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APPROXIMATION OF BURGERS’ EQUATION
BY PSEUDO-SPECTRAL METHODS (*) (**)

by Y. Mapay (') and A. QUARTERONI (%)

Communicated by P G CIARLET

Résume — On applique des méthodes pseudo-spectrales de collocation basées sur des développe-
ments polynomiaux de Chebyshev et de Legendre d I’équation de Burgers stationnaire monodimen-
swnnelle L’analyse numérique est construite d partir de théorémes abstraits concernant I’approxi-
mation en dimension fime d’une classe de problémes non lineaires.

Abstract — Pseudo-spectral (collocation) methods for the stationary one dimensional Burgers’
equation based on Chebyshev and Legendre polynomial expansions are considered The numerical
analysis 1s developed by means of some abstract theorems concerning finite dimensional approxima-
tions of a class of nonhnear problems.

INTRODUCTION.

The advection-diffusion equation :
— U, + Muu, — f) =0, rLeR" 0.1)

known as steady-state Burgers’ equation, is commonly used in many appli-
cations, since it describes numerous transport phenomena of interest to
engineers and scientists. Even, (0.1) is an elliptic regularization of the hyper-
bolic Burgers’ equation relative to nonlinear evolution transport.

In recent years a considerable number of numerical finite difference and
finite element methods have been proposed in this field, particularly when A
is large and advection is dominating. We refer for instance to the “ upwind ”
finite differences, first considered by Courant, Isaacson and Rees in 1952, and to
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376 Y. MADAY, A. QUARTERONI

the extension of the upwinding technique to finite elements first used by
Zienkiewicz and his school in 1977. Spectral and pseudo-spectral methods for
the linearized Burgers’ equation were proposed by Gottlieb and Orszag [8],
Kreiss and Oliger [9] and by other authors more recently. In [13] Nickell,
Gartling and Strang analyze a spectral decomposition coupled with finite
element methods to solve numerically (0. 1).

In [11] the analysis of an approximation to (0. 1) by spectral methods based
on Legendre and Chebyshev polynomials is given by the authors. Homoge-
neous boundary conditions on the interval I = (— 1, 1) are taken into account.
For the same problem, in this paper we analyze pseudo-spectral methods using
the same orthogonal polynomials. Stability and convergence analysis is more
complicate than in [11] since the effects of the errors arising from numerical
integrations have to be considered here. However, pseudo-spectral numerical
schemes are more convenient for their computational aspects (indeed, the FFT
algorithm can be successfully used in general). Furthermore, as Gottlieb and
Orszag emphasized in [8], Chebyshev polynomials have high resolution power
for thin boundary layers (which may occur when A is large).

Problem (0. 1) may be written equivalently in the abstract form :

{MuleR" x V, u+ TG, u) =0, 0.2)

where V and W are two Banach spaces with W < V', G is a differentiable
mapping from R x Vinto W, T ¢ #(V’; V)and T is compact from Winto V.

In Section 1 we present some general stability and convergence results
relative to the approximation of problem (0.2) by discrete problems which

may be written as follows
{K,MN}ER+ X VN’ u~+TNGN(7\.,uN)=0. (03)

In (0.3) Vy is a finite dimensional subspace of V for any N € N, while Ty and G
are some approximations of the operators T and G. The formulation (0.3)
looks to be particularly adapted to describe approximations of problems like
(0.2) by pseudo-spectral methods (in [12], for instance, the authors carry out
the analysis of a pseudo-spectral method to approximate the three dimensional,
periodic, Navier-Stokes equations). Also, (0.3) is the typical form of finite
element approximations to (0.2) which make use of numerical integration.
Due to this generality, it is an authors’ opinion that Section 1 has an interest
in itself, independently of its application to problem (0. 1) which is developed
in next Sections. Results of Section 1 generalize those by Brezzi, Rappaz and
Raviart [4] which are confined to the case Gy = G. Relatively to the nonsingular
solutions of (0.2) we provide abstract bounds for the error norms || u — uy |,
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APPROXIMATION OF BURGERS’ EQUATION 377

and || u — uy ||y, for any Hilbert space H which contains algebraically and
topologically V. In addition we state sufficient conditions to have quadratic
convergence of a Newton iterative method to solve (0. 3).

In Section 2 the Burgers problem (0. 1) is written in the form (0. 2).

Let A be any compact subset of R* and assume that the mapping

heA - ullye HI(I)
is continuous for some ¢ > 1 (w is equal to 1 for the Legendre approximation,
and w(x) = (1 — x?)~'/2 for the Chebyshev approximation). In Section 3 we

establish the following error estimate between u and its pseudo-spectral
approximation uy :

Vhe A uy() = w0 [gyn + N2 | uy®) — ) 20 = ON'7°) (0.4)

where e(w) = 0 for the Chebyshev weight and e(w) = 1/2 for the Legendre
weight.
The estimate (0.4) is established using the abstract results of Section 1.
Throughout this paper C will denote a generic positive constant, independent
of the discretization parameter N, not necessarily the same in different contexts.
An outline of the paper is a follows :

1. ABSTRACT RESULTS : APPROXIMATIONS OF BRANCHES OF
NON SINGULAR SOLUTIONS.

1.1. Approximation in the energy norm.
1.2. Error estimates in lower order norms.
1.3. The Newton method to solve the discrete problem.

2. THE BURGERS’ EQUATION : PRELIMINARIES.

3. APPROXIMATION BY PSEUDO-SPECTRAL METHODS : STA-
BILITY AND CONVERGENCE.

1. ABSTRACT RESULTS : APPROXIMATIONS OF BRANCHES OF NON SINGULAR
SOLUTIONS.

1.1. Approximation in the energy norm.

Let A be a compact interval of the real line, ¥ and W be two Banach spaces,
and assume that W is contained into V' (dual space of V) with continuous
imbedding. Let T e £ (V’; V) and assume that T is compact from W into V ;
finally,let G : A x V — W be a C' mapping. We set

VihuYeA x V FQ,u) =u+ TGO, u), (1.1)
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378 Y MADAY, A QUARTERONI
and we consider the problem find (A, u) e A x V such that
FA,u)=0 12

Throughout this section we make the following assumption

there exasts a branch { (A, w(X)), A € A | of non singular solutions

of (1 2), in the sense that there exists a constant o > 0 such that (H1)

VieA, YoeV, |[(d+TD, G uMv |, = olvl,

The symbol D, G[Ay, ug) (resp D, G[A,, u,)]) denotes the Frechet derivative,
with respect to u(resp to A) of G(A, u), computed at the point (Ay, uy) Id 1s
the identity operator

Let N be a parameter which will tend to infimity 1in the applications In order
to approximate the branch { (A, u(A)), A € A } we introduce a family { V }y
of finite dimensional subspaces of V, and a family { T }y of operators belong-
mgto L(V', Vy) Ifnot otherwise specified, for any N the space V 1s equipped
by the norm of V/

Let us now mtroduce the mappmng Fy A x V — Vdefined by

Fyhuw=u+T,GMu), (r3)
and consider the approximate problem find {2, uy } ¢ A x ¥V, such that

Fy(,uy) = 0 (14

The following result 1s due to Brezzi, Rappaz and Raviart (see [4, theorem 6]
and replace suitably h by N)

THEORFM 1 1 Let m = 1 be an wnteger , assume that G 1s a C™*! mapping
from A x V nto W, and that D™*' G 1s bounded over any bounded subset of
A x V Letlly V- V, becontinuous operator satisfying

YveV Ilm |IIyv—vl|, =0, (15)
N—w

moreover assume that

Al'lm [Ty = Tlew vy =0 (1 6)

Then there exist a neighborhood 9 of the origin in V and, for N = N, large
enough, a umique C™** mapping . € A — uy(A) € Vy, such that

VieA, Fy(huy) =0, uyd) —ud)eb a7
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APPROXIMATION OF BURGERS’ EQUATION 379

Furthermore, there exist some positive constants K, (0 < | < m) independent
of A and N such that the following estimates hold

VieA, VI=0, ,m |uf®) — 0], <
<K, % (190) - Ty 1)
+ Ty = T) GO0 ud), ,u™A) |y} O
In the estimates (1 8) we use the notation $¥ = ¢ for any function ¢

Moreover, denoting by Z (X, Y) the space of all continuous k-linear map-
ping of X* nto Y, the operators

GP AxV x LA, V)x x LA, V)> LA, V)

are defined by the recurrence formula
GO, ,u®) = D, GE DA, ,u*Y) 4+ D, GEI(, L uk D) ud +

k-1
+ Z Du(z)G(k_l)(}\', ,u(k_l)) u(1+1)
J=1

Let us now define a more general class of problems which approximate
(1 2) To this end, let Z be a Banach space such that Vy < Z < V, the later
mmbedding being continuous We assume that there exists a real number
r = 0 such that

WweVy llvll <CN"[lvly 19

Forany N let Gy R x V- V' be a mapping, which will “ approximate ”
G 1n the applications, and define F§ A x Vy — V, by

FF, uy) = uy + Ty Gy(h, uy) (1 10

For the approximate problem find uy € V', such that
Fi(,uy) =0, (1 11)
the following theorem holds
THEOREM 1 2 Assume that the hypotheses of Theorem 1 1 hold Moreover
assume that for any he A, u(A) belong to Z Let Gy, A x Vy— V' bea C"™!
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380 Y. MADAY, A. QUARTERONI

mapping, and assume that there exists a positive increasing functionK : R* — R*
such that

I D' Gy[A, ] | |zamrxzyi-1, Rxvymy S KM +lvldd<i<sm+1). (¥

(1.12)

Furthermore we assume that :
Alil_,ri Sllip | D, GIA, Ty u(M)] — D, Gy[A, Ty (V)] | ogry,vy = O (1.13)
hm Sup N™ || Fx(A, Oy u@)) |, =0, (1.14)
lim Sup [ ur) — My ur) |, =0. (1.15)

N-o© Ae

Then, for N = N large enough and for any A € A there exist a positive constant
K independent of N and ) and a uniqgue C™"* mapping he A — uy(A) e Vy,
such that

Fi0u uy) = 0, | uy) — Ty u(r) |y < KN . (1.16)

Moreover there exists a positive constant K ; independent of N and A such that
[ uy@®) — u) |y < Ko { 1 u@) = Ty u) Il + 1 (Ty — T) G, u@)) |, +
+ [ TGy = G) Ay u) Iy . (1.17)

If, in addition, we assume that

lim Sup || u®(A) — Ty u®Q) |, =

N—ow AeA

lim Sup | u™"PQ) — Iy u™*DR) ||, = 0 (1.19)

N—ow AreA

0, (1<I<m) (1.18)

then for any ) € A there exist some positive constants K,, 1 < | < m, independent
of N and A, such that

i
[ uf@) — u®0) |y < Ky 3 N {u®@R) — Ty u®Q) 1y +

+ 1Ty = T) GO, u@), ..., u® Q) [y
+ 1 T(GY = GY) (A, TLy u(d), ..., Ty u®) [y } . (1.20)

(*) IfA,, ., A, Bare!l + 1 Banach spaces, %(A4,, A,, , A, B)denote the set of all continuous
mappings from A; x  x A, mnto B which are linear in each vanable
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APPROXIMATION OF BURGERS’ EQUATION 381

Proof : Under the hypotheses of Theorem 1.1 the implicit function theorem
allows to state that A — u(}) is a C' mapping. Moreover, thanks to (1.5)
the operator Il is uniformely bounded in N, so we get

ViopeA | Ty@®) — uw) |y < C1A - ul. (1.21)

To complete the proof we need the following two lemmas.

Lemma 1.1 : If (1.12), ...,(1.15) and the hypotheses of Theorem 1.1 hold,
then for N = N, large enough D, F¥[A, Iy u())] is an isomorphism of V
which satisfies

| Gd + Ty D, Gyl\, iy w0 |y > S0l VoeVy (1.22)

(o is the constant defined by the assumption (H 1)).

Proof : Since A is compact, using (H 1) and the continuity of the operators
D,G:AxV>ZWV;W)and T : W — V, we get that there exists n, > 0
such that for any w e ¥ which verifies || w — u(A) |, < m, it follows

Ja

| (d + 1D, Gih, wh v [y > - |

olly, YweV. (1.23)

Moreover, using the continuity of A — u()A) we have that there exists M, > 0
such that for any N > M, and any A € A we have

f Ty u(h) — u(d) [y < M- (1.24)
We use the inequality
| (Id + Ty D, Gy[A, Iy u(M)D v Iy =l d + TD, GIA, Ty u(M)D v ||, —

— [T = Ty) (D, Gy[A, Thy M) v) ||y -
~ | TDLG — Gy) A Ty u()] v) || . (1.25)

Thanks to (1.23) and (1.24) we get

Ja

| (d + TD, G\, TTy uM)]) v ||y > S loly YN =M,  (1.26)

On the other hand, using (1.6), (1.12) for [ = 1, and (1.15) it follows that
there exists M, > 0 such that for any N > M, and any A € A we have

| (T = T 0, Gulh Ty u@ o) [y < T ol s (1.27)

vol. 16, n° 4, 1982



382 Y. MADAY, A. QUARTERONI

finally, using (1.13) and the continuity of T we get that there exists M, > 0
such that for any N > M, and any A € A we have

| TG — Gy W Ty uN 0) [y < Fl ol (1.28)

Now we obtain (1.22) from (1.25), ... (1 28). Now the proof is complete
since V is finite dimensional. O

LemMma 1.2 : If (1.12),...,(1.15) and the hypotheses of theorem 1.1 hold,
we get

fgg H D, FF[A, Iy u(A)] J‘y(meN,VN)é C (1.29)

(Vy is equipped with the norm of V'). Moreover, there exists an increasing func-
tion K, : R" - R* such that, if

{mv}eA x Vy and N'(|A—p|+ | yu@k) —vl,) <&, (1.30)

then
” DGy[A, Iy u(A)] — DGy[p, v] ”.Y(va wy S S K@ (M—nl+
+ | Iy u®) —vll,). (1.31)

satisfied, ihere exists an increasing

Furthermore, if (1.18) and {1.19) @
function K, : R™ — R such that, § ( .30) holds, we get

“ Dl GND\" l_[N MO\.)] - Dl GN[H" l)] ||Y1(([RXZ)"‘,RXV,W) <
SKE@0r —pl+ 1 Hyud) —vlly) @<i<m. (1.32)

Proof : Using (1 15),(1.6) and (1.12) with / = 1 we get immediately (1 29)
Next from (1.12) it follows that

V{imov}leA x Vy H D? Gylm, v] ”.?zmxz,[RxV,W) < K(pl+ v llz). (1.33)

Since

LDGAD + 1l — 2, Ty w0 + 1o — Ty u)]) (1) =

= D, DGy[(1 — to) A + top, (1 — to) My u(r) + tov]-(w — ) +
+ D, DG[(1 — to) A + top, (1 — to) Oy u(r) + tyv]-(v — My u(r)),
VioeR.

R AIRO Analyse numérique/Numerical Analysis



APPROXIMATION OF BURGERS’ EQUATION 383

Applying the mean value theorem to
DGy[A + t(p — ), IIyu(k) + t(w — Oy ur)],
and using (1 9), (1 30) and (1 33) we have

H DGNp\‘a I]N u()\')] - DGN[H, l)] “.,?(RXV w) <
SK(M + [Oyu)llz + &) = pl| + [ Tyuk) — o, (1 34)
Therefore (1 31) holds taking K,(§) = K(| A | + || Ty ud) |, + &)

Fnally, arguing 1n a similar way and using (1 12) with [ =3, ,m + 1
the property (1 32) can be proved O

Let us go back to the proof of Theorem 1 2 Due to (1 21), (1 22), (1 29)
and (1 31), we can apply Theorem 1 of [4] to the mapping F ¥ in the following
situation

the space X of the theorem 1s R provided with the norm N” | X |,
the space Y, Z of the theorem are V provided with the norm N" || v ||,
finally y(A) becomes ITy u(A)

We note that for all mapping 4y e Z(R x Vy, Vy), we have
!| AN "g(Xxy zy = " AN "J(IRXVN V)

Then by the above mentioned result, for N > N, large enough there
exists a constant K > 0, mdependent of N, and a umque C! mapping
reA - uy(h)e Vy such that (1 16) holds, together with the mequality

| uy®) — My u) |y < C || FRA Oyud) |,, VieA (1 35)
Using (1 1), (I 2) and (I 10), we have

| Fx(, Ty u) |y = || FEA, Ty u(h)) — FO, u@)) |y <
< || Ty u) — u) ||y + | (Ty = T) G, u) |, +
+ || Ty(Gy — G) (L, Ty u(V) ||y + || Tu(GO, Ty u(r)) — G, u(M) |y
(1 36)

using (1 6), (1 5) and the differentiability of G we obtain

| TW(G(, Ty u(M)) — G, uA)) ||y < C | G, Ty u(M) — G(A, u(M)) ||y <
< Cl Oyu) —u@) |y, (1 37)

Now (1 17) 1s a consequence of (1 35), (1 36) and (1 37)

vol 16 n° 4 1982



384 Y. MADAY, A. QUARTERONI

In order to prove (1 20) we apply the theorem 2 of [4] to F7, indeed, from
(1 9) we have

VAy € f!(R x Vys VN) | Ay H.Z’,(XXY,Z) < C Ay HY,((RXZ)"‘,RXV,W) s
and

YoeVy v ”y,(x,}') = v Kyl(x,Z) < CNY™ |y ly -

Due to (1 18) and (1 19), using the above mentioned theorem we get the
nequality

1
[ uf ) —u® Q) |y < C Zo NER | FEO (O, Ty ud), .o, Ty u® Q) |y
k=

(1.38)

for I = 1,...,m and for any A € A. Finally we can obtain (1.20) from (1.38),
using (1.6), (1.15), (1.18), (1.19), the hypotheses that G is a C™*! mapping,
and the identities

F® (O, ur),...,u® 1) =0 for k=0,..,m. O

1 A T o dlen b ~
1.2. Eitor estimates in lower order norms

Let Y, H, K be three Banach spaces, equipped with the norms || . ||y, || - g
and || . ||x respectively, such that the following imbeddings hold

KoV cHGSY.

Moreover, assume that T can be extended to a compact operator from Y
into H, and that D, G[A, v] can be extended to D, G[A,v]e L (H; Y).

THEOREM 1.3 : Let the hypotheses of Theorem 1.2 hold, and let uy be the
solution of (1.11). Assume that for any h in A :

the mapping ve K — D, G[A,v] e L(H; Y) is continuous ;  (1.39)

the mapping D, F [\, u(\)] is an isomorphism of H ; (1.40)
I}Iim | T — Ty i'y(y,H) =0 (1.41)

u(h) and uy(A) belong to K and || uy(L) — u(X) | x tends to zero with 1)N .
(1.42)
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APPROXIMATION OF BURGERS’ EQUATION 385
Then, for N large enough the following estimate holds
VheA | u®) —uy®) g < C {1 FyGu@) Iy +
+ I Ty(G — Gy) A, uy)) [y} (1.43)

Remark 1.1 : From (1.43) we derive also that
VheA [u() = uy@) o < C{I(Ty — T) GO, u) llx +
+ (6 =G Auy@) ly}. O
Proof : Since F¥(A, uy(r)) = 0, we have
Fy(k, u()) = Fy(h, u@)) — FFA, uy(0))
= D, F[A uM)] (u(r) — uy()) +
+ (Ty = T) D, G[A, uM)] () — uy()) + Ty(G R, u(r))

— G(A, uy(A)) — D, G[A, u(M)] (u(r) — uy(r))
+ TH(G\, uy(R)) — Gy(R, uy(0))) - (1.44)

Let us examine each term of the right hand side.
First, using (1.40) we deduce that there exists a positive constant B such
that

H D, F[A, uM)] (u(r) — uy(r)) “H =B “ u(r) — uy(r) ”H . (1.45)

Next, thanks to (1.39) and (1.41) we get

| (Tx = T)Y(D, GIX, M) () — uy@)) |5 < e(N) || u(h) — uyQ) |4
(1.46)

where g¢(N) tends to 0 with 1/N.
On the other hand, setting uy(A) = Buy(X) + (1 — 0) u(r), for any 6 € [0, 1],
and for any A € A, we have

G u@)) = G(, uy(A)) = D, G[A, u(M)] (u(h) — uy(h)) =

= J (D, G[&, ug(M)] — D, GIA, ug(A)]) dB(u(h) — uy(r)) .

0
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386 Y MADAY, A QUARTERONI

Then by (1 39) and (1 41) 1t follows

| Tw { GOwu@) = GO uy) — D, GIA, u(W)] () — uy(M) } g <

< Ce (N) 3} u(h) — uy(d) ||H (1 47)
where

! 1
g(N) = !i L (D, G\, ug(\)] — D, G[\, u]) do y( )
|- HY

tends to zero with 1/N due to (1 39) and to (1 42) Finally (1 43) holds from
(1 44), (1 47) taking C = (B — e(N) — €(N))™" I

CoroLLARY 1 1 Assume that (1 39), (1 41), (1 42) hold, together with the
hvpotheses of Theorem 1 2 and with the following regularity assumption

if ve H verifies v + TD, G[h, u(\)] v = 0 then veV (1 48)

Then (1 43) holds

Proof To check that (1 40) holds let us note that D, F[A, u(A)] 1s a compact
operator of #(H, H) Then by the Fredholm alternative we only need to
check that

if D, F[Au(\)]v=0 then ¢ =0 (1 49)

Besides that (1 49) follows easily from (1 48) and hypothesis (H 1) O

1.3. The Newton method to solve the approximate problem

In this section A 1s considered to be fixed
We assume that Gy A x Vy — V 1s a C? mapping, and that there exists
a positive constant § independent of N such that for any A e A

" Ty D? Gy, uy(M)] “.,?Z(VN v <O, (1 50)

There exists a mapping ¢ R* — R* such that g(x)/x vanishes when x tends
to zero, and for any A € A, for any v € V  the following estimates hold

“ Tn(D, GylA, v] — D, Gy[A, uy(M)] — Duz Gylh, uyM)] (v ~ uy(r))) ”.f(v vy S
< 5(“ v—uy) ly), (1 51)
| TW(Gy(R, v) — Gy(h, uy(h)) — D, Gy[A, uyM)] (0 — uy(X)) —
= D Gy[h uy)] (v — uy@)?) v < el v — uy@) I7) (1 52)

R AIR O Analyse numenque/Numerical Analysis



APPROXIMATION OF BURGERS’ EQUATION 387

Arguing as n the proof of Lemma 1 1 we can establish the following result
LEMMA 1 3 Assume that the hypotheses (1 12), ,(1 15), (1 48) and those
of Theorem 1 1 hold Let o be the constant defined by the property (H1) There
exists a constant n| > 0 such that for N = N, large enough, and for any ve Vy

which satsfies || v — Iy u(d) |, < n, the mapping D, Fy[\, v] 1s an 1somor-
phism of V y, thus

| D, Fylh, o] w ||y = % lwl, YweVy (1 53)

Moreover 1t follows that
ex)/x <1 Vx<n O (1 54)
Let v° €V, be given and consider the following Newton scheme find
"l eVy (n = 0) by solving

D, Fy[h, v"] 0"*1 = D, Fy[h, v") 0" — Fy(h, 0") (1 55)

THEOREM 1 4  Assume that the hypotheses of the previous lemma hold
Moreover, assume that if N = N,

| uy(h) — Hy ud) ||, < /2 (1 56)

Then, there exists p > 0 such that, if v° satisfies

[v° = uy®) |y < p, (1 57)

the Newton iterates (V") are umvocally defined by (1 55) and converge quadra-
tically to the solution uy(N) of (1 11)

Proof As A 1s fixed we shall drop any dependence on 1t along this proof
Dcnoting by p the minimum between n/2 and «/(4(8 + 2)), from (1 56) and
(1 57) 1t follows that || v° — My u |, < 1

Then by Lemma 1 3 the first iterate v' of (1 55) 1s uniwvocally defined
By induction on n we shall prove that for any n | v"*! —uy ||, < p As
a matter of fact, assume that | v" — uy |, < p By (1 56) we get that
| TIyu —v" |, <m Taking v = v" and w = ¢v"*! — uy m (1 53) gives

| 4d + Ty D, Gulo") "+ = wy) [y = FH ™" —uy Iy, (1 58)
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On the other hand, from (1.55), (1.11), (1.51), (1.52) and (1.54) we get
“ (Id + Ty D, Gy[v"]) (U"+l — uy) Iﬂv = ” Ty(D, Gy[v"] V") —
— Ty Gy(v") — D, F¥[v"  uy “V <

< ” Ty Duz Gyluy] 0" — uN)2 “V + 20" — uy “12/

Fmally, by (1.50) and (1.58) 1t follows that

n+1

40 + 2
I v __(a_)

—uyly < [o" = uy iy (1.59)

and therefore || v*"* — uy ||, < p. Then all the Newton iterates are univo-
cally defined by (1.55), and, due to (1.59), they converge quadratically to
Up. |

2. THE BURGERS’ EQUATION : PRELIMINARIES

We denote by I the interval (— 1, 1) and by x the current variable of I.
We consider two weight functions : w(x) = 1 (Legendre weight), and

o(x) = (1 — x*)~ 12

(Chebyshev weight). We make use in this paper of the weighted Sobolev spaces
H} (). They are defined as follows : for s = 0 we set

HXI)=LiI)= {¢ :I > R| ¢ is measurable and (¢, ¢p), < + o0 } (2.1)

where (¢, V), = J &(x) U(x) o(x) dx denotes the inner product of L2(I).
I
For any integer s > 0, we set
H3(I) = {beL2I)|D*dpeL2(), 0<k<s}, (2.2)

where D = d/dx; H;(I) is equipped with the following norm

o112, = kZo J (D* ¢)? (x) 0(x) dx .
=V Jr

For any real, non integral s, the space H}(I) is defined by the complex

interpolation method (see e.g. [3, Ch. 4]). For any integer s > 0 we denote

by H§ ,(I) the closure of 2 (I) into H:(I); finally for non integer s > 0 we

define Hg (1) by interpolation. If w = | the spaces H;(J) and Hj ,(I) coin-
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caide with the classical Sobolev spaces H*(I) and H([) respectively, provided
s¢ N +% (see eg. [3, 10]). For ao(x) = (1 — x?)~'/* some properties of

spaces H:(I) have been given 1n [11], we shall constantly refer to them along
this paper The same results for the weight @ = 1 are well known, and we
still refer to [1, 10] for the proofs

Let ¢ be a positive real number, and f be a given function of L2(I).

We consider the following problem : find u € HJ ,(I) solution of

—eu, +uu, =f ml. (2.3)
Correspondingly to Legendre’s and Chebyshev’s weight o we set
V =H (I), W = dual space of HY4(I), (2.4)

and we introduce the bilinear form ¢ : ¥V x ¥V — R defined by
c(u, v) = f u (vw), dx . 2 95)
1

LeMMA 2 1 : There exist three positive constants «, B, y such that for any
ue HY(I) and ve V we have

lolloe < allvgllo, (Poincarés inequality) (2 6)
ce )= Bloli, 2.7
lew )| <y luglonlivelon. O 2.8)

If @ = 1 the above results are well known : note that ¢(., .) 1s the classical
H} mner product. For w(x) = (1 — x?)""2,(2.6), (2 7) and (2 8) have been
proved 1 [5] Thanks to this lemma, the norm defined by c(v, v)!/?, Vo e V,
1s equivalent to || v ||, , (we note that if @ 1s not constant ¢(., .) 1s not an inner
product since 1t 1s not symmetric).

Let us define the linear operator T : V' — V by

«(Tg, ) =<g. 06> VoeV; 2.9
we recall that (see [11, Remark 1.2 and Theorem 2 4]) for all se[— 1, 0[
T 1s continuous from Hy $(I) mto V. n HZ™(I). (2.10)

We define also the mapping G : R x V - W by

G\ u) = Muu, — f); (2 11)
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we note that G is a C* mapping, and for any ke N, D* G is bounded over
any bounded subset of R x V. Moreover, since W is obtained by interpo-
lation between V' and L2(I), it contains topologically L2(I), so we have

” GO\') u) HW < H G(?\,, Ll) HO,m .

then, since V < L*(I) (see [11, Theorem 2.2]) we get
H G\, u) "W < | A fuw, — f ||0,m <Gyl (” u ”Loo(l) [ u H“,, + “f"o,(,,)<

SCIMulte+ 1 low . (2.12)
In addition we get that

T is a compact operator from W into V . (2.13)

This property follows easily from (2.10); indeed, T maps continuously W
into H*(I) n V, which in turn is compactly imbedded into V (see [11, Theo-
rem 2.1]) so (2.13) holds.

Letusset F:R x V >V,

FAu)=u+ TG, u); (2.14)

the problem (2.3) can be equivalently written as follows : find u € V such
that

FO,u)=0, 2.15)

where A = 1/e.

It can be easily seen that problem (2.3) admits a unique solution. Thus
for any compact subset A of R™ the branch { { A, u(A) }, A € A } is non singu-
lar, ie. it satisfies condition (H1). So in this paper A will denote a generic
compact interval of R*.

3. APPROXIMATIONS BY PSEUDO-SPECTRAL METHODS : STABILITY AND

CONVERGENCE

Let us denote by { p, };=, the family of polynomials which are orthogonal
with respect to the L2(I) inner product (., .),. It is well known (see e.g. [14])
that if ® = 1 we have p, = A, L,, where A, = (2 n + 1)/2)? and L, is the
n-th degree Legendre polynomial. If w(x) = (1 — x?)~'/? then p, =1, T,
with 1, = (1/n)% 1, =./2 15 if n > 1, and T, is the n-th degree Chebyshev
polynomial of the first kind.

We denote by F&& = {(x;, )} |0 <j < N} the Gauss-Lobatto inte-
gration formula relatively to the weight ®, with nodes

—l=x<x, <" <xy=1
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and weights o, > 0 (see e.g. [7]). Then we have
N
Vg e P,y () J g(x) o(x)dx = Y g(x) o, (3.1)
I J=0

where P, (I) denotes the space of polynomials of degree < m over I.
We introduce a bilinear form over C°(I) by setting

N
O Vo = 3 605)¥(x,) 0, (.2)

and an interpolation operator P, : C°(I) — Py(I) defined by

(Pou)(x) =ulx), 0<j<N. (3.3)

It is easy to check that for any u e C°(T), we have

N u,
PC u = Z ,'kak, i ( pN)N,m

=20 § o= (4, wr KSN-1. (3.4
k=0 N (pN7pN)N,m = pk)N’ 3-4)

Using (3.2) and (3.3) we also have that

Vu’ ¢ € CO(T) (Pc u, d))N,o) = (u; d))N,m (3 5)
V(I)E[FDN(I), V\l!epN—l(I) (d)s \l’)N.m = (d)’ \I’)w . (36)

Following [6], the triple (I, FS%, P) is called a Legendre (or Chebyshev)
spectral interpolation system, according that @ = 1 (or o(x) = (1 — x*)71/2,
respectively).

To approximate (2. 3) we introduce the following pseudo-spectral problem :
find uy € V such that

Vo e Vy — iy, Do + 5 (Pt B = Mfi By B.7)

where Vy = {oe Py} ¢(—- 1) =¢(1)=0}.

Remark 3.1 : For any j = 1,..., N — 1 let ¢, denote the function of Vy
defined by : ¢,(x;) = 8,4, k =0, ..., N. Then from (3.7) we get

{ () + 5Pl () = M(x), 1<j<N -1

uy(xo) = uy(xy) = 0. (3.8)
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Conversely, multiplying the first equation of (3 8) by &(x) o, (¢ € Vy)
and adding over j from 0 up to N we get that u, satisfies (3 7) Hence (3 7)
and (3 8) are equivalent

Since —;-(u,z\,)x = uy uy_, (3 8) should be a standard collocation method for

(2 3) at the nodes x,, 1 <j < N — 1, 1f (u}), was used mstead of [P, u3],
On the other hand, to interpolate before making derivatives 1s one of the
features of pseudo-spectral methods since 1t 1s quite easy to implement suc-
cessfully this process (see e g [8,9]) Finally, we note that for defining correctly
(3 7), f must be continuous, and for that 1t 1s enough to require that fe H}(I),

. 1
for some s > —2-([11, Theorem 2 2]) For ease of exposition only, we shall

assume that f belongs to H (1) 0

We want to develop the analysis of the pseudo-spectral problem (3 7) in
the abstract framework of Section 1 For that we define the operator
Ty V' > Vyby

VoeVy c(Tyg, ¢)=<g.¢), 39
moreover we define [T, V — V, by
YoeVy clyuv, d) = clv, d) (3 10)
Using (2 9) we get immediately
Ty =IIyoT 3 11)

Let us recall the following result which holds for both Legendre and Che-
byshev weights (see [11], Theorems 1 1 and 1 4])

Vue HXI)AV,o21, |lu—-Tyul,,<CN*°|ul,, O

N
=
/N

Thanks to (3 12) and using density arguments we can show that

VoeV Im ||v — yvij,,=0 3 13)

N—-w
Moreover 1t can be proved that

hm [T — Ty Jg(w vy = 0 (3 14)

N-w
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From (2.4), (2.10), (3.11) and (3.12) we have

VgeW, (T =Tyglio=]0d =T Tg |, < CN Y| Tg ll5s4,,<
< CN~ Y glw,
so that | T — Ty | gw.y) < CN7Y* and (3.14) follows. Finally for any

re A we set

Yve VN5 Vd) eV < GNO"’ U), (b > = ([Pc UZ]x, ¢)w - )"(f’ ¢)N,m . (3 15)

N>

LemMA 3.1 : For any A € R and v € V the operator Gy(A, v) belongs to V'
Proof : The linearity is obvious by definition, so let us check the continuity.

(1) We start by proving the following inequality

Vze L2(I), VeV

J 2(90) dx | < Clzlgoll ¢ llye- (3.16)

If ® = 1 it is a consequence of the Cauchy-Schwarz inequality. Otherwise

we set w(x) = f z(€) d& ; clearly we H(I) and by (2.8), we have
-1

Sylhwelooll &y

j z(dw), dx

j w (do), dx

and (3.16) holds.
(i1) At this sep we want to evaluate the quantities

EGL¢) =06 P — (6 P |

for any x, o C 0T ). Let us recall the following result : setting

H (b nr%,m = (d)’ ‘b)N,m,

we have [6]

LRI T Y EY NS T e (3.17)

Moreover we get (see [6, Theorems 3.1 and 3.2]) for any u e H3(I) with
c > %, and for any p e [0, o]

N#° if ofx)=(1 - x?)"Y2

N2v—et12 gf g =1. 3-18)

lu—Poully,<Clulsg {
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Let us denote by I1,y L2(I) » Py(I) the L2 projection operator upon
[FDN(I )’ 1€

Vb e Py(l) (u — Mgy, §), =0 (3 19)
We have (see [6, Theorems 2 1 and 2 3]) for any ue HJ(I) with ¢ > 0
lu —Tyyulloge <CN “llullg, (3 20)
First we assume that ¢ € Py(Z) Using (3 5) and (3 6) we have

E(X: d)) = ‘(ch’ ¢)Nn - (HON—l X.7 (b)N(‘) + (HON—1 X’d))w - (X,d))w|
= |((Pc —on- )% PIve + Toy 1 X _X7¢)0)| <
< “ (Pc _HON—l)X|ﬂNmI|¢“Nm+ [ TIo w3y X _XNO(,,”(‘)"O‘,,, (3 21)

then using (3 17) we have
Vx e COT), Yo e Py(I), |Gt Oy — (6 P | <
<C||¢||0m(||X_PcX||om+||X_H0N—1X||0m) (3 22)

If ¢ does not belong to Py(I), arguing as before we get

E(x, ¢) = I(P X Pe®lvo — Moy % POy o + g y—y X P d), —

- “UN 1X’¢ 'L(HUN lh’¢)m_(x’¢)m|<

< C{"(Pc_HON—I)X||0m||Pc¢"0m+
+ I on-1 XMool ®=Pdlloy +Ix—Ton 1 Xloull®lonl;

using (3 18) and (3 20) we obtain that for any % <p<gl

VXEH:,(I),Vd)EHSm(I)s I(X"b)N«)_(X’d})mlg
SCNYDM Iyl ol dlle, (323)

(m) Now we want to show that the difference between Gy and G vanishes
when N tends to infinity
For any Ahe R and ve Vy, (2 11) and (3 15) lead to

VoeV ((G— Gy O, v>¢>—>»{lj(v P, b dx +

£ (o) — (f, bhy } 3 24)
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Integrating by parts and using (3 16) and (3 18) we get

' J (v* — P.v?), do dx

:l‘j ©* — P.v*) ($po), dx | <
SCIv =P lo, ol SCNT2[2 [, 1101, ,<
SCN"oli, Il (3 25)

where the last mequality 1s due to the fact that H1(I) 1s an algebra (see [1,
Theorem 5 23] and [11, Theorem 1 2]) Finally, using (3 24), (3 25)and (3 23)
with x = f for any A € R we obtain that

VoeVy, YoeV, |<(G-Gyhv),d)|<
SCN 0 (lolBB o+ 1/l dlle (3 26)

(1v) Since W 1s topologically imbedded in V , using (2 12) we have that
G(A, v) belongs to V' for any A € R and any v € Vy Hence using (3 26) the
lemma 1s proved O

Let us go back to problem (3 7) Using (3 6) and integrating by parts we
have

VoeVy = (n, Oy o = — (Un,s )y = cluy, §) (3 27)

Then by the definition (3 15), 1t follows from (3 7) and (3 27) that

Vd) € VN C(MN, d)) = - < GNO‘) uN)’ ¢ >

Fmally, setting Ff§f R x Vy - Vy,
Fy(, uy) = uy + Ty Gy(A, uy) , (3 28)

we get from (3 9) that the pseudo-spectral problem (3 7) 1s equivalent to
finding uy € V such that

Fi(uy) =0 3 29)

In order to apply the abstract Theorem 1 2 to problem (3 29) we need to
prove some further results

LEMMA 3 2 The operator Gy defined bv (3 15)1s a C® mapping from A x V
mnto V. Moreover there exists a positive increasing function K R* —» R*
such that

Viz 1 | D'Gylh ol |aqmxvym < K(A +1vli,) (3 30)
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Proof : The first assertion is obvious. To prove (3.30) we proceed by steps.

(i) Consider first the derivative with respect to A ; using (3.15) we have for
any pe A

Dy Gy[h o]l (1), ¢ ) = %HJ (P v?), b dx — p(f, O)yo- (3.31)

It follows from the Cauchy-Schwarz inequality that

Yo e L2(1) | f (P v?)

| JI £ c v
On the other hand, integrating by parts and using (3.16) and (3.31) we have

VoeV SC PV Mol dlly,- (3.33)

J (P v?), o dx
I

Finally, by interpolation between (3.32) and (3.33) (see [3, Theorem 4.4.1])
we obtain

II\‘ s 28 ' 2 l —~ - 2 ' - -
\"| J F ") Qoax | S CHIE V" liyae Il @ ll34,6- (3.34)
1

Using (3.18) and the mequality || v* ||, , < C | v}, we have that

1,0

1P v? s < I10° gy + 102 = Peo? lhjao < Cllo* 1o < Cllvli,s

in addition, since || ¢ ||, < C || & liz4., (see [11, Theorem 1.2]), we have
v GHS'ff;(I) I(fa d))N,(n | <C|f ”L”(l) [RoNIFe <

SCISflliolldllsu-

Summarizing the previous inequality and using (3.31) and (3.34) we get

| D, Gy[A, 0] [ gy < CU Sl + 10 1T0) - (3.35)

Clearly, higher order derivatives with respect to A vanish identically.
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(1) We consider now D, G, arguing as 1n (1) we have

<D, Gl (), &) | = \ - j [P.ow)], 6o dx | <
< CI )\'l { ” PC(UW) “1,(,0 ” ¢ ”0,(:)’ V(bELf)(I)
| PoW) fora l & lpas VoV

Then by mterpolation 1t follows from (3 18) that
YweV, VoeHyiI), [<{D,GAv]w),¢>|<
SCIM vl llwihiell &340
whence

“ D, Gy[A, ) “_?(IRXV,W) <CIM v ||1,u, . (3 36)

(1) Finally consider the second order derivatives of Gy For any pe R
we have

eV |<D.,LGN[x,vJ({u,w}>¢>|=’—uj [P (ow)], 6o d |,

then proceeding as mn (11) this term can be bounded by

el ol Twlyell & a0,
so we get

” Duk GND\,, v] ”Z([RXV]Z,W) <Clv ||1,m . 3 37)
Finally

Vg ws €V { Doy Gyl t] ([, w5 }) 6 = — xj [P.0v s w2)]e b0 dx

so arguing as usual we obtain
“ Duu GND\', U] Hy([n x V]2,W) <C | I8 |. 3 38)

Higher order derivatives vanish identically, so (3 30) follows from (3 395), .,
(3 38) d

LemMa 3 3 : We have
Iim sup “ D, (G — Gy) [A, IIy u(r)] lﬂg(v\ vy = 0 (3 39)

N—ox 2€A
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Proof Usmmg (3 26), (3 16), (3 18) and setting v = II, u(h) we have for
anyweV

VoeV [<D(G = Gy)[ho]w) o] =

A f { ow), — [P(ww)], } b dx
I

<

- . — xj [ow) — P.(ow)] (dpw), dx

Mo ow = Pow) oo 101w
MNP owl; o1l
SCIAMN ol llwliol &l

< C|
< C|

Then noting that v, , = || Dyu)|,, < C|u)|,, by (3 20), the
property (3 39) follows O

LEMMA 3 4 We have

Iim sup | FFM, Ty uA) ||, , =0 (3 40)

N—=ox AreA

Proof From

(2 14), (2 15) and (3 28) we get

FE(, Iy u))) = FY(, Ty u() = F(A, u0)) = Ty u(d) — u(d) +
+ (Ty — T) G\, u()) + Ty(G(, Ty u(h)) — G, u(h)) +
+ Ty(Gy — G) (L Ty u(h)) (3 41)

Using (2 14) and (3 11) we have
[ (Ty = T) GO uM) |, = | uh) — Ty u(d) |y, (3 42)

owing to the uniform continuity of [Ty 1in ¥ (see (3 20)), to the differentiability
of G, to the continuity of T from W mto V and to (1 5) we have

| TG, Ty u@)) — GO, u) ||, o < C || TGO, Ty u(r)) —
— G u)) |1 o < C | GO Iy uh) — G u@)) [y <
<C|Tyul) —u®)|,, G 43)
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Finally, using (3.16), (3.21) and (3.26) we have

| Ty(Gy — G) (M, Ty u(r) |, =
= _sup |Gy -G Ty u), ¢ ) | =

deVn [9ll1,0=1

¢eVy lioll1m=1

= sup l % J [(ITy u(A))? — P.(I1y u(L)*], do dx +

+ (59 — (0| <

< C{I My u@)?® — Py u)’ loo + 1S = Pefllow +
+ i S = Ton-y fllow) < C{ITuM)® — Pou@) o,
+ 1 Ad = P) @) — My u)N*) loo + I f = Pefllow +
+ IS =Ton-1 0w} (3.44)

Now (3 40) holds thanks to (3.41), ..., (3.44) and to (3.18) and (3.20). O
Finally we have :

THEOREM 3.1 : Let { { A, u(A) }, X € A } be a branch of non singular solutions
of (2.15), and let N be a sufficiently large number. There exist a neighborhood 6
of 0 independent of N, and, for any € A, a unique C* mapping k. — u(L)
such that

Fi(huy(A) = 0, uy(h) — My u(x)€0. (3.45)

Moreover, if fe HJ(I)| o >-;— , then for any e A uM)e V n HZ*%(I),

and the following error estimate holds :

“ uy(\) — u(d) “1,m <C { N~-E*D [l u(h) ”o+2,m +
+ NC@OTCH Ny 2.5, + N flls0 ) (3.46)

where e(®) =0 if o(x) =1 — x*)" Y% and e(w) =% if o=1.

Proof : Due to (3.13), (3.14), (2.13) and Lemmas (3.1), (3.2), (3.3) and
(3.4) we can apply Theorem 1.2 with Z = V. Note that the hypothesis
(1.9)1s trivially satisfied with » = 0. Then by (1.16) we immediately get (3.45).
Moreover it follows from (1.17), (3.42) and (3.44) that for any A e A
| uy@) = u) [}, < C {1 (1d — Ty u@) |y, +

+ 1 dd = P) @) — [y uM)P?) loe + I (Id = P u(r)? llo,, +
+ 1 dd = P)flloy + I (1d = Mon_1)flloe}- (3.47)
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Using the continuity of the operator T from H(I) mto V n H3*2(I) 1f
s = O(see[11, Theorem 1 4 and Remark 1 2]), 1t 1s easy to see that1f fe HS(I),
then for any A the solution of (2 3) belongs to HE"2(I), so u(A)e Vo~ HZ* (1)
for any A Using (3 18) and the fact that HS*?(I) 1s an algebra we get

| @d — Py ) o, < CN@7270 | 220 |5, <
S CNe@=279 y(a)|2,,, (3 48)

Moreover, using (3 12) and (3 18) we have

| Id — P.) @*(h) — MLy u(N?) |, , <
< CNe@~1 “ u(x) — Iy u(r) H1 ® || u(h) + Iy u()) ﬂll ©
< ONO ) oy U 1 G 49)

Finally, using (3 18) and (3 20), (3 46) follows from (3 47), , (3 49) O

We want now to obtain an L2 error estimate that improves the one which
can be trivially deduced from (3 46)

To this and let M > N be an mnteger and define the discrete inner product
(+» )y as 1 (3 2) by formally replacing N with M

Let P, denote the interpolation operator with respect to the pomnts x,,
0<v<M Usng (318) we then obtan
(AMf270 of wfx) — (1 — ¥2) 112

If=Pfllow <Clflo-2a i]\,‘ﬂsm—c if o) =1

Vo >

[N

201

hence, if M > N°°~2 when o(x) =(1 — x?) Y2, and M > N?° > when
® = 1, we deduce the inequality

1f=Pfllow < Clflls 2o N° (3 50)

Define now a new pseudo spectral problem as follows find iy € Vy such
that

Fy(h, ay(0) = 0 (3 51)
Here we set, for any Ae A, veVyand peV

Gyl 0, 6> = 5 (Pev™] 6)y — AL s G 52)

and
Fy(hv) = v + Ty Gy(h, v)
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We note that problem (3 51) differs from problem (3 29) only for a more
precise integration formula used for the computation of the contributions
of f.

It 1s an easy matter to check that the Theorem 3 1 still holds if uy 1s replaced
by iy and Fy¥ by Fy

THEOREM 3 2. Assume that, for somec > 2, fe HS™*(I) and that the mapping
AeA - u(h)ye V n H(I) 1s continuous.

Then for any A€ A there exists a positive constant C(L) depending on
| 4 |g.0 and on || f llg—1,, Such that

[ iy &) — u@) flo,0 < CO) N7 (G 54)

Proof : To achieve (3 54) 1t 1s sufficient to verify the hypotheses of the
Corollary 1 1

For that weset K = V, H = L:(I)and Y = V.
First, we deduce from (2.11) that

D,G[A,v]w = %(vw)x

IfveV and we H, then vwe H, and by (3 16) we get that
(ww),e(H ) =Y

This proves (1.39).
Next, 1t 18 an easy consequence of (2 10) that (1 48) holds. Then, (1.41)
1s a simple consequence of (2 10), (3 11) and (3 12)

Finally, as previously seen, | @y(A) — u(}) |, = O(1/N), hence (1 42)
holds

Then using (1 43) we obtain for any L e A
| @y) — u(A) 0.0 < C | u) + Ty GO, ud) 0.0 +
+ | TG = Gy) (h, iiy(V)) [0 - (3 55)
Using the equality u(X) + TG(A,u(}X)) = 0, and T = IIyo T we get
| uh) + Ty GO, u(L)) oo < CN 7 ud) |50 (3 56)

Next let us estimate the last term of (3.55).
By Lemma 2 1 there exists ¢ € V' such that for any ve V)

(v, ®) = (v, Ty(G — Gy) (A, Ty(M)),, - (3.57)
vol 16, n° 4, 1982
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Moreover there exists a positive constant C such that
101y o < C| Th(G = Gy) (s ity oo
Then, taking v = Tx(G — Gy) (A, fiy(A)) by (3 57) we get
| Th(G = Gy) (b i) [§ o = TH(G — Gy) (. By()), §)
Usimg now (3 9), (3 16) and (3 21) we have
| TVG = Gy (s 8V [[§ o = | (G = Gy) (b, iy, 6 > | =
= M%L[ﬂd — P) @M, d0dx + (£ 9), — (ﬁcb)MwH <
< CIM{IAd = PY @M o, + 11 Ad = P)flo, +
+0(d = Ty )flou} 1 &ly (359

Using (3 18) we estimate the first term of the right hand side as follows

| 4d = PYTFO) o < [ Ad = P)uw?(0) o, +
+ [ ad = PY O = RO oo < C{N[u) 12, +
F N T ) — u) o | a0 + w1, o)

Using the H'-error estimate concerning #y, and (3 50), (3 58) and (3 59)
we then get

| TV(G = Gy) (s Gy ) [lo w < CIMT{ N7 u(X) g, +
+ N2 u) |12, + N fllo 54} (3 60)

Fmally, from (3 55), (3 56) and (3 60) we conclude that
| ay) — ud) | < CIM N L u@) [, +
+ N u@) 12 + 1 fllo-20}

So (3 54) holds O

We finish this paper by making some remarks about the practical solution
of the approximate problem As an example let us consider the pseudo-spectral

problem (3 29) Following the Section 1 3, according to (1 55) we can define
a sequence (v") of functions of V by solving

(Id + Ty D, Gy["]) ("1 — v") = — (" + Ty Gy@"), n=0 (3 55)
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(the parameter A 1s taken as fixed, so it does not appear 1n (3 55)) An equi-
valent form of (3 55) 1s as follows find v"*! € V such that

VoeVy c"h¢)+ %J [P(" v"" )], b dx =

I

%J [PW"P], b0 dx + (fd)y, (3 56)

To apply Theorem 1 4 we need only to check that (1 50) holds
Using Lemma 2 1 and (3 9), (3 11), (3 12) 1t follows

Vo,we Vy | TyDZ Gyluy) ) |3 < B~" c(Ty D2 Gyluy] (v, w) ,
Ty Duz Gy[uy) (v, w)) < B7° I < Duz Gyluy] (v, w),
Ty D2 Gyluy] (v, w) > I CB™'[ sup (P (ow),, $),]?
ll¢¢?|€1‘ 1
Fmally, by (3 16), (3 18) and the mequality || on ||, , < Cllolly I Wl o
we get

<
<

| Tn D Gyluxl W) [7 < Cllolfaliwliiy

hence (3 50) holds
Then by Theorem 1 4 we can conclude that 1f v° 1s suitably chosen, then the
Newton 1terates (v") converge quadratically to uy(A) for any A € A

ACKNOWLEDGMENTS

The authors wish to express their gratitude to professor P-A Rawiart for helpful discussions
about the subject of this paper

REFERENCES

[1] R A Abawms, Sobolev spaces, Academic Press, New York (1975)

[2] J BaBuska, A K Aziz, “ Survey lectures on the mathematical foundations of the
finite element method ”, in The Mathematical Foundations of The Finite Element
Method with Applications to Partial Differential Equations, Ed Aziz, Academic
Press, New York (1972), 3-343

[31 J BErGH, J LoFsTrROM, Interpolation Spaces An Introduction, Springer Verlag,
Berlin (1976)

[4] F Brezzi, ] Rarpaz, P A RaviarT, Fuute dimensional approximation of non-
hinear problems Part I branches of nonsingular solutions Num Math , 36 (1980),
1-25

vol 16, n° 4, 1982



404 Y MADAY, A QUARTERONI

{51 C Ca~urto, A QUARTERONIL, Spectral and pseudo-spectral methods for parabolic
problems with non periodic boundary conditions, Calcolo, 18 (1981), pp 197-217

[6) C CaNuto, A QUARTERONI Approximation tesults for orthogonal polynonuals
mn Sobolev spaces, Math Comput , 38 (1982), pp 67 86

[7] P Davis, P RaBiNowiITZ, Methods of Numerical Integration, Academic Press,
New York (1975)

[8] D GorTLIEB, S A ORSZAG, Numerical Analysis of Spectral Methods  Theory
and Applications, Regional Conference Series 1n applied mathematics, SIAM,
Philadelphia (1977)

[9] H O Kreiss, J OLIGER, Stability of the Fourier method, SIAM J Num An,
16, 3 (1949), 421-433

[10] J L Lions, E MAGENES, Non Homogeneous Boundary Value Problems and Appli-
cations, Springer Verlag, Berhn (1972}

[111 Y MADAY, A QUARTERONI, Legendre and Chebyshev spectral approximation of
Burgers equation, Numer Math, 37 (1981), pp 321-332

[12] Y Mapay, A QUARTERONL, Spectral and pseudo-spectral approximations of
Navier-Stokes equations, SIAM J Numer Anal, 19 (1982), pp 769-780

[13] R E NickeLL, D K GARTLING, G STRANG, Spectral decomposition in advection-
diffuston analysis by fuute element methods, Comp Meths Appl Mech Eng 17/18
(1979), 561-580

[14] G SzEGo, Orthogonal Polynomuals, AMS Colloquium publications, vol 23,
AMS, New York (1939)

R A IR O Analyse numerique/Numerical Analysis



