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MATHEMATlCALMOOEUJNGAHOHUMERJCALAHALYSiS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 21, n° 3, 1987, p. 465 à 485)

NUMERICAL METHODS WITH INTERFACE ESTIMATES
FOR THE POROUS MEDIUM EQUATION (*)

by David HOFF (l) and BRADLEY J. LUCIER (2)

Communicated by J. DOUGLAS

Abstract. — We provide a gênerai basis, based on the weak truncation error, for proving
L °° error bounds for the porous medium équation in one space dimension. We show how such
bounds for the solution can lead to estimâtes for the interface of the support for the solution, and
we apply this theory to a spécifie finite différence approximation to the differential équation.

Resumé. — Nous donnons une méthode générale, basée sur une troncation faible, pour
obtenir des estimations L™ de l'erreur pour l'équation des milieux poreux en une dimension
d'espace. Nous montrons comment de telles estimations permettent de localiser l'interface du
support de la solution et nous appliquons cette théorie à une approximation de la solution de
l'équation par différences finies.

1. INTRODUCTION

We are concerned with numerical approximations to the so-called porous-
medium équation [7],

(11)
* ' \u(x0) u(x) xe

We assume that the initial data uo(x) has bounded support, that
0 === «o =s M, and that <&(uo)x e BV(R). It is well known that a unique
solution u(x, t) of (1.1) exists, and that u satisfies

O ^ M ^ M , u(.,t) has bounded support, and
( L 2 ) iy«i>(K(o)*7V<K«o)
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466 D. HOFF, B. J. LUCIER

If the data has slightly more regularity, then this too is satisüed by the
solution. Specifically, if m is no greater than two and u0 is Lipschitz
continuous, then u(., t) is also Lipschitz ; if m is greater than two and
« - 1 ) , e L°°(R), then (w(., t)m~l)x e L°°(R) (see [4]). (This will follow
from results presented here, also.) We also use the f act that the solution u is
Hölder continuous in t [4],

As already remarked, if the nonnegative initial data u0 has bounded
support, then the solution u(x,t) also has bounded support for all time ; this
contrasts when m = 1 and (1.1) is the heat équation. It is therefore of
interest that a numerical scheme for (1.1) be able to estimate not only the
solution u(x,t), but also the location of the boundary of the support of u.

Several numerical schemes that estimate the numerical interface have
been proposed for the one-dimensional porous medium équation. Methods
introduced by Tomoeda and Mimura [11] and Di Benedetto and Hoff [4]
are based on the équation for the pressure v = um~l :

vt = v2
x + mvvxx , x eU , r > 0 ,

fit _L

v ( x , O ) = v o ( x ) = u g ' - 1 ( x ) , x e R .

Each method uses a finite différence scheme that is modified to track the
estimâted interface of the support. The true interface z(t) at the right edge
of the support satisfies the differential équation

(1.3) z, J l
z, „ , ( * ( , ) o , r ) .

Di Benedetto and Hoff and Tomoeda and Mimura bot h use a numerical
version of this condition to track the fronts.

The second type of method, introduced by Gurtin et al. [5], and analyzed
by Hollig and Pilant [6], transforms the support of u(x, t) to a fixed domain
[—1,1] and solves numerically the transformed differential équation using
finite éléments. Using a technical assumption that ensures that zf(t) > 0 for
all t9 Hollig and Pilant have had great success in estimating both the position
of the interface and the value of the function u(x, t), They have also been
able to show that for small time the interface is a C00 curve in x, t space.

There appear to be several difficulties with the underlying concepts of
either front tracking or domain transformation when one attempts to apply
them to problems in more than one space dimension. Both Rose [10] and
Jerome [7] have introduced and analyzed finite-element methods for
problems in several space dimensions without concern for estimating the
interface of the support of the solution. We hope that the approach
developed in this paper will eventually be applicable to several space
dimensions.
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NUMERICAL METHODS FOR THE POROUS MEDIUM EQUATION 467

In this paper we prove error bounds for the simplest finite-difference
scheme based directly on (1.1) :

(1.4)
Uf = u o ( i h ) , i e Z ,

where <$>(u) = um, h is the spatial mesh incrément, At is the time step, and
C/f is an approximation to u{ih,n At). Our error bounds are of the form

for some N9 where p dépends on the Hölder exponents of continuity of u
and uh. Like several authors bef ore us [1] [9], we make the trivial
observation that if Ch^^e and C/*=>e for some k^n, then the point
(ih,n At) is unquestionably in the support of w. We therefore have an inner
estimate for the support of u(x, t), with a natural numerical boundary.
Estimâtes for the différence between the numerical boundary and the true
interface of the support, based on the differential équation satisfied by the
interface and on the regularity properties of the true solution w, follow.
(Previously, Nochetto [9] folio wed a similar program of deriving interface
estimâtes from Lp bounds, but he required a certain global-in-time non-
degeneracy assumption on the behavior of u near the boundary of its
support that we do not assume. Ho wever, our results agree with his if we
assume that the non-degeneracy assumption is satisfied locally in time.)
Note that our interface estimate is not based on front tracking, but on a
trivial post-processing of a numerical solution that may have rapidly
increasing support.

We will use the following notation for what we call the weak truncation
error. Let {uh(x, t)} h^h be a family of approximate solutions, each of

which is assumed to be bounded and nonnegative. For given uh, the weak
truncation error E is the functional

(1.5) E(uh
9w9T) = f uh(x, .)w(x,.)\ldxl

o

defined on X = {we C2;w(.,t), w,wt, wxx are integrable}. Of course, u is
the unique solution of (1.1) if and only if E(u, ., . ) = 0.

The rest of the paper is as follows. In Section 2, the différence in
L°° between an approximate solution uh and the true solution u is bounded

vol. 21, n° 3, 1987



468 D. HOFF, B. J. LUCIER

in terms of the weak truncation error E. In Section 3, error estimâtes for the
interface are proved. In Section 4, this theory is applied to the finite
différence scheme (1.4).

2. L°°(IR) ERROR BOUNDS

The following theorem expresses the error of approximations uh in terms
of the weak truncation error E.

THEOREM 2.1 : Let {uh} be a family of approximate solution satisfying
(for O^t^T)

(a) 0 =£ uh(x, t)*skM, x eR,t>0,

(b) both u and uh are Hölder-a in x for some a e (0,1 A l / (m - 1)) ;
uh is right continuous in t; and uh is Hölder continuous in t on strips
IR x (tn, tn + l), with the set {tn} having no limit points ;

(c) there exists a positive function w(/i, e) such that : whenever
{ w e } 0 < e < e is a family of functions in X for which

(2.1)

and

(2.2)

. l l^o.

and

sup , 1/2 IA2,

io(h, e) + Ea ,

then \E(uh,w\ T)\ ^ <o(/z, s) .

77*erc tóere & a constant C = C (m, M, T) 5uc/z ^fl?

I

(uQ(x)-uh(x,0))w(x90)dx

where the supremum is taken over all w e X that satisfy (2.1) and (2.2).

Proof: Let z be in X. Because E(u, ., • ) = O, équation (1.5) implies that

(2.4) f Auz\%dx= T f
•* U */Q Ju

where Au — u — uh and

u - u
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NUMERICAL METHODS FOR THE POROUS MEDIUM EQUATION 469

Extend c|>[u, uh](x, t) = 4>[u, uh](x, 0) for négative t, and
$[u, uh](x, t) = <$>[u, uh](x, T) for t > T. Fix a point x0 and a number
s > 0. Let /e be a smooth function of x with intégral 1 and support in
[- e, e], and let ƒ§ be a smooth function of x and t with intégral 1 and
support in [— 8, 8] x [— 8, 8] ; 8 and e are positive numbers to be specified
later. We choose z = ZE8 to satisfy

t+ ( + s t [ u , uh])zxx = 0 ,
( 2 '5 ) |

Because the partial differential équation (2.5) is strictly parabolic with
smooth coefficients, the following results are direct conséquences of
maximum principle arguments ; observe that all constants are independent
of E and 8.

f|(2-6) ||z

Note also that (2.7) implies that for 8 « 80,

(2.8) | | z (%,f) | | i^C/e 2

The following simple argument shows that

( 2 9 )
h ~ f 11

By (2.6) and (2.8), for any positive H,

if ff = \h-h\m.

vol. 21, n" 3, 1987
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470 D. HOFF, B. J. LUCIER

If we let C be the maximum of the above constants — still independent of

s and 8— the family {— ze5l satisfies (2.1) and (2.2). So, by
I C J 0 < 8 *s 60

assumption,

or, because E is linear in the test function,

\E(uh,z*\T)\*~Co>(h,e),

where the constant C is independent of both e and 8.
We now use this information to provide a pointwise bound for

Au. Equation (2.4) implies that

f »
I I :k A?y II V T l I A.1J 7^1 C\\ fïy

Ju

+ | Au($[u, uh] -8-/5*<t>[w, uh])z£dxdt-E(uh,z£\ T) .
Jo Ju

Using our inequalities, we can bound the left hand side of the preceding
équation as

(2.10) |0>Au)(;co, T)\ ̂  I f Auöz%,0)dx +C(ü(/z,e)
I JK

+ C C \ \Hu,uh]-b-J^^>[u,uh]\\z^\dxdt
Jo Ju

where, again, the constants are independent of 8 and 8. If we let 8 vanish,
the last term tends to zero. To see this, observe that, for fixed t,

j |4>[u, uh]-b-Jh*4>[u,uh]\\z?x\dx .

^ ||4>[W) u
h] - 8 - Jh * 4>[M, M * ] | | L . ( R ) • C / s 2 ̂  0

because w and uh are Hölder in ̂  and locally Hölder in t. Furthermore,
because the absolute value of each intégral is bounded by C/e2 uniformly in
8, the double intégral must tend to zero by the Lebesgue Dominated
Convergence Theorem.

The conclusion of the theorem now follows from (2.10) and the fact that

which follows from our assumption (b). •
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NUMERICAL METHODS FOR THE POROUS MEDIUM EQUATION 471

3. ESTIMATES FOR THE INTERFACE

In this section we will assume that the approximating family {uh} and the
solution u of (1.1) satisfy the hypotheses, and hence the conclusion, of

Theorem 2.1. Assume also that Auow(.,Q)dx and (o(h, e) are bound-

ed in terms of h and e in such a way that the error bound becomes

(3.1) | | M - U ' V ( R x [ o , r ] ) ^ C o ^

for some p > 0. For simplicity we assume that u(.,t) has bounded,
connected support, with right hand interface curve x = z(t). We fix
At, let tn = n At, and define an approximate right-hand interface curve
zn~z(tn) by

(3.2) z n + 1 = wi{x**zn:uh(y9t
n + 1)^2C0h*, V v ̂  %} , n^O.

The initial approximation z° may be defined as

z° = inf {x : u\y, 0)^2C0h*, Vv ̂  x} ,

or through some other method ; we require only that z° ̂  z(0). Note that
the set in (3.2) is nonempty by (3.1), because u(.,tn + l) has 'compact
support.

The approximation for the interface can be computed simply by noting
that the right side approximate interface, for example, moves only to the
right with time. Thus, after each time step one only has to examine a few
mesh points to the right of the current interface to décide whether or not to
incrément the value of zn to obtain zn + l.

The results in this section are based upon arguments introduced by Di
Benedetto and Hoff [4] ; we refer the reader to this paper for the regularity
results that we use in Lemma 3.2.

LEMMA 3.1 : /ƒ z°^z (0 ) , then zn^z(tn).

Proof: The proof is obvious.

LEMMA 3.2 : Assume in addition to (1.2) that u0 satisfies (u™~l)xx s* - C2

as a distribution. Then there are constants C1 = Cl(m) and C3 = C3(uQ)
such that, for s > 0 and t ^ At,

(3.3) um-\z{t) - s, t) & sC, z ( 0 ~ ^ ~ A r ) -lc2s
2-C3 At112

vol. 21, n° 3, 1987



472' D. HOFF, B. J. LUCIER

Proof: Because v = um~~x is Hölder-1/2 in t,

v{z{t)-s,t) = ~ P

= ^_ v(z(j)-s,j)dT

+ -1 f [v(z(t) - S,T) - V(Z(T) - s, i)]dz + O(Atm)

Because v is Lipschitz in x for all time, and z{t) is Lipschitz with

C1z(t) = - p x ( z ( O - 0 , f ) a . e . ,

the second intégral is O (Ar) = O(Atm) for small Af.

Because vxx ̂  — C2 for x and r in the interior of the support of v,

C2 9
I?(Z(T) - s, T) ^ Ï?(Z(T), T) - ^ ( Z ( T ) , T) ^ - — 5Z

C2 ,
= 0 + CXZ(T)S - — 5za.e.

Thus,

t

The following theorem is our main result on estimating interface curves.

THEOREM 3.3 : Assume that {uh} and u satisfy the hypotheses of
Theoreml.l and the estimate (3.1), that z° =e z(0), and that {UQ~\X^ - C2

as a distribution. Then for sufftciently small At there is a constant
C = C (u0, T, m) suc h that the approximations zn satisfy

(3.4) \z(tn) ~zn\2^ C[\z(0) - z°|2 + h{m"1)P + Atm]

forte [0,T].

Proof: Let sn = \z(tn) - zn\ = z(tn) - zn by Lemma 3.1. The définition
of zn and (3.1) imply that

u(z(tn) - sn, tn) ^ u\z{tn) - sn, tn) + Co h?
= uh(zn,tn) + C0h^3CQhV.
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NUMERICAL METHODS FOR THE POROUS MEDIUM EQUATION 473

Therefore, from Lemma 3.2,

(3.5) {3C0h^)m-l^u{z{tn)-sn,tn)m-x

(because (zn- zn-l)/(At) 2= 0).
Rearranging the terms in this inequality shows that

(sn)2*£Snsn-1 + C At[(snf + h^m~1)+ Atm]

V I A i l

so that
/ n\2 s n-l\2

or ^J-^ (1 + C àt)¥—L+c

Solving this récurrence gives the statement of the theorem. •
We can improve this bound if we know a priori that z ( r ) ^ C > 0 a . e . ona

time interval [tn~l,tn], It is known [2] that for some time interval
[0, ï], z(t) = 0, and that af ter this time z{t ) > 0 (T may be zero). The time
T is known as the waiting time. So for large time, the following corollary
holds.

COROLLARY 3.4: If, in addition to the hypotheses to Theorem 3.3,
z(t) s* C > 0 a.e. on [tn~\ tn] (n > 0) and

then K - * ( ' B ) 1 ^ C[/*(m"1)p + A*1/2] .

Proof: We see from (3.5) that with the extra hypothesis on i ,

(3.6) |JB | ^C(s n ) 2 +C(/* ( m - 1 ) p + A*1/2).

Our assumption on z° applied to (3.4) implies that

(sn)2^C(fc<m-1)p + Af1/2).

The conclusion follows from substituting this into (3.6). •

Remark: Assuming the L00 bounds on Au, Corollary 3.4 is implied by
results in [9].

vol. 21, n6 3, 1987



474 D. HOFF, B. J. LUCIER

4. APPLICATION TO A PARTICULAR SCHEME

We analyze the simple scheme

(4.1)
h2

0 , ke

where h is the mesh spacing, At is the time step, and U% is meant as an
approximation to u(kh,n At), where u is the solution of (1.1). We let
<|>£ = <|>(U£). The following theorem summarizes the discrete regularity
results that we will use.

THEOREM 4.1 : If

(4.2) O^C/J^M,

(4.3)

(4.4)

(4.5)

&k +

I

1 "~

h

1
7

ut

$°k
?

= 0 for large \k\,

h = V <oo ,
keZ

hl 2mM

is defined for all k and n, and

m - l '

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

keZ

fceZ

rrn jjn
Uk+1~ Uk

V ,

h ^ V , and

JfceZ

h.

Proof: This theorem is similar to results for numerical methods for
hyperbolic conservation laws, and we refer the reader to Lucier [8], for
example, for more detailed arguments.
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We can write

(4.11) î£ f %

Because of (4.5), Uk
+1 is an increasing function of Uk, U%_ \ and

Uk + 1. Therefore, Un-^Un + l is an order preserving map of L1(Z) (or
L°°(Z)) to itself : if Un

k^ Vn
k for all *, then U% + 1^ V£ + 1 for all k. (4.6)

follows immediately. It is also obvious that £ Uk
+ a = £ C/jf, so that time-

JkeZ fceZ

stepping also preserves the intégral of Un. A theorem of Crandall and Tartar
[3] now implies that for every U° and V° satisfying (4.2) and (4.3),

kei H Z

(4.7) and (4.9) follow by setting V° = U\ (4.10) follows by setting
Vk = Uk + 1. (4.8) is an immédiate conséquence of (4.7) and (4.3). •

We have the following estimate for the weak truncation error of the
scheme.

THEOREM 4.2: Assume that the hypotheses of Theorem 4.1 hold. Let
uh(., tn) be the piecewise linear interpolant of {Uk} , and set

Then we can take w(/z} e) = Ch/e2 in Theorem 2.1.

Proof: We write u for uh and w for we as introduced in Theorem 2.1. We
must estimate E(u, w, T). First, we assume that T = tN, for if tN === T < tN +1

JK
^N dx

t" Ju

f [ \u(x, tN)wt{xJs)\dsdx^C

C M /e 2 ^ C/z2/e2 ; and

Ch2/z2 .

We defined Zf;- to be the continuous, piecewise linear « nat function » that is
zero for xk =£ Xj = jh and is one for xk = Xj, and let

ƒ,.(*)= f* Hj(s)ds =
J-00

vol. 21, n" 3, 1987
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Note also that

D. HOFF, B. J. LUCIER

(4.12) £ f \w(x9t
n)~w(x9t

n-1)\\u(x9t
n)-u(x9t

n-l)\dx
n = l JR

I A ' --2\ I h M

| ^VAt^CTh/s2.

To begin, we have that

Ç ÇT N-l r çtn + l

uwt dt dx = V uwt dt dx
Jw J O n = 0 Ju Jtn

r r
M(x,fw)w(jc,rN)dA:- u(x,0)w(x,0)dx

- V f w(x,tn)[u(x,tn)-u(x,tn-l)\dx.
11 = 1 ̂ K

Thus,

JiR J R J O

— 1 v IR

w e
= 2̂  w(x,tn-1)[u(x,tn)-u(x,t"-1)]dx

n = l JR \Jke2 f1 j

by(4.12)

h2 • / * ( * )
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From the définition of Ik we know that for xk =s x =s xk + 1,

02<t>y

jeZ
'/o- i

h2 [ 2 h + h2 2 h

2h h2 2h '

Thus,

f T r r
JM ° JR JO kei

- 1

h \ h2

The term in braces is bounded by

L E I
i fceZ

Now let ^ ( . , 0 be the continuous, piecewise linear interpolant of
4>(.,*)• O n t ^ ' ^ + i ] ' ^ = (4>fe + i -<t>fc)^, and because of (4.7),

f \*„\dx*V,

where the intégral is really the total measure of \|/XJC. We then have

uw | J dx - uwt dt dx
Ju Ju Jo

vol. 21, n° 3, 1987



478 D. HOFF, B. J. LUCIER

since
N

£ f *,(*,«"-x)f f [w&.o-w^r-^

l f ^(x.r""1) f' [W{x,t)-w(x,t"-1)]dtdx

N C At312

y V*^— by (4.7)

because h = C Atm. Thus

f r r r

JR JR JO
f dt rfx

= - f f Wxbxdtdx- f r

We must show that wx($ - ty)xdt dx = O (h/s2).
Ju Jo

First note that there is a constant C = C (m) such that for all u,

Thus, on [xk, xk + l],

(u)x\ = \(um)x\ =mum~1\ux\ =mum~1

j-rm

= c

h

|4>* + i -

Thus, since i[i(, , tn : ) is the piecewise linear interpolant of <}>(., ;
have

i - i ), we
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it follows that

f wx(4>-*)xdtdx= Y f f

* I f supii

^hAt = Ch/e*.

The foliowing lemma, which was proved with the help of Don French,
shows that uh{. , t) e Ca for the optimal value of a.

LEMMA 4.3 : Assume that the hypotheses of Theorem 4.1 hold and that
{uh} are constructed using the scheme (4.1). Then for ail xx, x2 e R,
te [0,7],

(4.13) \u\x2, t) - u\xl9 0 | *£ C |x2 - ^ | 1 / m .

If me (1, 2] anrf f/ie /mft'a/ va/ues

(4.14) | t / , ° + 1 - t / , 0 | ^

and

(4.15) t/J^Lft

^ n /ar all xl9 x2 e R, te [0, T],

(4.16) |M*feO-A^O| ^

/ / m > 2 anJ r/ze zmY/a/ values {ï/°} satisfy

(4.18)

then for all n^O and for all k e Z,

(4.19) 1

Inequality (4.19) implies that there is a constant C = C (m) such that for all
xi, x2<=U, te [0,T],

vol. 21, n° 3, 1987



480 D. HOFF, B. J. LUCIER

Proof: From (4.8) we know that

(4.13) then follows immediately.
As for (4.16), we will show that for n = 0, Uf — ü}_ x =s Lh. A symmetrie

argument shows that U] — U}__x^ — Lh. The result will follow by induction.
From (4.1) we know that for gênerai n,

(4.20) url-Ut?l=UÏ-UÏ_x+±

Fix i and define 1
implies that Vt ̂  L
convex,

si = u?_1+()r?andF,+ 1-
' - i + 1
V, » ü?+ 1

[A for

- t / f ;
all ƒ. Equat ion (4.

therefore, because <!

14)
\> is

Because the mapping Un -• C/" + 1 is order preserving, substituting V,- for the
first and third occurrences of t/f in (4.20) will only increase the value of the
right hand side of (4.20). Finally, because ()> is increasing and
0*zVi_2*zU?-2 ( f r o m (4-15))' making the substitution Vt_2 for Uf_2

again increases the right hand side of (4.20). Therefore,

(4.21) C//-i7/_1^y i-V,._1+^

- 2(4>(v() - HVi-i)) + (Wv,-!) - HVi.2))) •

Because the numbers Vj are evenly spaced, the quantity in parentheses in
(4.21) equals (Lh)3 <}>'"(£) (for some g e [Vt _2, vi + 1])» which is not positive
because 1 < m =s 2. Therefore, C// - t//_ 2 ̂  y,- - Vi_1 = Lh.

As for (4.19), we will show that (t/f^i1)"1"1 - (t/I"
 + 1 ) m " 1 =s Lh. Obvi-

ously we can assume that U"+l >- t/" + \ We first reduce the inequality to
the special data Vi_1 = (y - A) 1 /^" 1 *, V(- =y 1 / («- i ) ) Vi + 1 =

- i) a n d y . + 2 = (y+2A)1/<m-1>a where A = Lh and
i). we are required to show that

(4.22) A ^ (Ui + 1

where \ = (At)/h2 and {t/^} stands for {£/£}. Just like the argument for
l^m^2, Vi + l*Ui + l and (Vi+2r - (Yi + 1r* (Ui+2T - (Ui+1T,
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so making the latter replacement increases the right hand side of (4.22).
Similarly, (4.22) increases when Vt _ x replaces Ui _ x. Finally, the derivative
of the right hand side of (4.22) with respect to the remaining instances of
Ui + U is equal to

which is positive because U?+l> Uf + 1 and because of (4.5). Therefore,
replacing the remaining instances of £/, + 1 with Vt + j increases the value of
the right hand side of (4.22).

Thus, we are required to show that F(v + A)~ J F(v )^A, where

(4.23) F 00 =

It is therefore sufficient to show that F' (v) ̂  1 for y ̂  A. Taylor's Theorem
shows that for any analytic function f,

f(y + A) - 2 ƒ (y) + ƒ (y - A) = 2
*=

when /(y) = y m / ( m - 1 ) -y a ,

/O ; s —^— - (2 fc - 1 )

/ ( 2 f c ) ( y ) ^ a ( a - l ) . . . (a - ( 2 A : - l ) ) y w - 1

We can now rewrite (4.23) slightly more favorably ; if we define the positive
coefficients 6m> k = 2 k A2k a ... (a - (2 k - 1 ))/(2 fc) !, then

( m — 1

and the series converges for y ̂  A. A calculation shows that

( m - 2

/ 2 *

m-2 /

1+ P M / " " l-(m-2)j;6m,fc/-
2*

/ \
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Because m > 2, calculus shows that the function
(1 + a)m~2(l - (m — 2) a) takes its maximum value of 1 in the interval
[0,1/(m - 2)] when a = 0 ; therefore the above bound for F'(y) tends to
its maximum value of 1 as y approaches infinity. This proves (4.19). The
final inequality follows from the argument in the first paragraph of this
proof. •

The following example shows that sorne condition like Uf s* Lh is
necessary for the above theorem to be true. Let 1 < m -< 2 and

0
h
2h

for
for
for

i =sO
i = 1
i = 2

with Uf defined for i > 2 so that U° has Lipschitz constant 1 and otherwise
satisfies the conditions of the lemma. Then

U\ - Ul = h - 0 + —^ ((2 h)m - 3 hm + 3 . 0 - 0)
h

= h + —2h
m(2m-3)

which is bigger than h if 2m > 3. It's not clear what the précise condition
should be to guarantee that Unis Lipschitz for m =s= 2. (Perhaps no condition
is necessary if we allow controlled growth in time of the Lipschitz constant.)

We can summarize the results for our scheme as follows.

Case 1 : General m, error bound for u : Assume that u0 has bounded
variation and take [ƒ£ = uo(kh). Because (u™)xx is assumed to be a measure,
Lemma 4.3 implies that both u and uh are Hölder-1/m. In addition, the
intégral in (2.3) is bounded by

r

Theorems 2.1 and 4.2 imply that

by taking e = /îmA2m + 1). Without further information, we have no error
bounds for the interface because Theorem 3.3 assumes that (u™~l)xx + C2

is a positive distribution, hence a measure. At any rate, p = l / ( 2 m + l ) i n
(3.1).
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Case 2 : m e (1,2], w0 ^s Lipschitz, error bound for u : Assume
1 =s= m =s 2 and u0 is Lipschitz continuous with Lipschitz constant L. Let
£/£ = max (uo(kh), Lh). Lemma 4.3 implies that uh(,,tn) is Lipschitz
continuous for all positive n with the same Lipschitz constant. This choice of
{£ƒ£} also satisfies (4.2) through (4.4). Because ||w,(., 0| |Li (R) ^ C/e2, the
intégral in (2.3) is bounded by

J |u°-W(x,0)||w(x,0)|^^ ||w(.,

Theorems 2.1 and 4.2 imply that

by taking e = hV3.

Case 3: me ( 1 , 2 ] , u0 Lipschitz, error bound for z(t): A s s u m e
(u™-1)^ ^ - C. The approximation uh satisfies (3.1) with p = 1/3. Assume
that z° is chosen to satisfy Theorem 3.3. Because Atm = Chm ^Ch{m~1)/6

for me (1,2], it foliows that

\zn-z(tn)\ ^ C [ | z ( 0 ) - z ° | + / z^ - 1 ) / 6 ] .

If, in addition, | z ° - z(0)| ^ C/*(m~1)/6, and z(0 ^ C > 0 for
te (tn-\tn), then

Case 4 : m > 2 , ( w j 1 " 1 ) Lipschitz, error bounds for u and z(t): C o n s i d e r
now when m>2 and ŵ 1 " 1 is Lipschitz continuous with Lipschitz constant
L. Lemma 4.3 shows that then (Un)m~1 is Lipschitz continuous with the
same Lipschitz constant for all n. We now take advantage of the special
form of ze8 to bound the intégral in (2.3).

In (2.5) we can write

<|>[M, uh] = <|>[M, U] + (u - uh) <t>[M, M, wft]

= mw m - 1 + .O(||A«||00)4>"(O/2 fo r someg ,

= mt? + O ( || AM || ̂  ) , because m > 2 .

Thus, if we set us = /§ * v, z£Ô satisfies

^ = WÜJ zxx + Ôzx;c + O( | | AM 11 )̂ zxx .
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Because (a) zeô is nonnegative, (b) 8 tends to zero while z^ is bounded in
L:([R) independently of ô by (2.7), and (c) vb is uniformly Lipschitz
continuous, one sees that

\z%,T)l^-llz'^

jj § \z$\dxdt.

By the known bounds (2.6)-(2.7) for zeô, we conclude that

Therefore, the intégral in (2.3) is bounded by

(u°-u(x,0))zE\x,0)dx

Theorems 2.1 and 4.2 imply that

s2

Let's ignore the constants for a moment to consider the right hand side of
this inequality. To hide the term || Aw || ̂  on the left hand side, we require
that Ch^^-V/s2^:!, or

(4.24) E>Chl/{2m-2K

Balancing the sizes of the first and third remaining terms requires that
s = hl/m, which violâtes (4.24). Balancing the second and third remaining
terms gives_ 8 = fc^-iVCm-i^ which does satisfy (4.24) when
m =s (3 + \j3)/2 « 2.366. This value of e gives an error bound of
OQi1/^1™*1}). It is easily seen that for m in this regime, the first term is
smaller than the other two terms, so the bound holds for all three terms.

By bounding the intégral in (2.3) with hl/^m"1>}/e2 (as in Case 2), setting
l / ( 2 l ) l / [ ( 2 l ) ( l )]

y

m +1) for m ^ 5/2. For other values of m, the error bound in Case 1 is
still the best possible. Bounds for the interface error can now be determined
in the usual way if (u™~ *(x))^ s= — C > — oo.
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These tricks give an error bound of hm when m = 2 ; we doubt that this is
sharp. We believe that better bounds for the error could be achieved by
using more précise estimâtes for the functions zeS.
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