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R AIR O Analyse numerique/Numerical Analysis
(vol 16, n°2, 1982, p 161 a 191)

FINITE ELEMENT SOLUTION OF QUASISTATIONARY
NONLINEAR MAGNETIC FIELD (*)

by Milo§ ZramaL (1)

Communicated by P G CIARLET

Abstract — The computation of quasistationary nonlinear two-dimensional magnetic field
leads to the following problem There is given a bounded domain Q and an open nonempty set R = Q
We are lookng for the magnetic vector potential u(x,, x,, t) which satisfies

1) a certain nonlinear parabolic equation and an itial condition in R,

2) anonlmear elliptic equationin § = Q — R which is the stationary case of the above mentioned
parabolic equation ,

3) a boundary condition on 0Q,

4) u as well as its conormal dervatwve are continuous accross the common boundary of R and S

This problem 1s formulated n two equivalent abstract ways There 1s constructed an approximate
solution completely discretized i space by a generalized Galerkin method (straight finite elements
are a special case) and by backward A stable differentiation methods n ime Existence and unique
ness of a weak solution 1s proved as well as a weak and strong convergence of the approximate solution
to this solution There are also derived error bounds for the solution of the two-dimensional non-
linear magnetic field equations under the assumption that the exact solution is sufficiently smooth

Resume — Le calcul d un champ magnetique quast stationnaire non hneaire en dimension deux
conduit au probleme survant  Etant donne un domaine borne Q et un ensemble ouvert non vide R = Q
on cherche le potentiel vecteur magnetique u(x, x,, t) qui satisfait

1) une certane equation parabolique non lineaire et une condition witiale dans R ,

2) une equation elliptique non lineaire dans S = Q — R qui est le cas stationnaire de | equation
parabolique ci-dessus ,

3) une condition aux himites sur 0Q,

4) u de meme que sa derivee conormale sont continus a travers la frontiere commune a R et S

Ce probleme est enonce de deux fagons abstraites differentes On construit une solution approchee
completement discretisee en espace par une methode de Galerkin generalisee (les elements finis droits
sont un cas particulier) et par des methodes A-stables de derivation « arriere » en temps L existence
et [ unicite d une solution faible sont etablies ainst que les convergences faible et forte de la solution
approchee vers cette solution On obtient egalement des majorations d erreur pour la solution des
equations du champ magnetique non lineaire a deux dimensions sous [ hypothese de la solution exacte
est suffisaumment reguliere

(*) Received 1n February 1981
(*) Laborator Pocitacich Strojd, Trida Obranct Miru 21, 60200 Brno, Tchecoslovaquie
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162 M. ZLAMAL

1. INTRODUCTION

In recent years attention has been paid in electrical engineering journals
to the computation of quasistationary non-linear magnetic field. This problem
occurs, €.g., in designing the magnet systems for fusion reactors and in rotating
machinery. In two dimensions it can be formulated in the following model
way. There is given a two-dimensional bounded domain Q and an open
nonempty set R < Q. We are looking for a function u = u(x,, x,, ¢) (magnetic
vector potential) such that

1)

ou 0 ou 0 [ ou .
u(xy, x5, 0) =up(xy, x,) in R, 1.2)
0 ou 0 ou
o_a_x:<va_)61>+5g( 6x2>+J inS, s =Q - R, (1.3)

3) u satisfies a boundary condition on 0Q,
4) u satisfies the conditions

S
[u]sz[v%:l =0 on I'=0RnN3S. (1.4
R

Here the conductivity ¢ = o(x,, x,) is a positive function on R, the reluc-
2 2
tivity v = v(xy, x,, || grad u ||), | grad u ||> = <;;zli> + <_u , 1s a positive
X, 0x,
function on Qx[0, c0). J = J(x,, x,, t) is a given current density, uy(x,, x,)
is a given function defined on R and # is the normal oriented in a unique way.
The problem (1.1)<(1.4) can be easily formulated in a variational form.
Let us, for simplicity, consider the Dirichlet boundary condition

u=0 on 0Q. (1.5)

Multiply (1.1) and (1.3) by a function v € H}(Q), integrate, use Green’s for-
mula and (1.4) and sum. We get

<c g—lf, v + a(u, v) = (J, v)12) Vv E Hy(Q) (1.6
t LZ(R)
and
2 du 0
a(u, v) = J 3 a)l: a; (1.7
Q S

R.A.LR.O. Analyse numérique/Numerical Analysis



QUASISTATIONARY NONLINEAR MAGNETIC FIELD 163

(1.6) is taken in Melkes + Zlamal [8] as the starting point for the construction
of the approximate solution.

In this paper we give two equivalent abstract formulations of the above
problem. One of them is a variational formulation generalizing the special
case (1.6). Under certain conditions we prove existence and uniqueness of
a weak solution. A problem to find a function satisfying a linear parabolic
equation in a part of the given domain and a linear elliptic equation in the
remaining part was already investigated by LadyZenskaja and Stupjalis [5].

The proof of existence has a constructive nature. We define a completely
discretized approximate solution. The discretization in space is carried out
by a generalized Galerkin method (the finite element method with straight
elements is a special case). In time we use for the discretization the only two
members of the backward differentiation schemes (see Lambert [6], p. 242)
which are A-stable. Written for the equation y = f(z, y) these are

y =yt = Ay, (1.8
3 ] i—1 1 i—2 i
Ey—Zy +§y = Af*. (1.9)

The first, the Euler backward method, is of order one, the other of order two.
A weak and strong convergence of the approximate solution U3 (extended
to the whole interval [0, T']) to the exact solution u is proved. In case of the
problem (1.1)<1.5) the result is that U3, the restriction of U® to R, converges
strongly to u, in C([0, T]; L*(R)) and U® converges strongly to u in
L2(0, T; Hy(Q)). We also derive error estimates in case that the solution u
is smooth.

2. SOME SPACES OF FUNCTIONS VALUED IN A BANACH SPACE

Let Q be a nonempty open subset of RY and k =0,1,...,1 < p £ oo.
H*P(Q) denotes the usual Sobolev space,

HY?(Q) = {veL?(Q); D*ve LP(Q) V|a| <k},
provided with the norm

v ”k,p(n) = Z | D*v ”LP(Q) :
lal<k

vol. 16, n° 2, 1982



164 M. ZLAMEL
HgP(Q) is the closure of 2(Q) in the norm || . || ge.pay, H Q) = [HE? (Q))
where 1 < p < oo and ’% + l% = 1, provided with the dual norm. If p = 2

we write briefly H¥(Q), H4(Q) and H ~*(Q), respectively.
Let X be a Banach space normed by | . ||, and let

0<T< .

For p = 1 we denote by L?(0, T'; X) the space of strongly measurable func-
tions f : (0, T) —» X such that

rT 1/p
nf||Lp(o,T;X)=U If () IlidtJ < o

with the usual p = oo modification. By C([0, T']; X) we denote the space
of continuous functions f : [0, T] - X normed by

I f lleqo,r3x = tg&’;] @) [x-

If ue L*(0, T; X) we denote by «' the weak or generalized derivative of u
(see Temam [13], lemma 1.1, p. 250).

Let A be a Hilbert space with a scalar product(.,.) and V a reflexive Banach
space, dense and continuously imbedded in H. We identify H with its dual
space. Then H can be identified with a subspace of V' so that V <« H < V",
Here each space is dense in the following one and the injections are continuous.
The following lemma will be needed in the sequel

LemMMA 1 : Let W be the Banach space
W ={v|lveL?0, T;V);veL?(0, T;V)}, 1<p< 0,

normed by | v lly = Il v o, 7y + I V' lLoro,r.vr) Then W = c([o, T]; H)
and the imbedding is continuous. Furthermore, for any u, ve W it holds the
Jormula of integration by parts

J { v Dy + {0, udy }dv = (ut), o(r)) — @(0),v0)), 0st<T.
° 2.1

The lemma is true even in a somewhat more general form and the proof
can be found in Gajewski, Groger and Zacharias [4], p. 147.

R.A.LR.O. Analyse numérique/Numerical Analysis



QUASISTATIONARY NONLINEAR MAGNETIC FIELD 165

3. THEOREM ON EXISTENCE, UNIQUENESS AND CONVERGENCE

To formulate the problem (1.1){1.5) in a general way we introduce several
notations and hypotheses.

1) Let Hy, M = R, S be two (real) Hilbert spaces with scalar products
(+,+)y (the induced norms are denoted by |. |,,) and let the Hilbert space
H = Hy x Hg (with elements [vg, vg], vg € Hy, vs € Hg) have the scalar pro-
duct (.,.) such that the norm | v | = (v, v)'/? satisfies

ol Slogle +lvsls Sclo| VoeH 3.1

(c here and in the sequel denotes a positive constant not necessarily the same
at any two places). Further, let ¥ < H be a separable reflexive Banach space
normed by | . |. Finally, the vector spaces V), ={o]|w = vy, veV}

(M = R, S) and I.7R ={w|o =y veV, vg = 0} should posses the follow-
ing properties : V,, are subspaces of reflexive Banach spaces B, = H,,
normed by | . ||, it holds

Mol Slogllg +llvslsScloll WweV, (3.2
V 4 the closure of ¥ in By, is continuously imbedded in Hp, i.e.

lolg Scllolly YoeVg, (3.3)

C
and Vyisdensein Hp.

Example : Let Q, R and S be domains from section 1 with Lipschitz boun-
daries. We choose H, = L*(M), (u, v}y = (ou, )12k Where o€ L*(R),
o 204 > 0, (U, 0)s = (U, )25, H = L*(Q) (uy, is the restriction of u to M),

V=HyQ), Va=HiR), Vi={olocH (R)0horm=0},
By =H'B®), |.lg=1-lmg, Vs={0locH'S), 0o s5=0},
Bs =H'S), l.ls=1-lae-

Remark 1 : We set H = Hy if Hg = ¢. The assumption 1) is to be under-

stood as follows : There is a separable reflexive Banach space ¥V normed by
|l . | which is dense and continuously imbedded in H.

__Remark 2 : 1t is easy to sec that 12 r Is a closed subspace of Bg. Further, 12 R
Vg and Vg, being closed subspaces of reflexive Banach spaces By and B,

vol. 16, n° 2, 1982



166 M. ZLAMAL

respectively, are reflexive Banach spaces, and V is dense in H, because
I;R < Vg
We identify Hy with its dual by means of its scalar product (.,.)g. Then Hy

can be identified with subspaces of ¥ and I;’R and we have inclusions
Ve< Hy < Vi, Vepc Hyc Vi (3.4)

where each space is dense in the following one and the injections are conti-

nuous. Furthermore, the scalar product { .,. >, in the duality between Vi
and V is an extension of (., .)g, L€

{uyvdp =W v)g if ueHy, veVy.
We denote the scalar product between V' and V by
Coed
and between V§ and Vg by
Coye D

1_,et AM(u), M = R, S, be two, in general, nonlinear operators from VM to
V' with the following properties :

2) A™(u) are hemicontinuous, ie. A — { AM(u + Av), w >, are continuous

functions on the interval (— o0, c0) Vi, 1, we V,,.
3) It holds
| AM@W) ||, Scllullyyt VYueVy (3.5
where
l<p<oo.

4) AM(u) are monotone, ie.
CAM@u) — AM@),u — 0>y 20 YuveV, (3.6)
and A4°%(u) is strictly monotone in the following sense :
CASwW) — AS@W),u —v)s>0 VuveVs, u#v, u—ve Vos 3.7

whereI;s ={o|lo =v,veV,v, =0}
The first of the above mentioned formulations is the following :

Problem P : Given
fMeLl”0,T;V,); M=RS, and uye Hy (3.8)

R.A.LR.O. Analyse numérique/Numerical Analysis



QUASISTATIONARY NONLINEAR MAGNETIC FIELD 167
find ue Wy = {ulueL?(0, T;V); uge L¥(0, T; V%) } such that

B %) = X, O = w6, (3.9

AS(ug) = f5. (3.10)

Remark 3 : If H = H,, then we denote 4 ®(u) by A() and the assumptions 2,
3, 4, are to be understood as follows : 4(u) is hemicontinuous, monotone and
bounded, i.e. | A@w) ||, < ¢ |l u|?~*. The formulation of the problem P reads :
Given feL?(0,T; V') and u,e€ H find

ueW ={uluel”0, T;V); W eL”0, T;V)}
such that

%+A(u)=f, u(0) = u, .

Remark 4 : We could leave the requirement uj, € L? (0, T ; V') because due
to (3.9) it is automaticaly satisfied. From u € Wy it follows

upe{w |0 e L0, T; Vy); 0 e L0, T; Vi) } .

By lemma 1 uy € C([0, T]; Hy) and the initial condition u(0);x = u, makes
sense.

We introduce an equivalent variational formulation of problem P. To this
end we define a form a(y, v) on V x ¥V which is linear in v and, in general,
nonlinear in « and a functional f from L?'(0, T; V') :

a(u, v) = { A™uy), vg D + < A5ug), v d>s Yu,veV, (3.11)
CLoy = fRf oo+ 50505 WweV. (3.12)

The form a(y, v) possesses the following properties :

a) it is hemicontinuous on V x V, ie. A = a(u + Av, w) is a continuous
function on the interval (— oo, 00) Yu, v, we V.

b)
lawv) | S cllulP" o] VYuveV, (3.13)

¢) a(u, v) is monotone on V x V, ie.

a,u —v) —alv,u —v) =20 VyvelV. (3.14)

vol. 16, n° 2, 1982



168 M. ZLAMAL

At this place we add the last assumption which we shall later need :
5)

aw,v) Z a || v||? or a(v,v) = a[v)’ VYveV, o =const >0. (3.15
Here [.] is a seminorm on V such that
[V] + A oglg = Bllvl VYveV, AP =const >0. (3.16)

Problem P' : Given fMeL?(0,T;V,), M =R, S, and uye€ Hy find
u € Wy such that

%(uR,ZR)R +auz)y=<{fzy m 2'(,7T) vVzeV, (3.17)
w0)g = uq . (3.18)

Here a(u, v) and f are defined by (3.11) and (3.12), respectively.

Remark 5 : If H = Hj then the problem P’ reads : Given f € L?(0, T; V")
and u, € H find u € W such that in 2'((0, 7))

%(u,z) +au,z) = f,z) VzeV, u0) = u,.

TucoreM 1 @ Let the assumptions 1) and 3) be satisfied. Then the problems P
and P' are equivalent.

Proof : If u is a solution of problem P then (3.9), (3.10), (3.11) and (3.12)
imply

<%,zk> tawz) =<{fz> VzeV. (3.19)
R

All terms in (3.19) belong to L7 (0, T) and for h(¢) € 2((0, T)) we have

T d T
J <_dut£’ZR>tht=—J (ug, zp)p I dt
0 o

by (2.1) as zx k' € L' (0, T; V%). Therefore, it holds (3.17).
Let u be a solution of problem P’. Choose z = [0, 0], ® € IO/R in (3.17).

Then by (3.11) and (3.12)
d . o
E (uR7 m)R = < fR - AR(uR)a ® >R In 91((0, T)) Vo e VR .

R.A.LLR.O. Analyse numérique/Numerical Analysis
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The function G(#) =(u(t), ®) is continuous on [0, T] because uge C([0, T]; Hy)
and the function g(r)«= { f* — A®(ug), ® > belongs to L7(0, T) (due to
S A®ug) e L7 (0, T: Vy)). Hence,

F(t) = J: g(t) dx

[

is an absolutely continuous function on [0, T], consequently F’' = g a.e. and

the distributional derivative of G — F is equal to zero (due to the above equa-
t

tion). Thus G(t) = ¢, + J g(t) dv and evidently ¢, = G(0) = (u,, ®),. We
[
have proved that

(@D ®)g = (U, ®)x + <J [/% — 4A¥up)] © > dtv Voe I;R .
0 R

Asu(t)p € HgVt [0, T], u, € Hy and Vv  1s dense and continuously imbedded
in Hy it follows

u(On = o + J [F% — ARGug)] de
0

taken as elements of Hp.
Further, f® — A®(ug) € V} and Hy is dense and continuously imbedded
in V . Hence

24
u(t)g = uo + J [fR — 4%(ug)] dv taken as elements of V},
0

and by i) of lemma by Temam [13] (p. 250) it follows (3.9). Finally, as
~d/dt(ug, zg)g = U, Zg Ir >

(3.17), (3.11) and (3.12) imply (3.10).

Now we define a completely discretized approximate solution of problem P’.
The discretization in space is carried out by means of a generalized Galerkin
method (see Ne€as [9], p. 47), in time we use the schemes (1.8) and (1.9). They
are written in a common form

M=

%_; ¥ = A (3.20)

j=0

vol. 16, n° 2, 1982



170 M. ZLAMAL

where

1, op=—1 if k=1
3 1
‘2‘, 011=—2, OL0=§

(3.21)
if k=2

We assume that there exists a family { V" }, he(0, h*), h* > 0, of finite
dimensional subspaces of V, such that

}]iI(l)’l dist(V",v) =0 VoeV. (3.22)

We have three important remarks
D If a family {V"}, n=12..,h > h, >, limh, =0, with

lim dist (V™*, v) =0 Vv e V exists, then defining V* = V* for he(h,,, h,]

we have a family with the above property.

2) A family V" with the property (3.22) always exists under the assumption
that ¥ is a separable Banach space. In this case there exists a sequence
{@; }21, 0, €V, such that for all n = 1,2,... the elements @,, ¢,, ..., @,
are linearly independent and the finite linear combinations of ¢;’s are dense
in V. We take for V" h, = 1/n, the space of all linear combinations of ¢,,
P2y oees Oy

3) In case that V' is a Hilberti space, Hy{Q) = V = HYQ), and Q is a poly-
hedron, all in practice used finite element spaces have the property (3.22).
We consider the boundary value problem : find z € V such that

ag(z, @) = ag(v, ) VoeV

where
_ Y du 0@
ao(u, ) = J'Q [l; a—x_, a—)c—, + u(p:l dx

and v is a given element of ¥ (of course, z = v). If v, is the finite element approxi-
mate solution and the finite element spaces satisfy certain requirements then
hLﬁ(§1+ | v = v, lgq = O (see Ciarlet [2], theorem 3.23, p. 134); & is the maxi-
mum diameter of all elements. _

We introduce At = T/r, r being a natural number and consider the parti-
tion of the interval [0, T] with nodes

t,=iAt, i=0,..,r.

R.A.ILR.O. Analyse numérique/Numerical Analysis
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We set

o1
I ~ At f@deeV', i=1,.,r (3.23)
tl-

1

anddefine U'e V" i =1, ..., rby

k
(z oy-; UR™, ZR) + Ata(U% z) = At flz) VzeV*, (3.24)
R

j=0

Remark 6 : Instead of u, we can take any approximation u}, of u, such that
lup — ug g = 0.

We shall later prove that for each i (3.24) is equivalent to a nonlinear sys-
tem F(a) = 0. Here F : R* — R% (where d, is the dimension of V") is conti-
nuous, coercive and strictly monotone from which existence and uniqueness
of U' follows (see Ortega and Rheinbold [10], 6.4.2, 6.4.3). We extend the
approximate solution on the interval (0, T]. The extended approximate solu-
tion U®, & = (h, At), is the step function

U = Uiin(t,_pt]; i=1,.r, &=(hA?) (3.25)

THEOREM 2 : Let the assumptions 1)-5) be fulfilled, let f™ e LP(0, T ; V},),
M=R S 1<p<oo,l/p+1/p =1, and uye Hy. Then there exists a
unique function ue Wy = {u|ueL?(0, T;V); uye L (0, T; Vi) } satisfy-

ing (3.17) and (3.18). Further, the approximate solution U® defined by (3.24)
and (3.25) exists, is unique and

U >u in L0, T;V) weaklyif &—0. (3.26)
If ue C([0, T]; V) and the form a(y, v) is uniformly monotone, i.e.
auu —v) —av,u—v) = p(lu—vl|) VuveV 3.27)

where p is a strictly increasing function on the interval [0, o) with p(0) = 0,
then

T
lim || ug — U,§ “C([O,T];HR) =0, lim J p(ll u — Us “) dt =0.(3.28)
6—0 30 o

Remark 7 : If H = Hy then the assumptions 1)-5) are the same as those of
theorem 1.2 and 1.2bis in Lions [7], p. 162-163.

vol. 16, n° 2, 1982



172 M. ZLAMAL

Proof of uniqueness : Let u', u* € W satisfy (3.17) and (3.18). Then they
satisfy (3.9) and (3. 10). From (3.9) we get

(k= ik — 1 )+ ARG — ARGk — 1 D = 0

and #*(0); — ©?*(0); = 0. Integrating in (0, /) we obtain by means of (2.1)

and (3.6) | u'(D)g — 1*(D)g |2 < 0. Hence u} = 2. It follows ul — ute V.
From (3.10) we get

S¢,,1 S(,,2 1 2 _
(A ug) — A%us) us — us )s =0
andby (3. D us = u?,ie v = u’

Proof of existence and of convergence : It will be carried out under the assump-
tion a(v, v) = afv]”. The case a(v,v) = o || v ||? (see (3.15)) can be treated
similarly. We are using the compactness method (see Raviart [11], [12], Lions [7]
and the references given there).

a) First, we consider U® defined by means of the scheme (1.8). In this case
U' is defined by

(Ui — U Y zp)r + Ata(Ul z) = At fz) VYze V", (3.29)

ug

uo .
Let { ¢/ }4_, be the basis of V, (for the sakcz of simple notation we write ¢’

and d instead of ¢/ and d"). Setting U’ = Z o; ¢/, denoting

ji=1
gp = (Uli{ul’ (pf{)l( + At( fia (pp > » 9= (gla AL gd)T

(T written as a superscript means transposition of a vector),

d
o = (0yy -oes %)T, Fp(a) = ( locj ©ks (pﬁ)k +
=

d
+ Ata( Z o; o', (Pp> , Fl) =(F,, .., F)’
=1

we see that (3.29) is equivalent to the nonlinear system of d equations
Fla)=g. (3.30)

R.A.LLR.O. Analyse numérique/Numerical Analysis
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The mapping F is continuous because of hemicontinuity of a(u, v). It is strictly
monotone, ie.

@ — B (F@) — F@) >0 Ya,pecR’, a#§. (3.3
d
Ifv = ) B, ¢’ then the left-hand side of (3.31) is namely equal to
=1

lug — vg > + Atfa(u, u — v) — a(v, u — v)].

Either is up # vg, then (3.31) is true. Or uy = vg. Then the left-hand side of
(3.31) is equal to At[a*(u, u, — v,) — a*(v’, uy, — vy)]. As u, must be different

from v; and (due to ug = vg) ug — v, € f/s the inequality (3.31) follows from
3.7.

Finally, we show that the mapping F(a) is coercive, i.e.

a’ F(a)
lall= | o

= 4+ (3.32

where || o || denotes for the moment the Euclidean norm of a. Because R‘

is a finite dimensional space and { ¢’ }4_, are linearly independent | o || is
d
'21 o; ¢ ” )

=

To prove (3.32) we estimate

equivalent to | U | = l

o F(o) | Ug 12 + Ata(U, U) | Ug 12 + aAf[UY
Ty = <® ToT 2 ) ——77
| U & + [UP | U & + [UP?
2 A= 2 AT T

(the last estimate is true due to (3.16)). Weset | Ug | = a,[U] = b,a + b = x.

.. . . a® + b
If | U| — oo then x — oo so that it is sufficient to prove lim

XxX—oCc

= 00.

Letfirstp = 2. If b = 1 then

a2-1‘-b"’>a2+b2 1
> =X.
X = X 2

v

If b <1 then

a2+b”2(x—b)22(x—1)2'
x = x T x
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Letl < p <2 Ifa = 1 then

2 — q)? Y 2
a +b_ ad+(x a)>c(a+x a)

> > =cxP71;
X = x = X ’
ifa < 1then
@ +(x—aPf_ (x—1y for x> 1
X = X =
Evidently
a’ + b
Iim = 0.
X— X

b) We derive some estimates of U'. We choose z = U"' n (3.29) and sum.
We get using (3.23)

J J
| Uk Iz + 20 At Y, [U)? S| ULIZ +2At Y a(UY, UY)
1=1 =1

Mg

£2

t,
j AUt +uglh.
1 Jn

As

1y

zj CHUSdse 3 [ 1S 1L (U7 +| Vgl

J 1 t , 1/p’
éczeAt“p[U‘]g J ”f“idt} +
1=1 ti—1
b 1/p'
e At””IU}zIR{J nfn;dt}
=1 -1
J . ¢
S cePAt Y [UTP + I [
=1
7 1/p
+ C{AI Y 1 Uk |fz} I f lerorw)
=1

J J 2/p
§ocAtZ[U’]”+C[{AIZIUHﬁ} +1]
=1 =1
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is true if we choose ce? = o (the inequality a.b < a?/p + b”/p’, a, b = 0,
Holder’s inequality and the inequality a < (a* + 1) are used), it holds

Jj . j ) 2/p
|U};I§+aAtZ[U‘]”gc[{AtZ|U§|§} +1:I, (3.33)
i=1 i=1
thus
) J )
IU,’(fzgcAtZ|U,‘(lﬁ+c, j=1,..,r. (3.34)
i=1

The discrete Gronwall inequality gives
| Ukl £ ¢, i=1.,r (3.35)

where, what we want to stress, ¢ depends neither on 4 nor on At. From (3.33)
itfollows(dueto || U || £ c{[U] + | Uglr })

Aty U P sc. (3.36)
i=1

With respect to the definition (3.25) of U® the inequality (3. 36) is equivalent to

1 Ud "LP(O,T;V) =c. (3.37

From (3.35) it follows
I U? ”L.,,(O,T;HR) sc, (3.38)
l U¥T)x |R <ec. (3.39)

¢) Let h, At"> 0 for n =1,2,... and

h,—>0, At">0 if n-> o
and consider the sequence { U}, with 3, = (h,, At"). For simplicity, we
leave out the subscript # and write 3, 4 and At instead of 3,, 4, and A¢”. Then
(3.37), (3.38), (3.39) and well known compactness theorems (see, e.g., Cea [1],
p. 24, 26) imply : There exists a subsequence, denoted here again by US®,

such that

Ud > u in LP(0, T; V)  weakly, (3.40)
U ¢ in L*(0, T; Hy) weakly*, (3.41)
U¥T)g = & in Hy weakly . (3.42)
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It is easy to see that & = ug. (3.41) means that
T
f (0, U3 — &)pdt - 0 Yoe L0, T; Hy).
0

Choose ® € L”(0, T; Hg). Then on one hand ® € L*(0, T'; Hy), on the other
hand (o, vg)g € L7(0, T; V’). From (3.40) it follows

T
j (@, Uy — ug)pdt -0 VoeLP(0, T; Hy),
0

consequently & ="u; and

Ui - ug in L0, T; Hy) weakly*. (3.43)

In addition, a(U®, v) € V' and if we denote it by ¢ %3, v’ then
Ix® e Scl U Pt
Hence %€ L7 (0, T'; V') and [ X3 |l ,r;v < ¢. Further, MUY, w)e V),

and denoting it by < x*? o >, we find | ¥*°® || o017y = ¢ We can
extract a subsequence of U® (denoted here again by U?®) such that

x® - x - in LP(0, T; V') weakly,
XM > qM in LP(0, T; V) weakly, M = R, S.
This means that (due to reflexivity of ¥ and V,,)

T T T
J (Xf’,v>dt=f a(Uﬂv)dt—»J‘ {xv>dt Yoel?0,T;V)
0 0

0

T T
f CAM3, @ Y, dt = J AU, o) dt —» (3.44)
0

0

T
—>J (M, 0>y dt YoeLP(0,T;V,,) |

0 f

and

T T
J <x,v>dt=J [<x® vpdor + (x5 vsds]dt YoeLP(0, T; V). (3.45)
0

0
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d) Consider a function A(f) e C*([0, T]). Let
Wo=ht), i=0,.,r, h*' =h = KT)

and let us define two functions hy,, A, (see, ¢.g, Lions [7], p. 435-436) :

hy =h*Y in(t, b, i=0,..,7r—1,

~ . -t . .
hAt = hl+1 + %(hwz _ hx+1) in {zia ti+l]’ i = 0’“_’ r—1. (346)
We also define f,,e L”(0, T; V') :

fae=f" in(,t;ny), i=0,..,r—1. (3.47)

We set z = h' 2" z" e V", in (3.29) and sum. As
r r—1
.Zl (Up — Ug 'z b = — Z,l (Ugs zidg (1 = B — @°, zp)x B +
+ (Us(T)Ra ZRe
we get (due to (3.25)) that
T

T T
—J (U, 28 iy d +J AU, 2 by, di = j a7 by dt +
0 0 0
+ (o 2 HAD — (US(T)go 2D HT). (3.48)

Now, let z € V be given. We choose z" € V* such that || z* — z | —» 0 and we
pass to the limit in (3.48). We get, which is easy to prove,

T T T
—J (uR,zR)Rh’dZ+J (x,z}hdt=J {fizYhdt +
0 0

0

+ (Ug, zg)g MO) — ((, zg)g M(T) Vhe C*([0,T]), VzeV.
Restricting & to 2((0, T)) we see that (3.49) gives

(3.49)

d .
7 Wr 2k + (%2> =<fz> nP(0,T) VzeV. (3.50)
Now, let @€ Vg, zg = 0, zg = 0 so that ze V. (3.50) and (3.45) imply

%(ux>w)n+<xk,w>R=<fR,w>R in 2'((0, T)) Vweﬁk.
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Using the notation

G(0) = g, @), 9(0) = SO — 15D, @ Dg (3.51)

we easily see that G(¢) e L?(0, T), g(¢) € L*'(0, T). The reasoning used in the
T

proof of theorem 1 gives again G(¢) = ¢, +f g(t) dt. To determine c,
0

we choose in (3.49) A(r) e C*([0, T]) with A(0) = 1, A(T) = 0 and obtain
T T
— f GH dt = [ ghdt + (ug, ®)g .
Jo Jo

Integrating by parts the left-hand side and taking into account that G'=g a.e.
in (0, T) we come to ¢, = (uy, ®)g. Therefore

(g, ©)r = (g, ®)g + <j [f® = "] dr, co> Yo e IaR.
0 R

It follows as before

T
u(g = uy + J [f® — x®] dt taken as elements of V’,
0

thus uy € V5,
up + x* =%, 3.52)

u € Wy, the initial condition makes sense and it is fulfilled. Further, (3.50),
(3.45) and (3.52) imply

v =15, (3.53)
From (3.52), (3.53), (3.45) and (2.1) we get

T T
j<x,u>dz=%|uo|§—%|u(T)R|i+f Chuddi.  (3.54)
0 0

Now we return to (3.49). Integrating the first term by parts and using (3.50)
we obtain

— ((T)g, zr)r H(T) + (ug, zg)g HO) = (g, zg)g h(0) — (C zg)x M(T) .
Hence
C=u(T)y. (3.59)
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e) We prove the existence of a solution if we show that { y, v > = a(y, v).
We use an argument from Lions [7], p. 160-161. From monotonicity of a(u, v)
it follows

T
X% = j [a(U®, U® — v) — a(v, U® — v)]dt =0 YvelL”0,T;V).
0

(3.56)

Putting z = U' in (3.29) and summing one gets

T T
j a(U",U'S)dt=J { fan U“)dt+%|u0|§—%|U5(T)R z —
0

0

r
Y | Uk — US' R
i=1

Nf =

Hence
T

T
X“gf <JA,,U*‘>dt+§|uoli—§luﬁ(r),<|ﬁ—f a(U*, vy dt

0 0

T
—J a(v, U® — v) dt,
0

from which (lim sup — | U¥(T)g |2 £ — | (T) | due to (3.42) and (3.55))
and from (3.40), (3.44), (3.54)

T

T
limsupX“éJ (x,u—v)dt—J\ alv,u — v) dt .
0

0

Therefore

T T
J <x,u—v>dt—f alv,u —v)ydt =20 Yvel?,T;V).
0

o

Consequently (see Lions [7], p. 161) { %, v > = a(u, v).

/) Wehave proved that if there exists a family { V* } with the property (3.22)
then a subsequence of { U® } converges weakly in LP(0, T; V) and its limit
u belongs to Wy and satisfies (3.17) and (3.18). From the proof and from
uniqueness it is obvious that from any sequence { U® } with §; — 0 we can
extract a subsequence converging weakly to u. Therefore U® — u if 8 — 0
weakly in L?(0, T; V). From separability of V it follows that a family { V" }
with the property (3.22) exists. Therefore besides the uniqueness and existence
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we have proved (3.26) in case that U?® is constructed by means of the scheme
(1.8). We now prove (3.28) in a way similar to that used by Gajewski, Gro-
ger and Zacharias [4] to prove the strong convergence of a semidiscrete Galerkin
solution of a parabolic equation (p. 209-210).

2 Let
Ze = {ulueC0, T; V); uzel?©,T;Vy)},
I lize = It llcqoryvy + I Uk llie 0,175 -
We shall make use of the following
LemMA 2 : If the family { V"} has the property (3.22) and h, — 0 then -
U ci(o, 135 v
is dense in Zj.

Proof : First we show that C*([0, T]; V), and consequently also
ci(fo, T1; V),

are dense in Z,. Let u € Z;. We extend u(?) to the interval (— oo, 00) setting
() = u(r) in [0, T), #() = u(0) for ¢t < 0, @#i(t) = w(T) for ¢t > T. Then

d d

ZiDg = Uy 0 (0, T) and Zi(t)y =0

for 1 < 0 and ¢ > T. Further, let #%(¢) be the mollifier of #(?), i.e.

() = ¢! Jm il(t) p(t—;—t> dr

1

0, suppp =[—1,1] and j p(y)dy =1.

-1

where

peCP(RY, p

v

Then

A

1
J [il(5) — it — ep)] p(¥) dy

-1

| u— ut "C([O,T];V) = }

C([0,T)V) =

< max  max |@(n) -t —¢ey)|,>0 if e—>0"

0<tgT —lgyél
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because #(?) is uniformly continuous on [— 1, T + 1). As

G0 = |

-1

1

@t — ey p(y) dy = &7 J (1) p‘(’ — t) dv

&€
- ©

d ..

also || up — — i .

R=dt ™R\ o rvoy — 0, hence | u — #® - 0.
LP'(0,T;VR) Zr

Now

lvlize Sclv ”C‘([O,T];V) Yoe CI([O, T; V)

and U CY([0, T]; V™) is dense in C*([0, T]; V) (the proof is the same as
n=1

the proof of Lemma 1.5 in Gajewski, Groger and Zacharias [4], p. 209). Hence

U CY([0, TT; V™) is dense in Zj.

n=1

Letv e C*([0, T]; V"). One can prove that for vclose tou, say || u—v |z, < 1,
it holds
T

Tp(lu— U )dr =
o -

r ti . 1/p
sefiu-sta+[5 [ au-wral"h e

We want now to show that

1=

Y?= max |u§—U§]§+j
x|

e

lim ¥® = 0. | (3.58)

Assume that Y? does not converge to zero as & — 0. Then there exists an

g > 0and {3, >, withd, = (h,, Ar") > 0such that Y3~ > & From Lemma 2

it follows that there exists a sequence { v/}, v/ € V" where { h, }72, is

a subsequence of { A, }2, such that lim | u — v’ ||, = 0 (we choose v'
Jj—=

suchthat || u — v' ||z, < 1,v' € CY([0, T]; V*);as { h, },,, is a subsequence
of { h, }2, Lemma 2 implies that | C*([0, T]; V™) is dense in Zg, hence

n>ny
there exists v*> € C*([0, T]; V"), n, > n,, such that || u — v* ||z, < 1/2, etc.).
Setting v = v/ in (3.57) we get

Yo < o(1) +{ZJ |l w — ||sz}
ti-1

i/p
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The second term on the right-hand side converges also to zero because u(z)
is uniformly continuous on [0, T in the norm | . ||. This is mn contradiction
with our assumption.

To prove (3.28) we remark that

max |ug — U |z = lu(t*)R — Ui lg> 1€y, 1]
te[0,T]

for some s, 1 £ s <r. Then
5
max |up — UR| < |u(t¥)g — i |x + max |up — Uplg =0

because u, is uniformly continuous on [0, T] in the norm | . |.
h) It remains to prove (3.26) and (3.28) in case that U* is defined by

3 - | - . :
<§U;(—2U;(1+'2'UR 2,2R>R+Ata(U,z)=At<f,z> Vzth_

Ug = Ug' =1,
(3.59)
We briefly mention some changes in the proof.
Ad b) We set z = U' in (3.59). Because

3 13 11— l L 13 5 i = 1 1=
(EUR—ZUR ! +7):UR Z’UR>R=Z|UR1?{_|UR 1|12e_Z_|UR zlit_

— 1— | el 1 3 1= i—
— (Up U e + (U L U P +Z| Up —2Ug "+ U2 R (3.60)

N - 1 -2 5 1 _
Z(gUk~2UR‘+§UR2,UR>RzZIU{<|ﬁ+ZlU&‘Iﬁ—

- |
— Uk U Dr = 5luolz (3-61)

(this inequality is a special case of the inequality (2.16) by Zlamal [14] which
is true for any A-stable linear two-step method of the second order). From
(3.61) we get (3.37), (3.38) and (3.39).

From (3.61) it also follows another inequality :

2

3o B 1 L3, 1,
l;](EUR—zukl'i"iURZ,UR>R2_§|uO|%(+§|'2'UR_§URl

R

(3.62)
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(3.62) and (3.39) give easily | Uy ! | < C. Hence, we can extract a subse-

quence of U?, still denoted by U®, such that it holds (3.40), (3.43), (3.42)
and

Ui ' >1n in Hg weakly. (3.63)
Ad d) We extend h,,(1) setting hy(t,.,) = # in (¢, t,,,]. As
- (3 i- | i 3 ¢ i 7 7
Z <§ Up—2 Uy s 5 Ug 2, 271) h=— 3 Z (Ug Z;'z)R [hAz(ti)_hAt(ti—l)]
i=1 R i=1
1] & . ~ ~ r— 3 r— r
+ 3 Z (Uks zR)r [Aatis 1) —hy(t)] +(Ug Y 2k <§ 1 —2h >
i=1
3 r, 1
+ E(U,'(, ZRr M+ j(uo’ Z;'()R (W —3h')
it holds

3 (7 ~, 1 (" -,
-3 J (US, z8)g had) dt + 3 J (US, z8)g At + AD) dt +
0 0
T T 1
+ f a(U?, 2" hy0) di = J a2 halD) At + 5 (o, 20 G 1 = )
0 0
r—1 h 3 r—1 r 3 r h r
— (Ug™ " zp)r ih —2h —'i(URaZR)Rh .
Passing to the limit we obtain

T T T
—J (uR,zR)Rh’dt+J (x,z)hdt=J {fizyhdt +
0 0 0

(a2 HO) — (3E 320 ).

Instead of (355) we get
_3 c — 1 =w(T 3.64
2 ) n= u( )R . ( . )

Ad e) Setting z = U’ in (3.59), summing and using (3.62) one derives

! ! 1 13 1 2
La(U*", U“)dt§L (fA,,Us)dt+§|uo|§—§‘§U,’(—§UR'1

R
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and due to (3.64) again

T

T
limsupX“§f (x,u—v)—J a(v,u — v)ydt YoeL?(0,T;V).
4]

0

Ad g) We use (3.61) and the inequality
] i
%|m{z Iz + j [a(w, u — U®) — a(U% u — U®)]dt < J [a(u,u — U®) —
0 0

1 J . _ 1 . :
a(US u — Lrﬁ)}dt+§im§i§+z ( 0);(_2&);(1-}-50)}(2,0)!1( .
i R

4. THE TWO-DIMENSIONAL NONLINEAR MAGNETIC FIELD
We apply Theorem 2 to the problem (1.1)-(1.5). Let
ce L®(R), c=20,>0 4.1

and letdQ, R be polygons. We choose the spaces Hy, H, etc. as in the example
introduced at the beginning of section 3. Then the assumption 1) is satisfied.
We consider a regular family of triangulations @, (see Ciarlet [2], p. 132)
covering Q and satisfying the assumptions of theorem 3.2.3 from [2]. Then
the family { V*} satisfies the condition (3.22). The operators 4™(u,,) (in
the sequel the subsript M = R, S means restriction to M and will be often left
out) and the form a(w, v) are :

i=1

2, 0 Ou 2 Ju Ov
A = = ¥ 5 (vMa—;‘> a(, v) = Lv Y o & @)

Concerning the function v(x,, x,, £) we assume :

a) V& € [0, o) the function (x,, x,) = v(x,, x,, £) is measurable on Q and
for almost all (x,, x,) € Q the function & — v(x,, x,, £) is continuous in [0, c0)
(Caratheodory’s property);

b) V€ e[0, c0) and for almost all (x,, x,) € Q, v(x,, x,, §) is bounded
from above and satisfies for almost all (x,, x,) e Q

Ev(xy, X3, &) —Mv(x, X5, 2§ —m) V=220, o=const >0.
4.3)
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Then the assumptions 2)-4) are satisfied with p = 2 (see Gajewski, Groger
and Zacharias [4], p. 68-71). (4.3) implies that v(x;, x,, &) = o > 0 for
almost all (x;, x,) € Q and V€ € [0, c0). Therefore the assumption 5) is also
satisfied with p = 2 and, in addition,

au—v) —alv,u —v)y=ZPlu—v IIf,lm, Yu,ve Hy(Q), B>0 (4.4

ie. a(u, v) is uniformly monotone with p(§) = B£2. Concerning the data J
and u, we require

JeL¥0, T; LXQ)), u,e L*(R). 4.5)

The equation (3.25) can be written as follows :

k
(o Yooy U, z) + Ata(UY, 2) = At(J', 2)p0q) VZE V"
ji=0 L%(R) - (46)

Ug' = Ug =1

where

_ L
J = A7 t ‘J(.,l)dt.

THEOREM 3 : Under the above introduced assumptions there exists a unique

Sfunction u € Wy which is the solution of the problem (1.1)-(1.5). Further, the
approximate solution U®, defined by (4.6) and (3.25) exists, is unique and

U >u inL*0, T; H(Q)) weaklyif §—0. 4.7
If ue C([0, T]; H5(Q)) then
gi_{% lu — U lleqo,rnzomy = 0, f],i_l:% lu—U° lL20,;m 300 = 0. (4.8)

We derive now error bounds under assumption that the solution u is smooth
enough. We restrict ourselves to triangular elements and to piecewise linear
trial functions which are mostly applied in practise even if the same approach
gives error bounds for higher degree shape functions. We take into account
only triangulations which consist of triangles belonging either to R or to §
and which form a regular family.

In applications, the coefficient v(x,, x,, £) is a piecewise continuous func-
tion of x = (x,, x,). Every discontinuity in x along a boundary of a subdomain
leads to a natural boundary condition of the form (1.4). We consider a model
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problem assumming v to be continuous in R and in S for all § € [0, c0) with
discontinuity along I' = R n 0S. We add two more assumptions :

| Ev(xy, X3, &) — MV0xy, X5, M) | S LIE — M| Vg Me[0, ), (x;, x,) ERUS
4.9)

JeC(0, T1; LXQ), (4.10)

and investigate first the approximate solution constructed by means of the

scheme (1.8). The righ-hand side of the defining equation will not be the
same as in (4.6). U' is now defined by

(0 AUY, 2)12ky + Ata(UY, 2) = AN(JY, 2)2q) VzeE V" 4.11)

where AU = U’ — U'™! and Ji = J(., t).
The initial condition is
UO), = u! @.12)
where u} e V% = (0 |® = vg, ve V") is any approximation of u, such that
| o — ug 2wy < Ch | g 1w, - (4.13)

Remark 8 : If uy € H*(R) we can take for u% the interpolate of u,. If u satisfies
(4.14) then u° must belong to H(R) and the orthogonal projection of u, in
L*(R) onto the subspace V% has the property (4.13).

THEOREM 4 : Let the above assumptions be satisfied and let the exact solu-
tion u be so smooth that

uy € C([0, T]; H*(M)), M =R S, «'eL*0,T; H(Q)), (4.14)
upe L*0, T; V7). 4.15)

Then for the approximate solution defined uniquely by (4.11) and (4.12) it
holds

r . . 1/2
{At Y U — U |1,2,l(,,,} = 0(h + Af). (4.16)
i=1

We shall make use of a little modified approximation of Clément [3]. Keeping
all notations of Clément we choose p = 1 and y,(p) = p(Q,) where Q; is a
node. The hypotheses H,, ..., H, of Clément are satisfied (see also Ciarlet [2],
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p. 145 and 130). The approximation # of a function u € L*(Q2) applied in the
sequel is defined by

i= ¥ 2@ o+ T p@o+ 3 2[oFQ) +pQ@] 0. @17
QieR S QieI'0

i€

Here T° = 0R N 3S — 90Q, ¢, is the basis function corresponding to the
node Q,, p; is the linear polynomial which is the best approximation of » with
respect to the norm | . ||,2s, and S; is the support of @; (S; is the notation
of Clément and has nothing to do with the domain S). Evidently, if Q, e M
the support of ¢, lies in M. If Q, € I'® we consider the supports of ; either
in R or in S and denote the best approximations of u by p} and p$, respecti-
vely instead of by p,. We denote by | . |y« the seminorm

{J > lD°‘u|2a'x}”2
M lal=k

LEMMA 3 : If ue Hy(Q) then die H(}(Q) and

and introduce :

| u —a “LZ(Q) = Ch| u |H1(n)- (4.18)

If, in addition, uy, € H*(M), M = R, S, then

|u—a ”HJ’(Q) < Ch*J Z S|“ |H2(M)a j=01. 4.19)

M=R,

Proof : i e H}(Q) is obvious because in all sums in (4.17) the nodes lie
in Q. To prove (4.18) and (4.19) we use the same technique as Clément used
to prove inequalities (1) and (3) from his paper with one change. If the node
Q, belongs to I'° then instead of making use of | u |, ., = 0 (see [3], p. 83, the
sixth line from above) we estimate as follows :

S
| PR = Pl loe, = 1R —u+u—p}loe SIPF —ttlor, + 107 — sl -

Proof of theorem 4 : From (4.14) and (3.17) it follows

' (), 02)p2r) + au(®), 2) = (J(., 1), 2) 2 In[0, T] Vze Hy(Q). (4.20)

First we estimate €' = @' — U’ where i(¢) is Clément’s approximation of u(f)
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defined for ¢ > 0 by (4.17) and for t = 0 by #, = nu, where nu, is the ori-
ginal Clément approximation. From (4.20) we have for all z € V*

(Aﬁi, GZ)LZ(R) + Ata(ﬁi, Z) = At(-]’, Z)L2(Q) + (Au‘ - Atu’(li): O-Z)LZ(R) +
+ (A(# — ), 0z) 25y + At[a(@, 2) — a(d, 2)] .
Subtracting (4.11) we get
(A€, 62) 125y + Atla(@, z) — a(U', 2)] =
= (.'_‘.ui - Alu’(ti}’ GZ)LZ(R) -+ (A(l? - uj), GZ)LZ(R) 'f‘\/
+ Atla(@, z) — a(W, )] VzeV". 4.21)
We estimate the terms on the righ-hand side of (4.21). By Taylor’s theorem

with integral remainder and by (4.1)

| (A — And(2), O'Z)LZ(R)I = | CAuy — Atu'(t)g, 25 Dr l =

=

= ‘ J (ticy — U (O, zg Prat

372 ( {"l 7”12 e
< cAP? iJ [| ug llT/;l, dt} Iz o -
-1
Using (4.18) we obtain

|(A(ﬁi — u), OZ)xr) I < Ch|Av @ | 2 llLawy =
ti 172
< Chan” { j | 4 [ dz} 2 e -
-y

From (4.9) it follows Lipschitz continuity of the operators 4™(u,,) (see Gaje-
wski, Groger and Zacharias [4], p. 70, 71, assertion e)).
Hence

| a(ﬁi, z) — a(ui, z) | < C| a —u IH‘(Q) lz |Hl(n) Scwhlz ]Hl(n) 4.22)

where we use (4.19) (c(») denotes a constant depending on the norms of u
in spaces occurring in (4.14) and (4.15)).
We choose z = &' = 4‘ — U’ in (4.21) and apply (4.4) and the inequality
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lab| < 2—17—] a® + %nb2 with suitable 1's to estimate the righ-hand sides of the

preceding inequalities. The result is

i o i 1 i
(A€, O&) oy + BALI € [ < SBAL]E e +
t; i
PN j il 2, dt + ch? J | t) By dt + () Ath? .
-1 -1

Summing we get

At Y € h@ S o’ €2y + ) (B + At?). (4.23)
i=1

As €% = dy — uy = dy — uy + Uy — up it holds
(0'80; SO)LZ(R) Scfe ”?,Z(R) < c(u) n.
Further, ' — U' = «' — &' + €', hence from (4.19) and (4.23) it follows

(4.16).

Now we define U’ by means of the scheme(1.9) :

3. i | S . .
olzU'—2U"Y + U2 ¢ + Ata(U', z) = AJ*, 2),»
( [2 2 } )LZ(R) ( ) ¢ Dz 4.29)
VzeV*, iz2,
Ug =4, U' computed from (4.11). 4.25
THEOREM 5 : Let the exact solution fulfill (4.14) and
up € C([0, T]; LA(R)), ufe L0, T;Vy). (4.26)

Then for the approximate solution U' defined uniquely by (4.24) and (4.25) it
holds

r . . 1/2
{At Y lu— U ||%mm} —0(h + Ar?). 4.27)
i=1
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Proof : Instead of (4.21) we derive

3ei_ gt +l£i_2 oz
2 2 ’ ) L2(R) + At[a(ﬁl, Z) - a(U!, Z)] =

3. ; 1 ; 3 . .
=(zu —2u ' + 4% — And(t), oz +(SA@G — ') —
<2 2 LZ(R) 2

| » )
—~ EA(ul V— Y o2)ag + Ala(@, 2) — a@, 2)], i=2.

The second and the third term on the right-hand side can be estimated as before.
The first term is easy to estimate if we use the equality

. . 1 .
% b= 22Uyt + Eu’,{z — At (t)g =

= fl I:“ (tioy — 0 + %(ti—l - t)z] W' (g dt +

1 ("
+3 f (ti_y — D*U"()g dr .
-2

~

Choosing again z = €', summing and using (3.61) we obtain
At ZZ I € g = ¢ {(c€% €% oy + (o8, )2 } + cw) (B + Ar*)
(4.28)

(of cause, c(u) depends now on || uy llcqo,71:L2ry and O || Uy 120, 1.7, instead
of on || ug ll20,7:7%)- From (4.21) one can prove that

et 22 + A2l ! I S o) (B + Ar%).
This inequality together with (4.28) gives
At Y || € Fug = Ot* + Ar*)
i=1

from which (4.27) follows.
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