L2(Q))"-projection, is positi-
ve-definite, self-adjoint, has compact inverse, so that there exists a sequence
of eigenvalues of A,

O<MsN=s---sN=<.--, lim \; =00,
j—-yw

and a corresponding sequence {uj};"_ of eigenfunctions which are or-

1
thonormal and complete in H [12], [13].

The approximate calculation of the eigenvalues of the Stokes operator A,
or of an operator similar to A, is of interest in regard to the stability of
incompressible fluid flow or the vibrations of an incompressible elastic
medium, for example. The aim of this note is to establish the convergence of
certain efficiently implementable approximation schemes which are based
on the regularization of mixed methods that are used for the approximate
solution of (1).

Let W" = (H}(Q))" be a finite dimensional subspace. Here & refers to the
maximum diameter of the rectangular or triangular subregions (or their 3-
dimensional counterparts) constituting a subdivision of ). We will confine
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the discussion to the conforming case for the sake of brevity. Let
Q" = L*(Q)) be another finite dimensional space. We set

au,v)=v | ¥ ——:dx, u,ve (H(Q)).

An approximation to the solution (u, p) of (1) is a pair (u”, p*) e W" x Q"
which satisfies

) a(u®, wh — (p*, divw") = (f, w"), whe w",
divu", g®) =0, q"e Q".
Let us define the discrete divergence operator div,: W* - Q" by
(div, w", ¢") = (divw", "), q"e 0",
and its adjoint — grad, : Q* » W* by
(- grad, ¢", w") = (q", div, w*), whe W".

We will assume )

(H.1) The kernel of grad, consists of constants, and

(H.2) The LBB (Ladyzhenskaya-Babuska-Brezzi) condition : There exists
a > 0, independent of A, such that

(q", div wh)
wrewt  [[whl
wh£0

for g"€ {q"e Q": (¢", 1) =0} .
Under the hypotheses (H.1) and (H.2), it is well known that there exists a
unique solution (u*, p*) e W"x {q"e Q": (¢*, 1) = 0} of (2) and that

©) e, + 1p" 1l =< € (v, 0, ) £l »

h
=g,

@ Ju—ul, + up—p"uosc(v,a,n){ inf JJu—wh], + inf ||p—q"||0}

whe wh q"e Q"

(see, for example, Girault and Raviart [5]). To be specific, let us assume that (4)
and the approximation properties of W”, Q" lead to the estimates

®) lu =l + lp =P ly< C 0, @, f)n 1,
© lu—utlly<C, 0, Q, f) A,
r=2 [5].
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132 T. GEVECI et al.

Let us define V" = {v" € W": div, v" = 0}, the discrete counterpart of V,
and A,: V' Vhby

(Aput, v") = a(h v"), vhevh.

Ay is the discrete counterpart of the Stokes operator A. It is positive-definite,
. . o Ve h h h
self-adjoint. Let us denote its eigenvalues by {N}}; 2,0 <A\ <A\j=<---=\},
N . .
and let {1/} form a complete set of orthonormal eigenfunctions correspond-

ing to {)\j}fil, in the given order. Assuming (H.1), (H.2) and the error
estimates (5), (6), error estimates such as

™) N =N < C(v, @, Q,j) 20D
follow from the results of Mercier, Osborn, Rappaz, Raviart [8] and Peterson
[10].

N .
The computation of {)\j'} jil may be carried out within the self-adjoint

framework if a basis for V" is available (see, for example, [6], [7], [14]).
Otherwise we may consider a regularized version of (2) which computes
(u " p=") e W"x Q" such that

a(u®" why — (p=", div, wh) = (f, w"), whe W,
e(p”" ¢") + (divu®* ¢") =0,q"e Q*,

ie.,
pol=~ —18-divh ust,
and
®) a(us", why + % (div, u® ", div, wh) = (f, wh), whe W

This formulation has been quite popular in recent years. In some cases the
penalty term may be evaluated by reduced (inexact) integration (hence the
name, reduced integration — penalty methods), and the implementation is
efficient (see, for example, [9]).

If (H.1) and (H.2) are satisfied, it is known that

€) s, <C v, 0, Q) | flly,
(10) lus?—u"| < C (v, @, Q)| flpe,

where C is independent of A (see [2], [S], [9]). Here and in the sequel C will
designate possibly differing constants.

M?AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



ON THE SPECTRUM OF THE STOKES OPERATOR 133

Let us define A, ,: Wk Wk by
11 (A, uh, why = a(u”, wh) + % (div, u*, div, w"), whe W,

A, , is positive-definite, self-adjoint. Let us denote the eigenvalues as
b B '
(MM 2n 0t << N3z These eigenvalues can be computed

efficiently, for example, by Bathe’s subspace iteration technique [1]. We will
establish the following result :

THEOREM : Under the hypotheses (H.1) and (H.2) (the uniform
Ladyzhenskaya-BabusSka-Brezzi condition),

(12) OsN - AN"<C(v,0,Q,j)¢

where C is independent of h, 0 < h < hy, for some hy= 0.

Proof: Our proof is based on the min-max principle, along the lines of
Canuto [3], [4], and Strang and Fix [11].
We first note that

e h h

Indeed, by the min-max principle
a(w*, wh) + 1 (div, wh, div, w")
)\;”h = min max &

2
S;cWh whes, ”Wh”o

a(u”, u*)
= max T
ube <u{',u£‘,...,ul'-'> ”u ”0
h
since div, u"=0 for ute (u{‘, ué‘, cens u]h) = the linear span of
uf, ul, ..., ul, a subspace of V"
Let us define T, ,: W" - W" as A }. Thus the eigenvalues of T, , are

perh = ﬁ j=1,2,..., M,. We define P, ,: W V" by

j
Py wh = Th(As,h Wh) s

where T, f=u"e V" u* being the solution of (2), so that
T,: (L2(Q)) - V™
Since w" = T, ,(A, , w") for whe W,
wh— P, wh = (Ten — T,) (A" wh),
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134 T. GEVECI et al.
so that
(14) [w" - P, W], <C(v, a, Q) A wh|| e

by (10).
By the max-min principle,

(15) P-f’h = max min —
Sje W whes; ”W ”0
dim §; =
= min (T, ,w",w",
whe (uf"‘,...,uf"‘)
[Iw*])o =

where {uj""} jw: 1 form a complete set of orthonormal eigenfunctions
corresponding to {)\f"}jw: 1» in the given order.
For whe (up’, ...,up", |wh|, =1, let us write
(T, P uw", P, wh)
1P, whls
(T, P, wh, P,y wh)
12wl
+ (T, Py whwh— P, wh)
+ (T, y W' =T, , P, oWt wh)
+ (T, Pes wh— T, P, wh, Wh) .

16) (T, ,w" w") =

(1Pow w2 — w12

Thanks to the estimates (3), (7), (9), (10) and (13), the second term on the
right-hand side of (16) can be estimated as follows :

(Th Pe,h wha Ps,h wh)

2
o Pl - IwH12)
& 0

<C, o, Q)P wh—wh| (| P, w"||, + W]l

<C@ a,Q) |4, ,w|e

<=C(0,Q) (") e

=sC(v,a, Q) ()\7)28

sC(v,a,Q,j))\lz-e,
say, for 0 < h < h,.
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The other terms of (16) are estimated in a similar manner and we obtain
from (15),

T, P, ,w" P, ,w"
17) wih< min Ti P i )+C(v,a,n,j)xfa.

whe (uph, L up?y "Ps,h Wh“g

Thanks to (14), P="({uj*, ..., up™ )< V* is jdimensional for suffi-
ciently small & (as in Strang and Fix [11], proof of Lemma 6.1, page 229),
« sufficiently small » being independent of A, by (13) and (14). Therefore we
obtain from (17), again by the max-min principle,

pfspl+ Cv, 0, Q,j)N e,
so that
(18) OsM - NtP<CE o, Q, )N N e
=sC(,a,Q,j) )\]2-()\;')2 €
sC(v,oc,Q,j))\?e

by (13) and (17), and the theorem is established.
Remark : One can actually improve (18) to obtain an estimate in the form
0N - MN'<C,a,Q,j)N ¢

using a technique similar to that of Canuto’s [3], [4].
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