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MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(vol. 19, n° 3, 1985, p. 461 4 475)

FINITE ELEMENT APPROXIMATION OF STEADY NAVIER-STOKES
EQUATIONS WITH MIXED BOUNDARY CONDITIONS (*)

R. VERFURTH (})

Communicated by F. BREzz1

Abstract. — We consider the steady Navier-Stokes equations in a bounded domain Q < R3
with smooth boundary T'. As boundary conditions we require that the normal velocity component and
the tangential stress components vanish on . Problems of this type arise as subproblems when dealing
with fluid flows subject to surface tension. T he continuous problem is discretized using a non-conforming
mixed finite element method with quadratic elements for the velocities and linear elements for the
pressure. For sufficiently small data both the continuous and the discrete problem have unique solutions.
We obtain O(h''?) error estimates for the H'-norm of the velocities and the L*-norm of the pressure
and an O(h) error estimate for the L?-norm of the velocities. The suboptimality of the error estimates
is due to the non-conformity of the method. However, this cannot be avoided as is shown by a Babuska-
type paradox.

Résumé. — Nous considérons les équations de Navier-Stokes dans un domaine Q < R> au bord T
régulier. Comme condition de limite nous siupposons que la direction normale du champ de vitesse et
les directions tangentielles de la tension superficielle sont nulles sur T. De tels problémes apparaissent
quand on considére I'écoulement d’un fluide soumis @ une surtension superficielle. On utilise une
méthode non conforme d’éléments finis mixtes avec des éléments quadratiques pour le champ de
vitesse et des éléments linéaires pour la pression. Le probléme continu et le probléme discret possédent
des solutions uniques si la force extérieure est assez petite. On établit une majoration d’erreur d’ordre
O(h*'?) pour la norme H* du champ de vitesse et la norme L? de la pression et d’ordre O(h) pour la
norme L? du champ de vitesse. La majoration d’erreur n'est pas optimale en raison de la non-conformité
de la méthode. Un exemple analogue au paradoxe de Babuska montre que cette non-conformité est
indispensable.

1. INTRODUCTION

The flow inside a volume Q = R3 of fluid governed by an exterior force f
and surface tension is described by the Navier-Stokes equations

—vAu+Vp +wVyu=f

div =0 in Q (1.1

(*) Received in May 1984.
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West Germany.
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462 R. VERFURTH

with the mixed boundary conditions
un=nTwup.1,=0 on I''=0Q, k=12, 1.2)

(¢f [2, 3, 9]). Here n denotes the outward normal to Q, 1,, k = 1, 2, orthonormal
vectors spanning the tangent plane and

Ou;  Ou, .

the stress tensor. The boundary I' of the fluid is not known a priori. It is deter-
mined by the condition that its mean curvature is proportional to the normal
stress component :

2kH = g.Z@,p).Q onI.

The existence, uniqueness and regularity of solutions to this problem are
investigated in [2, 3].

As a first step towards error estimates for finite element approximations of
this problem, we consider problem (1.1) with boundary conditions (1.2) in
a fixed bounded domain Q < R? with three times continuously differentiable
boundary I'. In order to simplify the notation we assume in addition that Q
is convex.

We consider a non-conforming mixed finite element method. For sufficiently
small data v~ 2 f both the continuous and the discrete problem have unique
solutions. We obtain 0(h'/?) error estimates for the H!-norm of the velocities
and the L?-norm of the pressure and an (k) error estimate for the L2-norm
of the velocities. The suboptimality of the error estimates is due to the non-
conformity. However, this cannot be avoided as is shown in the last section
by a Babu3ka-type paradox.

2. FINITE ELEMENT DISCRETIZATION

Denote by H¥Q), k > 0, and L*Q) := H%Q) the usual Sobolev and
Lebesgue spaces equipped with the seminorm

ok j S | Do) [ dx }”’ .
Q

lal=k

and norm

k 1/2
uv||k=={z|v|f} . 2.2
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FINITE ELEMENTS FOR NAVIER-STOKES EQUATIONS 463

Since no confusion can arise, we use the same notation for the corresponding
norm and seminorm on H*(Q)3. The inner product of L?>(Q) and L*(Q)* will
be denoted by (i, v),.

Let

& = span { u(x) = B A x: B is an axis of symmetry of Q }  (2.3)
where A denotes the vector product. Put

X:={ueH'QP:un=00nT}/¥,

2.4
M = {peLz(Q):fpdx=0}
Q
and denote by
Ou; Ou;
J i

the deformation tensor. We introduce the following three bilinear resp. trilinear
forms for u, v, we H'(Q)?, pe L*(Q) :

«w =3 [ 2wpwas, 260
Q
b(u, p) == —jpdivgdx, (2.6b)
Q
NGw o, w) = f (@) 8] w ds 2.69
Q

The weak formulation of problem (1.1), (1.2) to which we will refer as Pro-
blem ( A") then is :

Find (u, p) € X x M such that
a(l_l’2)+b(1_),p)+N(£,£9_l_})=(_f’2)’ VBEX’
bu,q) =0 Vge M.

The corresponding linear problem without the non-linear term (N (y, u, v)
will be refered to as Problem (¥). Problem (S) always has a unique solution
and the regularity estimate

Ful, + 12l scllflo 2.7

vol. 19, n° 3, 1985



464 R. VERFURTH

holds (cf. [2, 3, 9)). If the data v~ 2 || f ||, are sufficiently small, Problem (N)
also has a unique solution and the regularity estimate (2.7) holds (cf. [2, 3, 9]).

Let Q, < Q be a family of polyhedrons satisfying the assumptions :

(A1) each vertex of Q, lies on T

(42) the length of all edges of Q, can be bounded from below and from
above by ch and ch resp. with constants ¢ ¢ independent of A.

We divide each Q, into tetrahedrons with edges of length 0(/) such that the
resulting family B, satisfies the usual regularity assumptions for finite ele-
ments (cf [6]). For simplicity we assume :

(A3) each face of Q, is the face one T € G,

Denote by &, the set of vertices of Q,. Let S; be the space of continuous

finite elements corresponding to G, which are piecewise polynomials of
degree < r. Put

Xy={ue)’ :un=0 VQe2}¥
2.8
Mh:= {peShl :Jv de = 0}’
Qp

Note that X, <« H'(Q,)?, but X, ¢ X and u.n, # 0 on I, :== 0Q, where n,
is the outer normal to €,.

We denote the seminorm and norm of H*Q,) by |. |, and || . ||, resp.
The inner product of L*(Q) is denoted by (., .),,. Finally, we introduce dis-
crete analogues of the forms a, b and N :

a,(w, v) :=% f D(w) D(v) dx, (2.94)
Qn

by, p) = ~J pdivuds, 2.95)
Qp

Ny(u, v, w) := % f (V)] w — [(@.V) W] v) dx, (2.90
Vu,v, we H'(Q,)®, peL*(Q),).

The discrete approximation of Problem (N) to which we will refer as Problem
(#}) then is :

Find (w,, p,) € X, x M, such that

a(uy, .l_’h) + 5@y P) + Ny(tps 4y 04) = (f 0dos> V0, € Xy,

b,(u, q,) =0, Vg,eM,.
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FINITE ELEMENTS FOR NAVIER-STOKES EQUATIONS 465

The corresponding linear problem without the non-linear term N, (u,, u;, v,)
will be refered to as Problem (&,).

In the sequel ¢, ¢, c,, ... denote various constants which are independent
of A but have different values depending on the context. Moreover, we will
often use the Green’s formula

f{—sz+Vp}2=J {%g(y)g@—pdivz}—fg@,p)y (2.10)
Q Q

r

(¢f (2.7) in [2]) which holds for v e H'(Q)?, p e H'(Q) and u e H*(Q)* with
divu = 0.

3. ERROR ESTIMATES FOR THE LINEAR PROBLEM

In this section we want to establish error estimates for the linear Problems
(S) and (S,). Recall that I := 0Q, T, := 6Q, and that n and n, denote the
normal to Q and Q,, resp.

LeEMMA 3.1 : There is an hy > 0 such that the boundary estimates

| u.n, "Lz(l‘;.) < c.h'? | u ”1,}. s Vue X,, 3.1
and

" E'ﬂh ”Lz(l';.) é Ch ”2"1’ VZEX, (32)
hold for all 0 < h < h,,.

Proof : Let S be a face of Q, and Q be a vertex of S. Denote by T € G, the
tetrahedron which has S as face and by 7, the normal to Q in Q. Since I' e C?
and all vertices of Q, lie on I', we have | n, — ny | < ch and thus

jlz-ml’échzf|u|2+fly-ﬂql”'- (3.3)
s Js

N

Let ¢ : T — T, be the linear transformation which maps T into the tetra-
hedron T with vertices (0, 0, 0), (0, 1, 0), (1,0, 0), (0, 0, 1) such that ¢(Q)=0.
Put

o(x) == ung(@ '(®), VxeT.

If u € X, then v belongs to the space of quadratic polynomials on T vanishing
in the origin. On this space, | . |y, and | . [, are equivalent norms.

vol. 19, n° 3, 1985



466 R. VERFURTH

The trace theorem and a homogeneity argument therefore imply
Jv lZ-ﬂQ |2 < ch? J |v lz < ch? |v I}zil(f) L chj u |?11(T) .
s o(S)

Recalling (3.3) and summing over all faces of Q, yields (3.1). To prove (3.2),
denote by A the part of Q\Q, which has S as face. Associate with Q € S the
point u(Q) e I' which lies on the line through @ with direction #,. Since

w(p(2)).n(w(Q)) = 0 we conclude
(100 < max| 0~ @I [ 1ur a0
+ f | u.n((Q)) |* dQ
= chzf |u|* dQ
s

|

< ch2j ul?dQ + ch® || u |
S

1 2
J %M(Q + (@) — Q)).n(WQ))] ds| dQ

where we have used | Q@ — p(Q) | < 0(A*). Summing over all faces of I', and
recalling the continuous imbedding H *(Q,)* — L*(T,)? this implies (3.2). Note
that the norm of the above injection depends on meas (Q,) and diam (Q,)
and can therefore be bounded independently of 4 for sufficiently small .
Since X, contains all continuous, piecewise quadratic finite elements which
vanish on I, we conclude from [4] with the same arguments as in [10] that

lnf b;.(L‘)., ph)

su —_—>f>0 3.4
pneMn\ {0} znexul\)jo) Iy Wyp 2y o = P 3.4

holds with a constant B independent of A. The second Korn inequality, the
generalized Poincaré-Friedrichs inequality (¢f [9]) and Lemma (3.1) imply

el ul?, j D@ | + (o + ) 212
Qn
fzw_h.
In
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FINITE ELEMENTS FOR NAVIER-STOKES EQUATIONS 467
Hence there is an A, > 0 and a constant o > 0 independent of % such that

a,,@,@:%f |IDW Pz aviuli,, VueX,, 0<hsh,. (3.5

(278

The continuity of a,, b,, equations (3.4), (3.5) and standard results on mixed
problems (cf. [S]) imply the unique solvability of Problem (S,) for all 0 </ <h,,

THEOREM 3.2 : Let (u,p) € X x M and (w,, p,) € X, x M}, 0 < h < h,, be
the unique solution of Problem (S) and (S,) resp. Then the error estimate

lu—wllyp + 12 —=Dyllon k| fllo (3.6)
holds.

Proof : Let pff be the best approximation of p in the || . ||, ,-norm by ele-
ments of M,. Standard approximation results (c¢f. [6]) and equation (2.7) imply

Ip — i llop = chll fllo- (3.7

Denote by uf the interpolating function of u by elements of (S;?

ue HX(Q)® < X, u¥ is well defined, lies in X, and satisfies

)3. Since

lu—wligpschllul,schlflo- (3.8

The functions u € H*(Q)*, p e H(Q) are solutions of

—~vAu+Vp=f
- = inQ
divu =0
un=nDwy =0, k=12 o0nT. 3.9)

Multiplying (3.9) with v, € X, integrating over Q, and using (2.10) yields

(f Bdos = @ 1) + by P) — [ n, T(w, p) v, .

Tn
Hence, we have

a,.(g—z,.,z,.)+b,,@,.,P—P;.)=J nITwpy, WweX,, (3.10)
I'n

where the right hand side is due to the non-conformity. To simplify the nota-
tion, put

R:= sup 1 n, T(u, p) v, . 3.1D
(Y o =

vheXn\ {0}

vol. 19, n° 3, 1985



468 R. VERFURTH
First, we estimate || p — p, llo, From (3.4), (3.7), (3.10) and (3.11) we
conclude

Bl py — pPx I on = sup by (vy, Py, — PF)

vhe Xn\ {0} I Uy ”1,;.
Schllfllo + sup

ghsx,,\{O} ” l)h ||1,}|

schllfllo+clu—ul,+R

b;,(y;., ph - P)

and thus
"P—Ph ”o,h§0h||f”o+cl|z—ﬂh ]|1,h+R- (3.12)

Put w, := u, — uf. From (3.5), (3.8) we get

av | wy 14 < a(wy, wy) <
Schll fllohwyllin + au, — u wy)
s{chlfllo + R} wllin + b(Wh P — Py
S{chlfllo+R}YUwyllyp+chl fllolp—pylon
+ by, — u,p — py)
sc{chll fllo +R}{NIwylin+chlflo} (3.13)

where we have used (3.12) and

by(u — u,q) =0, Vg, e M, .

Next, we estimate R. Let v € X,. The trace theorem, eq. (2.7) and Lemma (3.1)
imply

J nTwpv, <
rn
< | 7 T P) 1y ey | 0o i
2
+ X1 T ) 3t looery | 0B iy

2
Sch2 0 fllo oyl +cllv kZ I 1 D@ e [l oqry - (3.19)
=1 =

Here, 1,;, k = 1, 2 are orthonormal vectors spanning the tangent space at [,
Let S, A and p(Q) be as in the proof of Lemma 3.1. Since nD(#)t, = 0on T
and | n, — n(W(Q)) | = O, | T — T(W(Q)) | = O(B) and | Q—(Q) | = O(r?),

M? AN Modélisation mathématique et Analyse numérique
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FINITE ELEMENTS FOR NAVIER-STOKES EQUATIONS 469

we conclude with the same arguments as in the proof of Lemma 3.1

J | m, g@m |
s

lIA
1A

ch? J | D@ | + J | n1(Q))- T(%, p))- 1 (W(Q)) |* dQ
N S

IA

ch? J |2@ P +ch* |l u 1% 2o -
s

Summing over all faces of I', and using the trace theorem, this implies
” n, _2@ Thi ”LZ(r,.) Schlfllo- (3.15

Combining equations (3.12)-(3.15), we finally obtain the desired error esti-
mate. []

Note, that — regardless of the polynomial degree of the finite elements —
the estimate

R < ch'? fl, (3.16)

can only be improved by requiring 4,.n, = 0 onI', forall ¥, € X,. The example
of § 5 shows that this assumption is not appropriate for the problem under
consideration.

By a standard duality argument one can prove the error estimate

lu—wllon = chll fl- (.17

We omit the proof here, since we give a detailed proof of the corresponding
error estimate for the non-linear problem in the next section.

4. ERROR ESTIMATES FOR THE NON-LINEAR PROBLEM

The aim of this section is to prove :

THEOREM 4.1 : There is an hy > 0 and a constant K > 0 which does not
depend on h such that Problems (N) and (N,), 0 < h < hy, have unique solu-
tions (u, p) € X x M and (u,, p,) € X, x M, resp., provided v=* || f ||, < K.
Moreover, the error estimate

I u-—u, ”o,h + h'/2 I u-—u, ”1,}, + h2 lp— Dy "0,h <chl| z lo 4.1)
holds.

Proof : Using Sobolev’s imbedding theorem one easily proves that the
trilinear forms N and N, are continuous on X * and X? resp. (¢f Lemma 2.1
in Chap. IV of [7]). The norm of N, can be bounded independently of 4 for

vol. 19, n° 3, 1985



470 R. VERFURTH

sufficiently small values of 4. A standard fixed point argument (cf [8] and
Chap. IV of [7]) then yields the unique solvability of Problems (N) and (N,)
for sufficiently small data v~ 2 | S lo- Together with Theorem 3.2 it also
implies the error estimate for the H!-norm of the velocities. Since u € H*(Q)3,
pe H(Q) is a weak solution of (1.1), we may multiply (1.1) with v, € X,
integrate over Q, and use (2.10) to obtain

(fs oy = @, 1) + b (v, P) + Ny(w, u, ) —
- J {nh Twp) v — %(yﬁ;.)(w..)}.
s

Hence, we have

a,(u—uy, V) +b, (v, P—Py) = J

I'n

{n,, TG P vy 5 (em) L)} +

+ Ny, — u, u, ) + N, w,—u, ) + Ny, —u, w,—u, v,), Vo, eX, 4.2
and
by — u,,9) =0, Vg, eM,. @.3)

The boundary integrals are due to the non-conformity.
To simplify the notation, put

€ =U—U, E=D — Dy,

R:=sup L n, T, p) v,
vheXn\ {0} | vs "1,;. o

1
Rys= sup 5o —— f (umy) (uvy)
vhe Xn\ (0} Bulliw Jp,

and denote by pj the best L2-approximation of p in M, and by u the inter-
polant of u in (S?)°. Recall that u¥ € X, and R < ch'? | f ||, (¢f. (3.16)).
The trace theorem implies

I I(@h) (vy) | < | umy oy I 4 s 11 05 Lo,y <
n

S cllumy sy Nl ol (4.4
With the same arguments as in the proof of Lemma 3.1 we conclude
I uny o,y < chll ullpsop < R ull,. 4.5
Equations (4.4) and (4.5) imply
Ry <chlfIF. 4.6)
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From equations (3.4), (3.7), (3.16), (4.2), (4.6) and the H'-error estimates
of the velocities we get

1
Bllpy, —pPflloa< sup ——b(v,p — PP <
vheXn\ {0} “ Yy "1,h

Sclp=pilop+eclu—wllip+clu—wl3s +R+R <ch?|fl,.

Together with (3.7) this implies the error estimate (4.1) for the pressure.
The L2-error estimate for the velocities follows from a standard duality
argument. Let (y, p) € X x M be the weak solution of

—VvAp +Vp ~ D(u +%{(Vy)‘u + (VW u} = exo, nQ 4.7

divp =0
pwr=nDur, =0, k=1,20onT.

Here y, is the characteristicfunction of the set Q,. From [9] it follows that(4.7)
has a unique solution and that the regularity estimate

Tl +lplly <cllelon 4.3

holds. Multiplying (4.7) with ee H*Q,)?, integrating over Q, and using
(2.10), we obtain

lell3s = @ © + ble p) + Nye uw p) + Nyu e, p) —

—J {Ll,.z(g,p)_e +%(yn_,.)(gg)}. 4.9
Ty

Let p;* be the best L2-approximation of p in M, and Wi be the interpolate of p
in (5,2)%. Equations (4.2), (4.3), (4.9) and standard approximation results
for finite elements [6] imply

el = alp—pf e + ble p — pi¥) + b — 1 O+ Nyle o p— ) +
+ Ny, e, p — i) + Nyle e, )

+L {m I pe - 3m o - m TG u - ) ) |
<{chlely,+chlielon+cllelistlelon
al {1m 2w e+ 5 e+ T+ 5 1 .
h 4.10)

vol. 19, n° 3, 1985



472 R. VERFURTH
Next, we estimate the four boundary integrals in (4. 10) separately. Lemma 3.1
and equation (3.15) imply
j |my T, p) | <
I'n

< | 1 T P) 1y [lagen {1 (0 — 89 3 Doy + 1, o, §

+ W I i 2, [ T(u, p) T "Lz(r,.)

Sc{luly, +lply{lp—pmlon+hlpl}t+chlwlolfio
<chl flollelon- (4.11)

Similarly, we get

J | n,
T'n

< ” n, L( > P) 1y, HLZ(I‘,‘) [” (u — ¥ m, ”LZ(r,‘) + I (i — w) m, ”Lz(rh)]

+ k; , le "LZ(r,.)3 ” n, L(B, P) Tn ”Lz(r;.)

i~
=

(

,Pel <

Scllelopllly — iy, +272 el ] +chllelonlels
Schll fllollelon +ch'?lelullelon- (4.12)
Lemma 3.1 and Sobolev’s imbedding theorem imply

1

2 J\ | un, | |1'_‘E;T | ch ||l u "1 [ u ”w1,4(gh) I E}T “Wl,4(9h)
Tn

<
Schllfl5lelon- 4.13)
Finally, equation (4.5) yields

1
3 J lun, [1pel < chll fllo I p sl ellin<chll fllolelislelon-
Tn

4.14)

Equations (4.10)-(4.14) together with the error estimates for || ¢ ||, , and
I € llo, now complete the proof. []
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FINITE ELEMENTS FOR NAVIER-STOKES EQUATIONS 473

5. A BABUSKA-TYPE PARADOX

The proof of (3.16) shows that the error estimates of Theorems 3.2 and 4.1
could only be improved by requiring u.n, = 0 on I', for all ¥ € X,. However,
the solutions of Problem (S,) with X, replaced by

X, ={ueS»?:un =0 onT,} 5.1

do not converge in general to the solution of Problem (S).

Example 5.1 : Let Q < R? be the interior of the unit circle with centre in
the origin.
Denote by we C* ([0, 1]) a function with

0, 0=r< %
w(r) = 5.2)
> 2srsi
and put
u(x, y) == w(r).(— sin @, cos )" (5.3)

where (r, ¢) are polar coordinates in Q. Obviously, € C*(Q)? and u.n = 0
on I' := 0Q. An easy calculation yields

divu=0 inQ, BDw =0 onl.

Let Q, be as in § 2 and assume that % is small enough such that T, := dQ,

lies inside the annulus around the origin with radii % and 1. Denote by

(& Py) € X, x M, the unique solution of

ah(yip Eh) + b;,(Q;.a ph) = (_ Aya 2},)0,;; H Vyh € Xh ]
b (v, q,) =0, Vg,eM,.
(The arguments in the proof of (3.4) and Korn’s first inequality [9] imply

that (5.4) fits into the abstract framework of [5].) Inserting y, as test function
in (5.4) and using Korn’s first inequality we get

5.4

oy Iy S clluly

with a constant ¢ independent of 4. Let S,, S, be two adjacent faces of Q,
with common vertex Q and denote by n,, r, the normal to S, and S, resp.
The continuity of », and u,.n, = 0 on S;, i = 1, 2, imply %,(Q) = 0.
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474 R. VERFURTH

Using the same arguments as in the proof of Lemma (3.1) this yields

IA

|, "l,z(r,.)z = G m'2 | Y, ”1,;, (5.5)
and thus

| u — w, ”1,;. 26 llu—u, "Lz(r,,)z Z
= ¢ |z "Lz(r,,)z — €y Cpy h'!? I u, "1,;. 2 Cy — Cy hil? | u ”1 .
Since the constants ¢, ..., ¢; can be bounded independently of 4, there is a
constant ¢ > 0 independent of 4 such that
le —wllyp2c>0

for sufficiently small # > 0. Indeed, the u,, p, approximate the solution of a
Stokes equation with homogeneous Dirichlet boundary condition. To see
this, let 2 € H}(Q)?, p e M be the unique solution of
ai, v) + b p) = (— Ay, v,  Voe H5(Q)?,
b(ia,q) =0 Vge M.

By standard regularity results we have
lall, +1pl ScllAuly = lull,.

Replacing uf in the proof of Theorem 3.2 by the interpolant g, of & by
linear finite elements corresponding to G, and noting %, € X,, we conclude

Ilﬁ_ﬂhlll,h + "p_Ph "o,hédl "E"z +R2,
where
R, = sup —I—J n, T(w, p) v, .
T

e Xn\ {0} " Dy "1,’! -

Since (5.5) holds for all v, € X,, we have

Rysch{lal, +1pl} £ch?ul,. O

Finally, let us remark that a similar result is well known as Babu§ka-paradox
in plane elasticity ([1]). The above example, however, seems to be new in
fluid dynamics. It shows that problems with mixed boundary conditions
behave essentially different from those with Dirichlet boundary conditions.
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