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AN UP-WIND FINITE ELEMENT METHOD
FOR A FILTRATION PROBLEM (*)

by P. PietrA (})

Communiqué par F Brezzi

Résumé — « Une méthode d’élements finis decentrée pour un probleme de filtration » On considére
un schema d’élements fims décentré applique a un probléme de frontiére hibre hié a I’ecoulement a
travers une digue , on démontre Pexistence d’une solution discréte et des résultats de convergence
En ce qui concerne la variété des problémes résolubles, cette formulation est moins générale qu'un
précédent schémade Alt Par contre, on obtient plus de généralité sur le choix de la triangulation, ce qui
permet "utibsation de techniques de décomposition automatique du domaine

Abstract — We prove existence of a discrete solution and convergence results for an up-wind
finute element scheme applied to a free boundary problems in porous media. Application wise, the
present study 1s less general than a previous scheme by Alt On the other hand, we allow more generality
on the triangulation, so that automatic decomposition techniques may be used

INTRODUCTION

It is well known (see e.g. [9]) that the study of the flow of an incompressible
fluid through a porous medium leads to free boundary problems for elliptic
equations. These problems were initially studied with heuristic methods,
applying a fixed point procedure for a sequence of problems, each of which
solved on a different fixed domain (see e.g. [14], [17]). A great improvement to the
theory was introduced by Baiocchi (see e.g. [4]), who formulated the problem,
in the special case of a rectangular domain, on a rigorous mathematical basis,
transforming it into a variational inequality of obstacle type. This idea was then
generalized (see e.g. (8], [5]) for the treatment of more general domains. Accord-
ing to necessary, the free boundary problem was transformed into a variational
inequality depending on one or more additional parameters or into a quasi
variational inequality. These formulations, if applicable, are very good and give

(*) Recerved n december 1981
(1) Istituto di1 Analist Numerica del C N R corso Carlo Alberto 5, 27100 Pavia, Itale.
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464 P PIETRA

rise to efficient numerical algorithms However their application requires some
restriction on the geometry of the domain Also, different geometry and boun-
dary conditions may lead to different formulations

Later on new formulations were given by Brezis-Kinderleherer-Stam-
pacchia [10] and Alt [1] This new framework 1s somehow more complicated,
the solution 1s less regular, but allows a more general treatment, 1n particular
with respect to the geometry of the domain The more general formulation by
Alt [1] was also treated from the numerical pomnt of view In [2], Alt proves,
under suitable assumptions on the discretization, the existence of a discrete
solution and the strong convergence of a subsequence of them to a solution of
the continuous problem The abstract framework consists of conforming finite
element methods and no “ approximation” 1s done for the differential
operators This fact somehow restricts the choice of the “ available ” types
of triangulation and all the given examples (see [2]) require decompositions of
uniform type Hence we are back to some kind of finite differences framework
and the treatment of the fixed boundaries requires some adjustment, even
1n the case of a rectangular domain

In this paper we deal with Brezis-Kinderleherer-Stampacchia’s formulation,
which 1s similar to but slightly more restrictive than Alt’s one (e g, capillarity
effects are neglected) We remain, essentially, within the framework of confor-
ming finite elements, but we introduce some up-wind techmques mto the
discretization In order to justify this idea, we note that the pressure u verifies
an equation of type

—Au—D,Hw)=0 m Q, 0)

where H(x) 1s the Heaviside function, so that H(u) 1s the characteristic function
oftheset {u > 0}

Equation (0) can be interpreted as a diffusion-convection problem, where the
coefficient of the convection term may be infinite It 1s well known that usual
finite element methods are not suitable for this kind of problems In fact, these
methods are unstable, when the ratio between the diffusion coefficient and the
convection coefficient 1s « too small » Therefore some special « up-wind treat-
ment of the convection term (essentially, of the D, operator) has to be used
n order to recover stability Many of these up-wind techniques are known 1n
the literature for finite element methods (see e g [18] and the references therein
contained) Here we choose a scheme introduced by Tabata [19]

With respect to Alt’s scheme, our approximation has the disadvantages that
the formulation (as previous stated) 1s more restrictive Moreover only a weak
convergence can be proved On the other hand, many arguments are much
simpler (also because the problem 1s not considered in an abstract setting)
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AN UP-WIND METHOD FOR A FILTRATION PROBLEM 465

Nevertheless the treatments are similar enough, so that many crucial Alt’s
arguments may be used. The present formulation allows much more general
decompositions, so that we are truly in the framework of finite element methods,
and therefore the fixed boundary is “ followed ” much more neatly. For instance
each polygon can be treated without approximation of the domain and auto-
matic decomposition routines can be used. Hence the formulation is more
suitable for entering a finite element code.

What follows is an outline of the paper : in paragraphs 1 and 2 we state
respectively the continuous and the approximate problem; in paragraph 3
we prove the existence of a discrete solution and in paragraph 4 we prove that
a subsequence of discrete solutions converges to a solution of the continuous
problem ; paragraph 5 reports some numerical results arld finally paragraph 6
contains some concluding remarks.

In this paper we will use the classical Sobolev spaces with the following

notations :
1/2
0o = (j Bk dx)
o lal=k
. 1/2
I v ”k,g = ( | 0% |? dx) .
O lal <k

1. THE CONTINUOUS PROBLEM

Let Q be the section of a porous medium. For simplicity’s sake, it is assumed
to be a polygon. We rerark that with similar arguments it is possible to consider
problems where Q is a bounded, connected open set of R?, with a Lipschitz
boundary Q.

We denote by S* the part of the boundary in contact with the reservoirs,
and by S° the part in contact with the air. The third part, 0Q\(S* U §9),
is the impervious part of the dam. Moreover S° and S™* are measurable and
disjoint sets, and the measure of S * is positive. The medium is assumed to be
inhomogeneous and anisotropic. The permeability is given by a symmetric
tensor K, such that

Ke(CH@) . &K, g >alt() VeeR? (1.1)

where C? Y(Q) is the space of the Lipschitz continuous functions.
Let ¢ = (0. 1) be the vertical unit vector.

(*) The convention of summation of repeated indices 1s assumed, and | | denotes here the
euclidean norm.
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466 P PIETRA

We suppose that the atmospheric pressure 1s zero, and we neglect the
capillarity and evaporation effects.

The function u, € C°(S° U S*) denotes the boundary value of the pressure,
1€ u, 1s the hydrostatic pressure on S * (4, > 0 on S *), and 1t 1s zero on S°
We consider the following continuous problem :

Problem 1 : Find a pair (u,y)e H(Q) x L®(Q) such that
u>0aemQu=u,onS* uS°

O0<y<laemQ,y=1laeon{u>0}

[VuK(VzH-yg)dx}O YWwweW={weH'|w=0onS*,w <0onS°}.
\Jn

12

For a theoretical study of problem (1 2) we refer to the works by Brézis-Kinder-
leherer-Stampacchia [10] (existence results); Alt [1] (existence and regularity
results for a more general problem that, for a suitable choice of test functions,
reduces to problem 1), Alt-Gilard: [3] and Chipot [12] (uniqueness results,
and characterizations of non-uniqueness situations)

In case of more restrictive assumptions on the geometry of the domain Q,
other formulations of the problem are known : see, for mstance, Baiocchi [4]
(transformation of the problem in a variational inequality), Baiocch: [5]
(transformation 1n a quasi-variational mequality) and Baiocchi-Capelo [6]
(for complete references about these probiems). These formuiations are the
starting point for a numerical study of the problem, see for instance [7] and [6]
(for the further references)

2. THE DISCRETE PROBLEM

Let { G, }, be a family of triangulations of Q, depending on a parameter
h > 0. For each triangulation 6, = { T, }=, and for each T, € G,, we set the
following notations :

h(T,) = the diameter of T, ,
p(T,) = the supremum of the diameters of the balls contammed n T, ,
h=max{hT)|T,€B,}

We suppose that the triangulation G, is regular and of (weakly) acute type,
1e. there exists a constant o < 1, independent of the triangulation, such that

WT) < op(T), VT,€T,, 21

R AIR O Analyse numerique/Numerical Analysis



AN UP-WIND METHOD FOR A FILTRATION PROBLEM 467
and every angle 6 of the triangles of G, verifies
0 < n/2. (2.2)

Let { P, },.5, be the set of the nodal points of the triangulation and let us
consider some subsets of the index set N, :

N} ={ieN,|P,eS*}; N2 ={ieN,|P,eS°};
N, = N,\\N,; N, = {ie N, | P, ¢ 0Qor K(P,) e applied at P, intersects Q } .
We also introduce a dual decomposition of the domain Q :

Q="U D, (2.3)

1eNp

where D, is the barycentric domain associated with P,, i.e.

D =U{Df T, eG,stPisavertexof T, }, (2.4)
k
where
D= N {x|xeT,Mx)<Ax)]},

J=1,2
and A, Al, \? are the barycentric coordinates with respect to the vertices of
Tw P, PL, P2 (see fig. 1).

P
Figure 1.
Moreover let Q, be defined as :
0
Qh = u DI N
teNy
We choose
Vi ={0,eC°Q),v,, €P,, VT,€%,}, (2.5)

where P; denotes the space of polynomials of degree < 1; we call ¢}, the basis
function of ¥, associated with the nodal point P, ie. such that ¢}(P ) =3,

vol 16, n° 4, 1982



468 P. PIETRA

Let ¢, be the characteristic function of the domain D,, and let ¥, be the linear
space spanned by x., i € N, ; Le.

"

Py = { Ve L2(Q) | Yy(x) = ZI; Wi xa(x) } - (2.6
Finally, we introduce the up-wind triangle associated with the nodal point
P, (see [19]).
A triangle %, € G, is called the up-wind triangle of the nodal pomnt P, if :
(i) P,is a vertex of %,

(11) %,\ P, ntersects the oriented half-line with end point P, and direction
K(P,) e(see fig. 2 for K = kI).

‘ e direction

_— -
Figure 2.

We remark that all the nodal points P, with i € N, have an up-wind element.
If there exist two up-wind elements at the note P,, we call %, one of them aibi-
trarily chosen.

We now define a linear operator E, from ¥V, into ¥, in the following way :

E,w, = Y (E, w,) %,,foreachw,eV,, 2.7)
tENR
where
Eh; Wh = K(Pl,) E(VWM%,) b (28)

ie. E, w, is a function of ¥, such that E, w,(P,) is the value of the derivative in
the K(P,) e direction of the function w, on the triangle %,. We remark that this
derivative 1s a constant in %, and, if there are two up-wind elements, E, w,is
independent of the choice of %, since w, € V.

We denote by uf the value of u, at P,

R ATR O Analyse numérique/Numerical Analysis



AN UP-WIND METHOD FOR A FILTRATION PROBLEM 469
The following discretized problem can now be introduced :
Problem 2 : Find a pair (u,,v,) € V, x ¥, such that
() u,>0inQandu, = uyifie NJS\NL )
(i) 0<y,<1inQandy, = 1lifu, >0 (2.9)
(i11) a,(uy, vy) + (Ey vp ¥4y = O

Vo,e W, = {w,eV,|w,=0ifieN,",w, <0ifieN?},

where ( . , . ), denotes the scalar product in L*(Q,) and
a,(u,, v,) = J Vu, K, Vv, dx ,
Q

with K, constant on each triangle, defined by K,(x) = K(by) Vx € T, where
by is the barycentre.

3. EXISTENCE RESULTS

In order to prove the existence of a solution of the discrete problem (2.9), a
different form is adapted.
Defining a,, and ¢, as follows

au = ah(d);v d)fI) la] € Nh (3 1)
(B i jeN, 6.2)
. 0 if jeN,\W, '

we can verify that the mequality (2.9) is equivalent to

{=Oiﬁem\w;uNm

<0 ifieNy 3-3)

gm%+%m
J h

u, =uy and v, =1 ifieN,'.

A theorem, the proof of which can be found in Alt [2] (theorem 2.4), is stated
hereafter.
THEORFM 3 | : Let a,, and e, be defined as in (3.1) and (3.2). If
a,>05 a,<0 i j#i (3.4)

=05 e, <0 o j#i, (3.5

e y

then there exists a pair (u,, v,) € V,, x W, solution of problem (2.9).

vol 16, n° 4, 1982



470 P. PIETRA

Hence it is sufficient to show that the hypotheses (3.4) and (3. 5) are verified
in our case.

LEMMA 3.1 : Let a,, and e, be defined by (3.1) and (3.2).
Let ¢4(K) be defined by

cos d) = —2____
T 2er+ I
where ), = || K(br)™' || | K(br) |-
If G, is such that for each triangle T € G, and for each angle © in T we have
0 <n2— ¢r, (3.6)
then the following inequalities hold :
@ a,>0;5a,<0 if j#i
(i) ¢, > 05e, <0 if j#u

0<d<mn2,

Proof : In the isotropic case (A = 1), it is well known (see e.g. [13]) that the
assumptions on the decomposition (2.1), (2.2), and the property (1.1) on K
imply (i). By analogous arguments we can show that (3.6) implies (i). We
remark that it is possible to consider problems with weak anisotropy. In
particular 6 is equal to w/3 if A = 3.

The proof of (ii) is contained in Tabata [19] (lemma 3), but we recall it for
reader’s convenience.

Let P, P, , P be the vertices of % and A, A, , A, its barycentric coordinates.

We remark that

e = {(x;v le) K(PJ)EVAQ lf 15{1,11:12}
Y 0 otherwise .

Let p, be the vector P P .k = 1,2.

A short calculation shows that
VA, D =0, for Lk=12 3.7
VA, po=—1 for k=1,2. (3.8)

By the definition of up-wind triangle, it follows that there exist non-negative
numbers ¢, k = 1, 2, such that

K(P)e= —¢|p,—¢hp;. (3.9)
From (3.7),(3.8) and (3.9), (ii) can be obtained.

R AIR O Analyse numérique/Numerical Analysis
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Remark 3 1 We note explicitly that 1n the 1sotropic case (K = kI) one has
¢r = 0 and condition (3 6) reduces to (2 2)

Remark 3 2 For the actual computation of a solution (u,, v;) of a problem
of this type, we refer to [2]

4 CONVERGENCE RESULTS

In this section 1t will be proved that 1t 1s possible to extract a subsequence that
converges to a solution of the continuous problem, from each family of discrete
solutions More precisely we will prove the following result

THEOREM 4 1 For each family { (u,,,) }, of solutions of problem (2 9),
there exists a subsequence { (u,,, v, ) }i- o, and there exists a pair

(u,y)e H'(Q) x L*(Q)
such that

u, — u weakly in H'(Q)
Vi A v weakly star in L*(Q)

The pair (u, v) 1s a solution of problem (1 2)
If (u, y) 1s the umique solution of problem (1 2), the whole sequence { (uy, v,) }»
converges to (u, v)

In order to prove theorem 4 1, some lemmas are needed
We define for each ve H*(Q)

Eo= Y x;,<]f (K(P) ¢ V) dx>, @
U,

1€ Np
where

1
ﬁfdx =m7fodx

We remark that if v € V,, the defimtion (4 1) coincides with the previous
defimition (2 7)

LemMA 4 1 There exists a constant c independent of h, such that
I(Eh”’n)hlSCHUHH‘AHT'IHOQ, 4 2)
for each v e H'(Q) and for each 1 € L*(Q)

Proof From Holder’s inequality 1t follows that

|(Eh v, My | < c|E,v ||on,. Inloa
vol 16, n° 4, 1982



472 P. PIETRA

Moreover
2
I Eyol3g, - f 5 (j K ewas) | =
Q| 1e N, .
e |2
=y j; K(P) e Vv dx
1eNp u, 0,D,
On the other hand
2 m(D,)
K(P,) e Vv dx <S—=|KP)eVv|§a <clVol}
because of the previous assumption of regular triangulation.
Therefore we have
| E,v “%,n,. <clo “f,ﬂ s
and (4.2) is proved.
LeMMA 4.2 : For each v e H*(Q), for each i € L*(Q)
| (E,v,n), — (Ev,m)| = 0 for h vamshing , 4.3)

where (Ev, M) = f (Ke Vv) n dx.
Joa
Proof -

'(Eh v, M), — (Ev, M) | < |(Eh v, M), — (Ev, M), | +

f Ke Von dx
o\,

The second term goes to zero since
mQ\Q,) >0 when h—-0.

In order to prove that also the first term vanishes, a first step is to show that
for each w e C®(Q) and for each n € L%(Q)
I (Eh w, T\)h - (EW, T])h ‘ < ch (44)
holds.
We have
| (E, w,m), — (Ew, M), | < | (E,w,m), — (I w, M), | +
+ I I, w,m), — (Ew,m),

R AIR O Analyse numénique/Numerical Analysis
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AN UP-WIND METHOD FOR A FILTRATION PROBLEM 473

where

Liw= 3 (I,w)x,, with I, w=K(P)eVw.

1€ Ny,

By Holder’s inequality and by assumption (1. 1) on K, we obtain

I(Eh w, M), — (Ew, m), | < | E,w-—1I,w ”0,9,‘ In ||o,Q,. +
+ch|wliq, M loa,

Moreover

I Ew—-1Iw "(2),9,, = Z Il E;., w — Ih, w “(2),1;. .
teNp

Now the problem is to obtain an uniform estimate of | E, w — I, w I3 ,,.
w e C*(Q), then there exists a pont &, € %, such that

K(P) e Vw(,) = J( K(P,) e Vw dx.

From this remark and recalling in particular that Vw is a Lipschitz continuous
function, we obtain

K(P,)) e Vw(E,) — K(P,) e Vw(x) |?
||E,.,w—1,,,w||%,,l,.=fI (P)eVwE) — KP)e VW) [* oy o

U, I F:l - X |2
< ch*m(D) .
Therefore

|(Eh w, M), — (I, w,m), | < ch

holds, and (4.4) follows.

In order to complete the proof, we recall that C*(Q) = H *(Q) with density ;
so for each v € H'(Q), there exists a sequence { w, } of functions w, e C*(Q)
such that w, » w strongly in H'(Q). Then by (4.2) and (4.4), applied to
w, € C*(Q), (4.3) easily follows.

LeMMA 4.3 : If the triangulation G, verifies (2.1),(2.2), and a
asin(3.1) and (3.2), then the following properties hold :

. €, are defined

(i) there exists a constant B, > 0, such that
e, < B, ha, for each i e N,, B, independent of G,
(i) if Py and P are nodal points such that there exists a constant B, with

o < — By ay,,
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then
w, < B(uj + h),

where B = max (B,, B, B,).

Proof : Property (i) easily follows by assumptions (3.1) and (3.2).
Since v} < 1, from the inequality (3. 3)

k J
Qg Uy, + ey = — a U},

follows, hence

By assumptions

G < — By,

moreover

e < By hay, |
then

), < Buy + h),
where B = max (8,, B, B,).

LEMMA 4.4 : Let 1 € N, be an index such that vy, < 1.
Then there exists a constant C, independent of the triangulation G,, such that

u, < Ch on D, 4.6)
holds.
Proof : Let J, be the set of indices j such that the node P, is adjacent to P,.
We have to show that
u, < Ch 4.7)
for each j e J,.
The condition v}, < 1 together with (2.9) (ii) implies
u, = 0; (4.8)
hence (4.7) holds trivially for j = i.

The proof of (4.7) will be carried out using (4.8) and lemma 4.3(ii). The
difficulty is that (4. 5) is not verified for each j € J;; with B, independent of G,.

R ATR O Analyse numerique/Numerical Analysis
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We now consider a triangle T that contains P,. We denote by P, P, P
the vertices of T and introduce the 3 x 3 matrix
al = j VA, K, VA, dx r,s=1,3
T

where X, is the barycentric coordinate with A,(P, ) = 3y,
It is necessary to show that there exists a constant §, > 0, independent of T
and G, such that

sup al, < — B, al,
" 4.9)
for at least two off diagonal elements a_, .
3
Since Y A, = 1, we get
r=1
3
2 al=0, s=13. 4.10)
r=1
On the other hand, with our assumptions we have
al >0 and af <0 r# s (see lemma 3.1(i)). 4.11)
Moreover the triangulation is regular, hence
¢, <aljal <c, r,s=1,3. 4.12)

Then (4.10) together with (4.11) and (4. 12) implies (4.9).
Now it is easy to see, using (4.9) and the fact that the decomposition is

regular, that there exists a constant B,, independent of h, such that for any
node P, and any j € J,/, at least one of the following two properties holds :

@) a,< —=Byaq, } (4.13)

(b) Fkel.sta, < — Ez a, and g, < — Ez a, -

We can now conclude the proof. Let P, again be such that y, < 1 (and
hence u}, = 0) and let j e J;. If (4.13) (a) holds, then #, < C(u, + h) thanks
to lemma 4.3(ii). If (4. 13) (b) holds, then ¥¥ < C(u}, + h) and v}, < C(uf + h)
using twice 4.3(ii). Hence (4.7) is proved.

vol 16, n© 4, 1982
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Proof of theorem 4.1 : By lemma 4.1 and the fact that 0 < v} < 1 for each i,
we obtain
“ Yh ”Loo(ﬁ) < 1

Ty lly 0 < C,

where C is independent of h.
Then there exist ye L®(Q), ue H'(Q) and there exist a subsequence of
{ v, } and aisubsequence of { u, }, that is still denoted by { (1, v,) }, such that

Yn Xy weakly star in L®(Q) 4.14)

u, ~u weakly in H'(Q). (4.15)

Moreover 0 <y <1 and u > 0 almost everywhere, and u = u, on
s°uSs*.

Now it is necessary to prove that this pair (u, y) is a solution of problem

(1.2). It is well known (see [16]) that for each v € W it is possible to choose a
sequence of v, € W, such that

v, — v strongly in H(Q). (4.16)
Letting h — 0 in the inequality (2.9) (iii), by (4.14), (4.15), (4.16) and

lemma 4.2. we obtain

J\ VoK(Vu + ye)dx < 0 Yoe W. 4.17)
Q

In order to conclude that the pair (4, y) is a solution of problem (1.2), we
have to show that there exists a set N = Q of measure zero, such that

{y<1]\WN < {u=0}\WN. (4.18)

The property (4.18) is proved in [2] (theorem 3.4), but for completeness
we shall give the proof below.

Let ¢ > 0 and x be a point such that the set { y < 1 — €} has density 1
at x, i.e.

]( {y<1-e})=>1-0Ar), withi(r) > Owhenr -0,
Br(x)

where B,(x) denotes the ball of radius r and centre x, and y the characteristic
function.

R A TR O Analyse numérique/Numerical Analysis
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The property (4.18) is proved when we show that the set { u = 0} has
lower density positive at x.
Since y < 1,

j: “{él—.~3+J~ {y>1—-e})<1—e+AMr)<1-—-3/4¢
Br(x) B.(x)

holds, for r small enough.
Asy, — y weakly in L1(Q), for fixed r and h small enough, we have

][ w<1—¢/2,
Br(x)

and
f ﬂwﬁdn=1—} ﬂw“n»>1~f Vo> e2. (4.19)
Br(x) By(x) B,(x)

Therefore, there exists i € N, such that

v, <1 and D, N B,(x)# . (4.20)

By lemma 4.4
u, < Ch in D, 4.21)

holds.
Since (4.21) is true for each i € N, with property (4.20), we conclude that

(i< 1}nB(x) = {u, < Ch};

and, by (4.19), that
sn<f x«n<1n<{ x({w, < Ch}).
B,(x) B,(x)

For & > Owithh < §/C, we introduce the function
¢, = max (min 2 — /5, 1),0) .

Hence
& = x({u, < Ch}),

g2 < jf: & -
Br(x)

and

vol 16, n° 4, 1982
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Since u, — u strongly in L*(Q)

&, —)JC max (min 2 — u/8, 1), 0) QJ[ v({u<28}).
B(x) By(x)

B,(x)

For Beppo Levi’s theorem, letting # — 0 we obtain
J[ x{u=0})>e2
By(x)

for r small enough, i.e. the lower density of the set { u = 0 } at point x is positive.
In this way, property (4. 18) is proved.

5. NUMERICAL RESULTS

In order to obtain information on the accuracy of the proposed method,
we tested the discrete scheme in a simple case and we compared the obtained
results with the “ exact solution ”.

The dam was supposed to be rectangular, the medium homogeneous and
isotropic. We choose as “ exact solution ” the solution of the same problem
computed via Baiocchi’s transform (see [4]) with a mesh size h = 1/60. The
transformation leads to the resolution of a variational inequality in the new
unknown w, with — w = u. If the space H'(Q) is approximated by piecewise

estimate

lw—w,lljo<ch

holds. Hence the choice of — w, , as “exact solution” is reasonable. We
computed the relative error in L? and H ! norm :

Err) = L= ey

[ Wiy ”i,n
The obtained results are as follows :

h = 1/10 ERR,(h) = 00019 ERR,(h) = 0.071
h = 1/15 ERRy(h) = 00012 ERR,(h) = 0.053
h = 1/20 ERR,(h) = 00009 ERR,(h) = 0.047 .

Via least squares, we computed the convergence rate in both cases, i.e. the
numbers o; such that

ERR,h) < ch* i=0,1
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and we obtained
a, = 1.08 o, = 059.

In figure 3 we reported the free boundary of the “ éxact solution ” and
the characteristic functions of the set { u, > 0} (*) for h = 1/10, h = 1/15,
h = 1/20.

The numerical computations were carried out on the Honeywell 6040
system of the Centro di Calcoli Numerici of the University of Pavia.

6. CONCLUDING REMARKS

We summarize here, for simplicity’s sake, the results obtained in the case of
isotropic homogeneous materials (i.e. K = I) for the problem (1.2). If : a) the
triangulation is of weakly acute type (see condition (2.2)) ; b) u,, is assumed to be
piecewise linear; c) y, piecewise constant on the dual decomposition (2.3),
and d) the up-wind scheme (2.7) is chosen for the discretization of the D,
operator, then for each h > 0 the discrete problem (2.9) has at least one solu-
tion ; moreover from each family { (u,, v,) },>o Of solutions we can extract a
subsequence which converges weakly to a solution (u, v) of (1.2). Obviously
if problem (1.2) is known to have a unique solution, then the whole sequence
{ (uy, v4) } converges weakly to it. The method adapts immediately to any
polygonal domain Q with no changes in the geometry. The implementation
is reasonably simple and proved to give satisfactory numerical results.

(2) Even if n the continuous problem v = x({ u > 0}), v, 1s not a characteristic function, but
there exists a strip of 4 width, with 0 < y; < 1.
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