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ﬁﬁ MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(vol. 19, n° 1, 1985, p. 65 a 88)

ON THE ORDER OF POINTWISE CONVERGENCE
OF SOME BOUNDARY ELEMENT METHODS.
PART I. OPERATORS OF NEGATIVE AND ZERO ORDER (*)

by R. RannacHER and W. L. WENDLAND

Communicated by V. THOMEE

Summary. — The paper deals with the approximate solution of boundary integral equations and
strongly elliptic pseudodifferential equations by the finite element Galerkin method. For operators
of order 2 o < 0 it is shown that the discrete solutions and for the case of some first kind integral
equations also the traces of the corresponding potentials converge uniformly with almost the same
optimal order as is known for their convergence in the mean-square sense. The proof is based on error
estimates for discrete Green functions which are derived by using weighted Sobolev norms and Gar-
ding’s inequality.

Résumé. — Cet article porte sur la résolution approchée par la méthode d’éléments finis de Galerkin
d’équations intégrales sur la frontiére, qui sont pseudo-différentielles fortement elliptiques. Pour
des opérateurs d’ordre 2 o < 0, on montre que les solutions discrétes et aussi la trace des potentiels
correspondants, pour certaines équations intégrales de premiére espéce, convergent uniformément.
En outre I'ordre de convergence optimal est presque identique a celui déja connu pour la convergence
en moyenne quadratique. La démonstration est basée sur des estimations d’erreur pour les fonctions
de Green discrétes qui sont obtenues par utilisation des espaces de Sobolev avec poids et de I’inégalité
de Garding.

1. BOUNDARY INTEGRAL AND INTEGRODIFFERENTIAL EQUATIONS

Let I be a smooth simple closed (# — 1)-dimensional surface in R", n = 2
or n = 3. On T, we consider a strongly elliptic boundary integro-differential
equation and corresponding boundary element methods. As a special model
problem we first consider the integral equations of the first kind,

Vu(x) = j

r

10 = 3) () do, + J K(x, ) u(y) do, — £(9), (1.1)

r

(*) Received in June 1983.
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66 R RANNACHER, W L WENDLAND

where v,(z) = — log|z|, f n =2, and v,(2) = | z|™ %, f n = 3, and K(x, )
1s a sufficiently smooth kernel These special integral equations (1 1) arise in
many applications as i conformal mapping, viscous flow problems, electro-
statics, acoustics and elasticity n case n = 2 (for references see € g 1 [10]) and
for n = 3 n electrostatics (see [17], [18]), acoustics (see [1], [31]) and electro-
magnetic waves (see [25])

Inmany of the applications(1 1) needs to be modified by additional unknown
constant quantities and corresponding complementing conditions, or by
letting # become an unknown vector valued charge and K(x, y) a matrix
valued kernel Our following error analysis also applies to these cases with
only very minor technical modifications which we omit here for brevity

Equation (1 1)1sa rather special case belonging to the large class of so-called
strongly elliptic boundary integro differential equations (or pseudodifferential
equations) which are solved numerically by boundary element methods (for
a brief survey we refer to [30]) Here V can be written as the sum of a strongly
elliptic pseudodifferential operator of order 2 « on I" and an additional suffi-
ciently smoothing operator Since for these operators the Galerkin method
converges of optimal order in appropriate Sobolev spaces (see [11], [12], [26])
we shall derive the pointwise error estimates also for the general case containing
equation (1 1) as a special case

If the general pseudodifferential equation 1s required to be solved on a
bounded sub-domaimn of I" then in general boundary conditions have to be
associated (see [6], [26]) Equations of this type mnclude the boundary value
problems of strongly elliptic partial differential equations, and the above
mentioned boundary element methods then become the well known domain
finite element methods where pointwise convergence of Galerkin’s method
1s well established for the most popular boundary conditions (see [7], [16],
[19], [21], [23], [24]) For the more general pseudodifferential operators, howe-
ver, the boundary conditions introduce new complications Therefore, we
consider only the case of compact surfaces I" without boundary here

We denote by L?(I") and W™ ('), 1 < p < oo, re R, the Lebesgue and
Sobolev spaces on I' provided with the usual norms, (., .) and || . || are the
mner product and norm of L*(Q), respectively, and || . |, 1s the norm of the
Hilbert space H'(I') = W ('), r e R For convenience, we shall denote by ¢
a generic positive constant which may vary within the context (but will usually
be independent of the mesh-width and of the solution)

As will be indicated 1n the Appendix, for sufficiently smooth I'" and K(x, ),
the operator V' given by (1 1) admuits the decomposition

V:V0+V1, (12)
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ORDER OF CONVERGENCE OF SOME BOUNDARY ELEMENTS 67

where V, is strongly H ~/*(I')-coercive, ie., V,, satisfies the inequality

Vov,v) =y llv|2,, forall ve H VXI), (1.3)
with a positive constant y, and V, maps H*(') continuously into H***(T)
. . . 1 .
for some appropriate s, in particular, for s = — 3 and s = 0, ie,
[Vivige, <cllol. (1.4)

Then, with the compact embedding H*'2(I") - H**Y(I") and (1.4), V is a
Fredholm operator of index zero from H ~*/2(I") into H!/*(T"). We shall further
require that the solution of (1.1) is unique which implies the unique solva-
bility of (1.1) with u e H*(') for any f € H**!(I') and the a priori estimate

Tully < el fllgey- (1.5)
Equation (1.1) is a special case of a strongly elliptic equation,
Au=f on T, (1.6)

where A4 is a strongly elliptic pseudodifferential operator of order 2 v € RonT.
The latter means that 4 admits a decomposition

A=A, + 4, 1.7
where A, is strongly H*(I')-coercive, i.e., A, satisfies
Re(Ayv,v) =Re(@, Afv) Z v lv 13, v, >0, (1.8)

(see [8]) and 4, maps H***(I") continuously into H*~**1(T') for appropriate s,
ie.,

Ay 0ll—gey S vy (1.9)

Again, uniqueness of (1.6) implies unique solvability of (1.6) for any right
hand side f € H*"2%T), and the unique solution u satisfies the a priori estimate

luly,<cll flly-2- 1.10)

Many of the boundary element methods are defined by boundary integro-
differential operators of the above type. For special applications and examples
we refer to [1], [2], [10], [17], [25], [30], [31]. For all these applications we show
almost optimal order pointwise error estimates for Galerkin’s method provided
A has principal symbol of integer order 2 « < 0.
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68 R. RANNACHER, W. L. WENDLAND

For arbitrary real orders 2 oo < — 1 all our proofs and results remain valid
without modifications. In the case — 1 < 2 o < 0 we find the same results
for higher degree elements excluding piecewise constant approximations.

For positive orders 2 o > 0 the proofs need several technical modifications.
This case 2 o > 0 will be presented in the forthcoming Part II. Since in [2]
collocation methods with odd degree splines have been treated as modified
Galerkin methods our pointwise error estimates in Part II extend to these
collocations. The extension to collocation with even degree splines as in [22]
and to collocation in higher dimensions, however, has yet to be carried out.

2. THE FINITE ELEMENT GALERKIN METHOD

Let IT, = { K } be finite decompositions of the surface I" into closed subsets
o]
K with mutually disjoint interiors K; 2 e [ 0, % denotes a discretization para-

meter corrgsponding to the maximum diameter of K. We further set
I'h =V {K, KelIl,}, and use corresponding Sobolev norms in H"(T)).
Depending on 4, we shall consider the family { IT, } of decompositions. For
properties involving { IT, } the generic constant ¢ will always be independent
of h. For { Il, } we assume quasiregularity in the following sense :

(A1) Associated with {11, } there exist two positive constants, ¢, and c,,
such that each element K € I, is contained in the intersection of I with some
ball B, = R" of radius c, h, and contains the intersection of I' with some ball
B, < R" of radius c, h.

For fixed integers k > 1 and m > 0, m < k — 1, let S¥™ be a so-called
(k, m)-system on I' corresponding to the family of decompositions IT, (see
[4] and for splines [3], [20]: where the notation S,_,(IT,, m — 1)i5 used). The
first parameter, k, refers to the local approximation order of ;™ which usually
consists of piecewise polynomial functions (or isoparametric splines) of degree
k — 1; the second parameter, m, indicates the global smoothness of these
functions,

Skm < H™T) ~ HXT,) .

For our purpose, we need to require the following approximation and inverse
properties :

(A2) There exists a continuous operator p, - H™) u H™n ®km=2%(T y_, gfm

b

such that for all ve H™(U') n H'(I'p), min { k, m — 2 0 } < r < k, there holds
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ORDER OF CONVERGENCE OF SOME BOUNDARY ELEMENTS 69

the global estimate

o —pyoll, <ch" 7 vllgrgy 0<Jj<m, 2.1

and, in addition the local estimate

“ V—Ppp0 HHJ(K) < Chr_j “ v Hyr(x,,) > 0 <] <, (22)

for each K € I1,, where K, may be K or, if necessary, the union of the open inte-
riors of all neighboring elements of K intersecting a ball By — R" of radius ch
having its center in K and with c independent of h.

(A3) Forall ¢, € S™ there holds, on each K € 11,

” d)h ”H"(K) <c ﬁ ¢h Hyk--l(x) 5 (23)

I & Moy < A7 1| &y Ny for integers 0 < I<j<k -1, (2.4

and, globally,
I &l < bt | &, Il,, forrealy, Bwith —k <y <PB<m. (2.5

These are typical properties of isoparametric finite element spaces SF™ of
order k.

In case n = 2, for one-dimensional splines on a uniform grid, these proper-
ties can easily be obtained from [3], Chap. 4 (with p, = p'r,and k = m + 1).
For higher dimensional finite elements similar projection operators can be
constructed for piecewise polynomials of degree k — | e.g. from the results
in [5] and [27]. (For tensor product splines, however, (A2) and (A3) must
be modified. This is omitted here.)

Note that (2.3) becomes trivial if ¢, is a polynomial of degree k — 1.
Usually, the systems S}™ also satisfy the pointwise estimate

inf | v — &y o < [ 0lyrn, 0<r<k. 2.6)

e Skom
The Galerkin approximations u, e S;°" to the solution u of problem (1.1)

are determined by the finite dimensional analogues of (1.1),

(Auy, &) = (f, ) = (4u, §,) forall ¢,e Sy, 2.7

Since we assume that the family S is dense in H* (which is a consequence of
(2.1)), since (1.1) is uniquely solvable and since A admits the properties (1.3)-
(1.5) (with s = a), the problems (2.7) are uniquely solvable for sufficently
small & (see [26]). Furthermore, the approximation property (2.6) of the spaces
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70 R. RANNACHER, W. L. WENDLAND

Skm implies that u, converges with optimal order and provides even super-
convergence in « negative » Sobolev norms (see [11], [12], [17])

o=l + | AG = ) [,y < ch®P [ ul, 2.8)

for2a —k < p<mand max{a,p} < g < k. Using in the usual manner
the inverse inequality for S;°™, the mean-square result (2.8) also gives a point-
wise error estimate of the form (see also [11])

h—

1
” U — U, "L"“ < ch 2 (” u “k + " u ”Wr,oo), (29)

n—1

2
In view of (2.6), this estimate is not of optimal order if u € W*=(T'). Under the
foregoing assumptions (A1)-(A3), we can improve (2.9) as follows :

where r = max<{ m, k —

THEOREM 1 : Suppose that?2 o.is an integer, — k < o < 0,andthatue L=(T).
Then there holds for the Galerkin solution u, € S;°™ the pointwise estimate

l ni2—1 .
lu— =< c(log E) inf |Ju— o, = (2.10)

dne Skom

Remarks : Theorem | and its proof remain valid without any modifications
for non integer real orders 2o < — 1. For — 1 < 2a < 0 Theorem 1 also
holds provided m > 1. For piecewise constant approximations in the latter
case one needs modifications of the approximation property (2.1) and of (2.8)
as well as of the proof of Lemma 3.4 which are omitted here.

We did not attempt to avoid the logarithm in (2.10) in order to keep the
proof as short and simple as possible.

In view of (2.6), we obtain from (2.10)

1 nf2—1
V=t lye < chk<1og z) Lt o @.11)

provided that u e W*>(T").
The global L®-result (2.10) can be refined to a local estimate of the form

1 nf2—-1 .
=)@ < ologj )it (14 b buearan + =01,
" 2.12)
where B? denotes some ball in R” of radius p = 0(1) as & — 0 with center in z.
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ORDER OF CONVERGENCE OF SOME BOUNDARY ELEMENTS 71

Note that for « < 0 Theorem 1 yields the L®-stability of the Galerkin
scheme (2.7) in the form

1 (n—2)y2 )
Il uy e < c(logz> lu - (2.13)

However, this estimate does not imply stability of the discrete equations (2.7)
with right hand sides (f; ¢,,) (see also [13]).

Optimal order L®-error estimates for the standard finite element method
applied to properly elliptic partial differential equations are known e.g. by
the work of Natterer [16], Nitsche [19], Scott [24], Frehse and Rannacher [7]
and Schatz and Wahlbin [23] for second order equations (o = 1) and from
Rannacher [21] for the bi-Laplacian (o« = 2). In proving (2.10) for the case
o < 0, we shall adapt techniques from [7] and [21]. Some technical compli-
cations will arise from the fact that in the present situation the governing
operator 4 is non-local and perhaps of negative order. However, localization
techniques still work since the principle part A, of 4 is assumed to be a pseudo-
differential operator on I' of the class OPS?% (see [28]). In particular, for any
C*-multiplier ¢, the commutator [p4, — A, ¢] becomes a pseudo-differential
operator of order 2 o — 1 (see [28]).

Having shown optimal order pointwise estimates for the error ¥ — u, one
is led to the question whether the error in the corresponding potentials,
Au — Au,, admits a corresponding improved bound. We shall analyze this

problem here only for the simple layer model operatorin (1. 1) with2 o = — 1,
Au(x) = j Yalx — ») u(y) do, (2.14)

r
where v,(z) = — log| z|,ifn = 2,and y,(z) = | z| ™, if n = 3, More general

cases can be treated analogously.

THEOREM 2 : Suppose that the operator A is of the form (2.14) with order
2o = — 1, and that u € L*(I"). Then there holds for the traces of the potentials
generated by the Galerkin solutions u, € SF™ the pointwise estimate

, 1
| Au — Au, IistchlogEHu—uh llpo- (2.15)
Using (2.11) in (2.15), we obtain the error estimate

1 n/2
| Au — Au, | o < ch"“(log 71) I u e cos (2.16)

provided that u e W=(I').

vol. 19, nv 1, 1985



72 R RANNACHER W L WENDLAND

3 PROOF OF THEOREM 1

For any fixed z € I we mtroduce the weight function
o(x) = (x — z|® + x2h?)12,

where the parameter k¥ > 1 1s chosen to be sufficiently large (depending on
¢, n condition (A1)) such that for any real § there holds

max { max cP(x)/mn oP(x) } <ec,
Kell; xeK xeK

where ¢ might depend on B (see [19])
Here and in the following, the generic constant ¢ 1s always independent
of 4 and z For iteger + and real B, we introduce the weighted norms

1/2
lol,s = < DD J c?(x) | D’ v(x) | do¥>
|Jl<r Relln Jg

Here D’ denote the covariant derivatives of order j on I' and can be replaced
by the j-powers of the gradient in the ( — 1)-dimensional parameter domains
of regular local parameter representations of I"

The local approximation and inverse properties of Sf™ mply for
re HMTYn H'(I',), mm { k,m —2a} <r <k, the corresponding pro-
perties with weighted norms,

lv=—pvlg<ch v, 0<y<r, G

and, for ¢, € Sf™,
[ o, g <&, llip, 0<s<i1<k-1, (32
| lip <cll duli-is (33

Next, let & be any smooth function on I, and let g be the solution of
A¥g=86 on T 349
Correspondingly, let g, € Sf™ be defined by

(01 A5 9) = (b, 45 g) forall ¢, e S;™ 33

Below, we shall take & to be a smooth approximmation of the Dirac functional
n order to represent the pointwise error (4 — u,) (z) in terms of a local mtegral

M2 AN Modelisation mathematique et Anaiyse numerique
Mathematical Modelling and Numerical Analysis



ORDER OF CONVERGENCE OF SOME BOUNDARY ELEMENTS 73

expression. Then, g, can be considered as a discrete Green function corres-
ponding to the operator AF on S}°™ (discrete pseudo-inverse to Ag).

For abbreviation, wesete = u — u, andn = g — g,. From the orthogonality
properties of e and m, we obtain

(,8) = (e, 45 g) = (e, AF' M) + (e, AF g,)
=W — ¢, AF M) — (& 4 g,) (3.6)

where ¢, € SF™ is arbitrary. For the first term on the right hand side there
holds

[ = bp AF M) | < lu = &y lpw | AF 0 Iz (3.7

The second term can be estimated using k > 1, the a priori estimate (1.5)
with s = 0, and the error estimate (2.8) for n :

'(e: Al* gh)| <e “24,—1 I A{k gn If]—za
Sclelpyy{lInle+lgle}
<

clelpy {AMgl+1glo}- (3.8)

Next, we estimate the crucial term || A& 1 [ ... By the definition of the weight
function o, we find with elementary computations

1 nf2-1
| A3 I < C(log z) I AE N o - (3.9

In order to estimate the term || A5 m [ o,,, we first provide the following three
lemmas. For1 < i< nleté, = x; — z,

LeMMA 3.1 : The commutator AF &, — &, Ay satisfies
148 & — €451 [, 2u<cllél,y, 1<i<n, (.10

for. be HH ' M) and o < r < k.

Proof : A} is a pseudodifferential operator of order 2 o with a symbol in
the class $7% (see [9], [28] and also the Appendix) and the principal symbol
| 8 |** Multiplication by the smooth function &; defines another pseudodiffe-
rential operator of order zero with the symbol x,(p) — z,, p e I'. Hence, the
commutator defines a pseudodifferential operator of order 2 a+0—1=2 a—1
(see [29], Corollary 4.2, p. 39). This implies (3.9) (see [29], Corollary 1.3,
p. 50). qe.d.
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74 R. RANNACHER, W. L. WENDLAND

LemMA 3.2 : There holds the estimate

&m ”k,O + |l 5,211 "k,—z <clg "k,Za I1<i<g<n. (3.10)

Proof : The definition of weighted norms implies with k > 1

c{lnlz+1Inl-10}
c{ln | PO S 11 T PRI S 1 I PP }

1&M Do
FEX M le,—2

Now we use (3.1), forj = k, k — 1, and (3.3) to find

NN

In —pem “k,z + [ pym “k,z,
lg —Pug iz +clpem ks
cllgls+eclinliio-

Il < |
|

<
<
<

It remains to estimate || n ||, _, o forj = 1,2. For m > k — j we use the inverse
assumption (3.2) and the error estimate (2. 8), to obtain

[n ”k—J,o <llg-—rpuyg “k_,,o + Il P “k_,,o,
Sk gl + W " I pym .,
Sch gl + k™ ™ I s

and hence

It Hk—,,o <chlgl,.

For k — j < m we use the error estimate (2.8) directly to obtain the above
estimate. This implies with the definition of o(x) and the weighted norms
the estimates

Inli-10 <chllglh<clgli,
Inleoz—a <ch M Inliczo <clgl:-

Collecting the above estimates gives (3.10). q.e.d.

LemMA 3.3 : For real o < B < m there holds
lenlg<ch Plegnl,+ch Pllgl, 1<i<n. @3.11)

Proof : In view of assumption (A.2), the L>-projektion L, : L*(T') — Sk
satisfies

v — Lh v Hy < ch* Y v |zk,o s
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ORDER OF CONVERGENCE OF SOME BOUNDARY ELEMENTS 75

for any ye R with — k <y < m and any ve H™(I') n HT,). Using this
and the inverse assumption (A . 3), we conclude that

[ &mlig< | L[g; ] H + " L,[g; n] ”B
< ch*” “uanuko+ch“ | L& n] |
Sch"ﬁllﬁnllko+ch°‘"||€n“

Hence, by Lemma 3.2,
1enllyg <chPlgl, +cPlgnl,. qed
We are now prepared to estimate || A5 n [l

LEMMA 3.4 : There holds the estimate

IAGN llo, < ch™ Y H&m Iy + k7211 g llz - (3.12)

i=1

Proof : First, we consider the case « = 0. Using Lemma 3.1 and the conti-
nuity of 4f, it follows that

I Agn 15, =@ 14512+ Y 1& 45 |1
i=1

Sc?Inl>+eclnlZy+c) &I
i=1

Now, the error estimate (2.8), with p = 0, — 1, and Lemma 3.3 yield

| AEnllo, < B gl +ch gl +c ) I&NI.
i=1

From this the assertion follows by observing that
lgl<ch™ 1 gll-
Next, we consider the case o < 0. Let the integer r = r(a) be defined by
r=seN, for —s<a<—-s+1.
Using (3.5), we obtain the estimate

| AFn li3, = (62 4 n, A n) = (6% 4§ m — plo? 4§ ), 45 n)
< 148" oy " o? AFn — ph[GZ Ag ] “0;—2~

vol. 19, n° 1, 1985



76 R. RANNACHER, W. L. WENDLAND

Observing that k > r and o A§ n e H'(I'), we apply the weighted norm
estimate (3.1) to obtain

| 45 n ”0,2 < oi || o® Agm ':,,-2
S {|Agnl,, + 1 A4fnl,-, +a}

wherea = || AFn [l,_, _y forr > 2,anda = 0, forr = 1.
For the first term on the right hand side we find in an analogous way as
above :

[ Agn 2, <ch® | Agni2+c Y | 458 — & 48 |2 +
=1
+c ; [ AZE M2 + el AEn )2,

n
< Ch2 ” n “3*-21 +C ” n ”34—21—1 +c z ‘l %zn |L3+2:z'
=1

Hence,
I 45m lo,, < ch’{h I lheze + 1M lhszams + 2 1EM lhs2e + b},
=1

where b = h™' {in |, 0,5 forr =2 and b = 0, forr = 1 The error estimate
Q8withp=r+2o0r+2a0—1,r+2a —20fr> 2), and Lemma 3.3
again lead to the estimate

1 AE M o, < B2 g I+ el [ gy + ™ X &M,

=1

q.e.d.

Remark : Note that in order to apply (2.8) we need the assumption
p =r + 2a < m which is always satisfied for integer 2 o < 0 and also for
real 2o < — 1 for any me N,. In case — 1 < 2 a < 0, however, we have
r=land0<p=1+2a=r+ 2a < 1 which requires m > 1.

LemMa 3.5 : For any & > 0 there holds

, s A _
h&ml, <eh HAS‘nHo,2+0<l+g>h" lgl., 1<i<n, (3.13)

where ¢ is independent of ¢.
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Proof : From the coerciveness of 4§ on H*(I') we obtain

18 12 < - Re(e, m, A5Te ).
Further, by using (3.5) and Lemma 3. 1, we find
G, 45En]) = Ein, 45 € — & A5 n) + (€2 — pylEF nl, 48 )
<clémloinle, +cl&n —plElnl oz | 48 los2 -
From (3.1) and Lemma 3.2, it follows that
| €2n — pe? nl llon < R IEX M s < 11 g iy -
Also, by the error estimate (2. 8),
I llaey S B2 gl < B 1 g iy -
Combining the foregoing estimates, we arrive at

Tl <cl&mlaA 1 gl + A1 A5 M oz I g iz »

which implies (3.13) q.e.d.
From Lemma 3.4 and 3.5 we obtain by choosing ¢ sufficiently small that

148 n lo, < ch g sz - (3.149
Combining this with (3.6)-(3.9) leads us to the preliminary result

n

51
|(e,8) | < c(log %) h?

_3
PR gy, inf fu— o, L0+
dneSkm
+e{hlgle+lglilely,. (3.15)
To bound the norms for g in (3.15), we provide the following.
LeMMA 3.6 : There hold the estimates
gl <cldl—p, 0<r<k, (3.16)
g, < C{ I8 lyggmy + RIS i+ D IES Iik—za}- (3.17)
i=1

Proof : (3.16) is an immediate consequence of the a priori estimate (1.10)
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for the operator AF. To prove(3.17), we write

Ig 2, SC{hz lgl + X 1&gl?+ Hgllf-l}-
=1

Then by the a priori estimate (1.10), it follows that

19 la < c{h 18 lege + 18 gy + 3 | 43150 4] llk-h}-
1=1
Using Lemma 3.1 we have

" AgEg] ”k—2a Scllgle-y +cl &0 —s-

Hence, in view of (3.16), we obtain

19 k. < C{h (R PP N PP D K Ilk_za}, q.e.d.
=1

Now we are prepared to prove the pointwise error estimate (2. 10). To this end,
we take the function 8 corresponding to the point z € K € I1, as a regularized
Dirac function.

LeMMA 3.7 : There exists a function § € C(K) with the following proper-
ties :

$,(2) = (¢, 8) forall ¢,e Sk, (3.18)
180, <c, (3.19)

WS, g < ch®*M27M2 0 0L r<k, (3.20)
BE 1 E, 8 llyope < ch®327W2 1 <igon. (3.21)

The constants ¢ are independent of .

Proof of Lemma 3.7 : For constructing the function 8 we use a Sobolev
representation formula as in the original proof of the embedding theorem;
for technical details see [5]. Let @ be a smooth mollifier on R” satisfymg o > 0,

o(x) =0for| x| = 1 and J o dx = 1. On T we define the smoothing kernel

o= ([ o) )

According to our assumption (A .1) there are balls B in R" with radius ¢, 4
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such that BN T < K. Then, for any ¢ € H(K) there holds the represen-
tation

¢(x) = P, (%) + R, ¢(x), xeK,

where

P d(x) = j () x(x, ) do, ,
K

1 = ¥ S Di0,00 6 - »,

lal <k

la]

R, o(x) =k Zkf D* ¢(y) k,(x, y) do, ,
K

1

ku(x7 ,V) = %(X - J’)uj

0

sl m( + - (y—x))ds

with o a multiindex.

Clearly, if ¢ is a polynomial of degree less than k, we have ¢ = P, ¢ on K.
In the case that S}™ consists of functions being piecewise polynomials of
degree less than k — 1, we may take (for fixed x € K)

8(y) =xxy), yek,

to obtain (3.18). The bounds (3.19) and (3.20) then follow readily from the
pointwise bound

| D*w,,| < ch' "1l

In the case of isoparametric elements the functions ¢, € S5™ may be piecewise
polynomials of degree less than k only modulo local coordinate transforma-
tions, ie., ¢, | A is a polynom1a1 with some regular transformation
onto a reference element K, A, : K » K. We now construct first a function
X € C°°(K) as above and then obtain the desired function y € C£(K) by using
the local transformation A,. Since A, is assumed to be sufficiently smooth,
the bounds (3. 18)-(3.20) remain valid. q.e.d.
In view of Lemma 3.7 we find, with any ¢, € S,

le(2) | < | — )@ | + | (&) — u) @ |
<|w—-9)@ |+ |(dy — , 9 |
<|@—0)@ |+ |8 | + Il — &y ooy I8 1l -
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Consequently,

le(@) | <c mf Ju— ¢, =+ |(ed)] (3 22)

dneSk™

Combining the estimates m Lemma 3 6 and 3 7 with (3 15), we conclude 1n a
straightforward way

-1 n

% o
|(e,8) ] < c(log %) nf [ u— ¢y (et ch” 2

dneSk ™

1
t2

e 25— 1 (3 23)

Inserting this estimate into (3 22), we eventually obtamn the desired point-
wise error estimate (2 10) by applying the following lemma with f = 2 o0 — 1

LemMMa 3 8 Forany real B, with2 o — k < B < o, there holds

lellg<ch™® mf fJu—¢,l (3 29

d)hES," m

Proof We employ a standard duality argument For any s € H ~¥T") let
ve H** B() be the solution of 4* v = | With the Galerkin approximation
v, € SF™ of v and an arbitrary ¢, € S}™, there holds

(e, V) = (de, v) = (de,v — v)) = (A[u — ), v — v,)
Sclu—4ull Tv— v,

Hence, the error estimate (2 8), with p = 2a and g = 2 a — B, and the
aprioriestimate (1 10), withs = 2 o — B, imply

W <ch™ PVl glu—o,l,
which clearly proves (3 24) qed

4 PROOF OF THEOREM 2

Let us introduce the operator

4,4(2) = J Yi(z — y) &(y) do,,,

r

where

alx) = j ®,(x — ») 1,(¥) do,
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LeMMA 4.1 : There holds the estimate

1
1AS — Ay ¢ Lo < chlog 1w 4.1

Proof : We give the argument only for » = 3, the minor modifications for
n = 2 being left to the reader. There holds

| dp(z) — 4, ¢(2) | =

f {1z = ») = 7z ~ ») } (1) do,

<o IIWJ | v,z — ») — vz — y) | do, .
.

The integral on the right hand side equals

|

doy

Yu(z = ¥) — J 0,z — y — x) v,(x) do,

= J f o,z — ¥y — %) | v,z = y) — 1.(x) | do, do,
rJr

=Jj oz — X) | v,(z = ¥) = v.(x — ») | do, do,,
rJr

where the coordinate transformation x' = x + y is used. The last integral can
be estimated by (see [15], p. 83)

ch*~" j‘ [x — 2] doy] do,
xaj<n Lde 2 =y X =yl

< ch*™" do, ]dox
JxezpenLde 12 =¥ 11X =yl

.
ch?=" (I + [log|x ~ y|]) do,

JIx—z|<h

N

rh
<ch* ™| 21 + |logr|)dr
JO

N

chlog ;11- .
g.e.d.
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Hence, with e = u — u, there holds forany ze T,

A, e(z) = (e, Yz — .)). 4.2)
Now take § = y"(z — .) as the right hand side in (3.4). To complete the argu-
ment, we need the following lemma (observe here o = — 1/2) :

LEMMA 4.2 : There hold the estimates

1_
2

RS, <ch? 2, 0<r<k, “.3)

3_
2

W1ES .y <ch? %, 1<i<n. 4.4)

[(SIE]

Proof : By construction, the regularized kernels y" satisfy

| DEyiz — )| < co()* "1, Ja| =1,

where again () = (| z — y |*> + (xh?))*/%. Observing that

Jv o—r de < chn—l-r’ r > n,
r

the bounds (4.3) and (4.4) follow by a straightforward calculation. q.e.d.
Next, we combine the estimates of Lemma 4.2 and 3.7 with (3.15) to obtain
-1

2 1
[(e 8) | < c(log %) h oinf Ju— &, Lo+ ch?

dneSkm

Flel,. @.5)

This together with (4.2) and Lemma 4. 1 implies that
| Ae(z) | < | de(z) — A, e(2) | + | (e d) |
< ch log;—l el =+ ch? " jel_,

1 nj2—1
+c(1ogz) hoinf [ u— by e

PneSkom

Combining this with the error estimates (2.10) and (3.24) for e, we obtain
the desired result (2.15) for Ae.
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APPENDIX

Lemma A1 (see also [1]) : Let T be sufficiently smooth (for simplicity C*).
Then the single layer operator in(1.1),

Vu(x) = J Ya(x — ) u(y) do,
r

is a pseudodifferential operator of order — 1 on T having the principal symbol
=1
R

and surface polar coordinates for n = 3.

(n = 2 or 3) with respect to the natural representation of I forn = 2

Proof : (i) Forrn = 2, T is a curve which can be given by a regular parameter
representation x = x(s) being a C® L-periodic R2-valued function of the arc
length. Let () be a Ci°-function which is identically one in a fixed neigh-
bourhood of zero. We then write

(V) (x(1)) = — JX(I s —t|)log|t — | u(x(s) ds —

S{x(ls ~ 1) log

x log | x(1) — x(s) | } u(x(s)) ds

MO Z XDy (1= s — 1)

- L j e a(E) alt, ) & + Su A1)

where Su = j{ ... } u(x(s)) ds is an operator with C®-kernel and, hence, of

order — oo and where

ah®) = — j ¢80 (1t — s|)log| ¢ — s |ds
R

—f e (| o ) log| | do = a(t) A.2)

]
As is well known, a(&) is an analytic function of & and admits an asymptotic
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expansion for large &, i.e.,

«® =~ 3 | () o}

+ o0
j e‘ﬁ"%c’log|6]dc5+
0 J:

— o0

o=

+ o0
+ f Ry(x; o) e* log| o | do

=g+ ONIEITY) for g1 1 (A.3)
and any natural N. By differentiation of (A . 3) with respect to & we find
l too
(%) a®) = (= D'nl e E I + f (io) Ry(x; 0) €%° log | o | do

(A.49)

where the last term 1s of order | £ |"¥ 27! for | £ | > 1. Hence, a(€) is an ampli-
tude in S| 5 and the first term in (A.1) defines a standard pseudo-differential
operator (see [29] Definition 2.3, p. 16). Since (Vu) (x(¢)) is C* whenever
¢ ¢ supp u(x(.)), our Lemma A.1 is proved (see [29] Proposition 5.1, p. 49).

(ii) For n = 3 we represent I' locally about x by surface polar coordinates
p=|x—)|and ¢ asn [14], Chap. 2.1.5. We may then write Vu in the form

W@@:j j ) @mwmm@+ja—mx—w)
p=0 $=0

xﬂdo

EESTR

The second term in (A.5) has a C®-kernel and, hence, defines a pseudodiffe-
rential operator of order — oo. The first term can be written as

UD) yo = L [y
| MLO 10 Do, = s [ ) a0

where x = x(t;, t,), t; =rcosy, ¢, = rsiny and

© 20
a(t, &) = j Jv e—z(&.pc05¢+§2psm¢).x(p) X
=0 Jo=0
X { 1+ %(2 b, (x(2)) €' &) — bi(x())) by, €* e" p*
+ higher order terms of p } dpdd (A.6)
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with e' = cos ¢, > =sin ¢, b(x(r)), respectively bj(x(2)) = ¢"(x(1)) x
b;(x(1)) the components of the second fundamental tensor of ' with respect
to the coordinates ¢,, ¢, associated to the observation point x(z).

Here the amplitude a(t, &) is again analytic with respect to & and C® with
respect to ¢. Taylor’s expansion with respect to p about 0 shows an asymptotic
expansion of the form

a(t, &) = % +ALE) + (A.7)

where A4,(t, &) is C* with respect to ¢ and is a positive homogeneous function
of degree — k of &. It follows explicitly that a(.) is an amplitude in S| §” defining
a standard pseudodifferential operator. By definition, Vu is C* whenever
x ¢ supp u. Thus, our lemma is valid alsoincasen = 3. gq.e.d.

LemMMA A .2 : The operator V satisfies Garding's inequality
Vv,v) 2y, v “2—1/2 -Vivv) (A.8)

where v, > 0 and V | is a pseudodifferential operator of order — 2. (For n = 2
see also [11] and for n = 3 [18].)

Proof : To the principal symbol of V there exists a symbol o, in S;'§ such
that 6, € C* and

co&) =(nn — 1)~ '] for |E]=1

and 64(§) = «x > 0 for all & To o, there exists a pseudodifferential operator
W , having this symbol and satisfying Garding’s inequality (see [8])

Wow,w) = ¢y lwli, — ¢ Iwls, ¢ >0.

Then V! := W, + ¢, Iis strongly coercive and, hence invertible. ¥V, has the
symbol

(0o&) + ¢) !
n(n—1) <_ n(n—1) ¢,
b

with the asymptotic expansion

B2 T

=0

j
> for large enough
| €. Withw = V, v we then find

Vov,0) = W Vol w) = co w2 = Yo I Vo w2 = Yol v 112y

The difference ¥V, = V — ¥V, then has a symbol in the class S; 5 and is a
pseudodifferential operator of order — 2. q.e.d.
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