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THE ERROR ESTIMATES FOR THE INFINITE ELEMENT
METHOD FOR EIGENVALUE PROBLEMS (*)

by Houde Han (%)

Communicated by P G CIARLET

Resume — Cet article analyse les estimations d erreur pour la methode des elements « wnfinis »
Le domaine est partage en un nombre mfini de triangles On utilise des elements hineaires pour les
deux espaces en cause

Abstract — Thuis paper analyses the error estimates for infinite element method applied to eigen-
value problems The domawn 1s divided into infinitely many triangles and linear elements are used
for the trial space and test space

1. INTRODUCTION

In the numerical solution of elliptic boundary value problems, 1t 1s well-
known that the presence of corners m the domain can cause a loss of accuracy
in the solution Many methods have been developed to overcome the loss
of accuracy, such as the use of singular functions [9], mesh refinements [10],
and the nfinite element method [11, 2] The infinite element method may be
considered as a kind of mesh refinement, but has the advantages that the
refinement 1s easy to construct, the stiffness matrix 1s calculated more effi-
ciently, and an approximate solution 1s obtamed which 1tself has a smgularity
at the corner Recently, we showed how the nfinite element method may be
applied to eigenvalue problems on domains with corners [1] In this paper,
we obtain the error estimates for the mnfinite element method, when applied
to an eigenvalue problem
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114 H. HAN

We consider the following eigenvalue problem.

Au +u =0, inQ, (LD
%=0’ onT'yand [y, (1.2
u=0, onT?. (1.3
M
Here Q is an open polygonal domain in the x;, x, plane and ' = U T,
1=0
is the boundary of Q, with the I's denoting the side of Q.
M-1
' =y I', and % denotes the outward normal derivative of u on I’

J=1
and T'y. 4, (i =0, 1, ..., M) denotes the vertice of Q with ¢, being the interior

angle of Q as shown in figure 1.

Figure 1.

For the sake of simplicity, we suppose

T<@QP,<2n; 0< o, cpM<§; 0<o,<snm (j=2,...M-1).

(1.4)

Without losing generality, we assume A, is the origin of the rectangular coor-

dinate system.
Let W™P(Q) denote the Sobolev space on Q with norm

m 4 i/p
T ={ $ f J 5 dx, dxz} ,
1=0 Q @1taz=1

R ATR O Analyse numerique/Numerical Analysis
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INFINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS 115

where m is a non-negative integer and p is a positive real number. As usual,
when p = 2, w™?(Q) is denoted by H™(Q); when m = 0, w®?(Q) is denoted
by L,(€). Moreover, we shall introduce the Sobolev space with weight, H™(Q),
with the norm

| u 1!121,,.,,(9) =|u ”12{"1-1(9) +

Q aytaz=m

” u “IZ.IO,t(Q) = J‘J\ r21 ' u IZ dxl dx2
Q

2

U deym=1 % (1.5)

Qo Q.
0x3t 0x%?

where r? = x? + x2 and ¢ is a real number.
Let

;I‘(Q) ={ulue H'(@Q) andu = 0on I'° (in the trace sense) } .

H 1(Q) is a subspace of H(Q).
We know that the eigenvalue problem (1.1)-(1.3) has the following varia-

®
tional form : find a complex numbers A and a nonzero u € H*(Q) such that

B, v) = M v), Yoe HY(Q), (1.6)
where

ou 0v ou 0v
B(u, v) = JJ;) (Exj a—xl' + a—xz' 5};) dx, dx, ,
J(u,v) = JJ uv dx, dx, .
Q

Let us now recall the procedure of obtaining the approximate solution of
(1.6) using the infinite element method [1]. In the first step the domain Q is
divided into infinitely many similar element layers D,, D,, ..., D,, ..., where
D, denotes the k-th layer. Every layer is divided into several triangles in the
same manner as in [1]. 0 < § < 1 is the constant of proportionality. Point
A, is the center of similarity. Therefore

vol. 16, n° 2, 1982



116 H. HAN
Let
Q= U D, (N=12.).

k=N+1

Let /2 denote the length of the side which is the longest among all triangles
in Q. Moreover, we suppose the angles of all triangles are greater than v,,
where 0 < v, < m/3 is a constant. This criterion is called the smallest interior
angle condition.

*
For this partition we introduce a closed subspace of H!(Q) denoted by
S(Q) :

o L
S(Q) = {ulue H(Q) n C(Q) and u is a linear function on each triangle } .

o bl
Using the space S(Q) instead of H*(Q) in the problem (1.6) we obtain the
following eigenvalue problem : find a complex numbers A and a nonzero

ue § (Q), such that
B(u,v) = M@ v), YveS(Q). (1.7

The eigenvalue problem (1.7) is the discretized model of (1.6). (1.7) is equi-
valent to the following eigenvalue problem of the pencil of the infinite dimen-
sional matrices

Y1
)_’2
[Q: —2Q,]{: | =0 (1.8)

YN

where

Q1= ’

Q2= - } s

R.A LLR.O. Analyse numérique/Numerical Analysis



INFINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS 117

K = K, + K§ and L = &* L, + Ly The matrices Ky, K, 4 and L,, Ly,
D constitute the stiffness matrix of the k-th layer

( K, —AT>_K§2(k—1)( L, ‘DT)
—A4 K; -D Ly

corresponding to equation (1.1). We do not have a method to solve the
eigenvalue problem (1.8) in the present form. By means of a technique in [1],
the eigenvalue problem (1.8) was changed to a eigenvalue problem of the
pencil of finite dimensional matrices :

Y1
[oY —2031| - | =0, (1.9)
In

where y,, ..., yy are M-dimensional column vectors,

K -ar O
-4 K —AT
—A4 K —AT
O -4 K—-ATX(0)

(M x N)x (M xN)

L -gDpT
—Ef D éz L _‘,:4 DT O
o¥=|
_gZ(N-Z) D &2(""2)L _gZ(NNI) DT
O ) —EHTID B L e

Here X(0) is a solution of the matrix equation
— A4+ KX(0) — AT(X(0)* =0

of which the solution can be obtained using the direct method or the iterative
method [2], [3].

The solutions of (1.9) are the approximate solutions of (1.6). In this paper
we shall study error estimates.

vol. 16, n° 2, 1982



118 H. HAN

2. THE VARIATIONAL FORM OF (1.9)

Prior to discussing the error estimate for the solution of (1.6) and (1.9)
we introduce a variational form of the matrix eigenvalue problem (1.9).
Consider the following eigenvalue problem. Find a complex numbers A

[l
and a nonzero function u € $(Q) such that

B, v) = My, v), YoeS(Q), @2.1)
where
Ja(u, v) = ff uv dx, dx, . 2.2
JJ ean

For the problem (2.1), if k < N the stiffness matrix of the k-th layer is

< Ko _AT>—)»§20‘-1)( L, "DT>
—4 K} -D L

and, when k > N, the stiffness matrix of k-th layer is

(L %)
—A Ky)

It is straightforward to show that the problem (2.1) is equivalent to the
following eigenvalue problem :

(K — AL) y, _(AT - )"ézDT))Q =0,
— (4 - )‘faz(k_l) D)y, +(K - 7"};2“—1) L)y, —
— (AT - M*DT)y,,, =0, k=2,.,N—1, (2.3)
— (A4 = 2BV D) yyy + (K — ATV L) yy — AT yyyy =0,
— Ay, + Ky, — ATy, =0, k=N+1,N +2,..

From the above equations it is seen that A does not appear in the last part
of (2.3). Therefore, we consider the system of infinitely many equations

— Ay + Ky — AT yiy = 0}_

2.4
k=N+1,N+2,.. 2.4

From Lemma 1.4 in [1] we know that, for any given y,, problem (2.4) has a
unique solution { yy, ¥y + 1, ... } Which corresponds to the function uy € H*(Qy)
and

Vke1 = X0y, k=NN+1, .. (2.5)

R.A.I.R.O. Analyse numérique/Numerical Analysis



INFINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS 119
We have :

LEMMA 2.1 : Suppose A"V is an eigenvalue of (2.3) and u"" is an eigen-

function corresponding to NN, Then yi™, N, ..., Y& are not all zero-vectors

@ corresponds to the sequence y5N, yN, .., yN, ).

Proof : Suppose the conclusion is false, then yiN = N = .. = yAN —
Since #™" is an eigenfunction corresponding to A"V, we know that

hN _hN ,N
PN AN e

satisfy the system (2.3) in which A*¥ is used instead of A. Moreover, from
(3.5) we obtain

yna = (XO)Y " =0, 1=12,..

Consequently, we have yi" = ypN = - = phV = y&N = ... = 0. Namely
u"N = 0. This contradicts the fact that #"" is an eigenfunction. This contra-
diction shows that our conclusion is correct.

LEMMA 2.2 : The eigenvalue problem (2.3) is equivalent to (1.9).

Proof : Suppose AN is an eigenvalue of (2.3) and {y"", .., y"N, ..} is
an eigenvector corresponding to A"M. Since Y4V, = X(0) y4", we know
that AN, YN AN YN satisfies (1.9) and that, from Lemma 2.1,

h,N h,N
Vi s UN

are not all zero vectors. Therefore A" ; YN, ..., yi¥ is a solution of the eigen-
value problem (1.9).

On the other hand, if A"N, &N | y&N is a solution of (1.9) let
y’]:iﬁl :(X(O))ly’IiJ’N5 l = 1’ 2)

Obviously, ARN phN AN N JEN ... is a solution of the eigenvalue
problem (2.3).
From the above lemma we have

LemMa 2.3 : The eigenvalue problem (2.1) is equivalent to (1.9). The varia-
tional form (2.1), instead of (1.9), will be used for the following discussion.

3. ERROR ESTIMATE

Before the discussion of the error estimate we recall some results which are
used in this paper.

vol. 16, n° 2, 1982



120 H. HAN
Lemma 3.1 : There exists a constant o > 0 such that
B > o ulig, Vue HYQ). 3.1)
LeMMA 3.2 : For any fe H®(Q) (where 1 — mi/o, < t < 1), then
B, v) = J(fv), VveH'(Q) (3.2)

%
has a unique solution ue H*'(Q) n H'(Q) and there exists a constant ¢ > 0
independent of f such that

| u ”_Hz,r(g) Sclf ”uoyr(g) . (3.3)

LEMMA 3.3 : For any ue H*'(Q) n Iﬂ-}‘(Q) (1 — m/p, < t < 1) there exists
a function u; € S(Q) such that

= up gy < chll g2 (3.4

where c is a constant which is independent of u and h. The proof of Llemma 3.1
can be found in [8]. The Lemma 3.2 is quoted from [4], whereas Iemma 3.3 is
from Theorem 1 in [5].

LemMa 3.4 : For any fe H%(Q), the problem

o
B{u,v) = J(f,v), VveS{{ 3.5)
has a unique solution u* € S(Q) and
A 1
e @ < g IS o - (3.6)

Proof : Since fe H°(Q), we know that f is a bounded linear functional

on the space §(Q). Moreover, from Lemma 3.1 we note that B(u, v) is a posi-
tive definite bilinear form. Thus there exists a unique solution «* € S(Q) such
that

B, v) = J(£v), YWweSQ). 3.5y

Taking v = «" in (3.5) we obtain (3.6) from Lemma 3.1. Similarly, we can
prove the following Lemma.

LemMA 3.5 : For any fe H%Q) the problem

B(u,v) = Jy(£,v), VoeS@) (3.7)

R.A.LLR.O. Analyse numérique/Numerical Analysis



INFINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS 121

has a unique solution u"" ¢ SO(Q) and

1
Mg = 2 I f o - (3.8)

From Lemma 3.2 we know that, for any fe H°(Q), problem (3.2) always

*
has a unique solution u € H*'(Q) n H*(Q). Therefore, we denote by T the
linear operator which maps f to u. Moreover, we know that T is a compact
operator from H%(Q) to H°(Q). It satisfies

B(Tfv) = J(f.v), Vve H'Q). (3.9)

An eigenvalue of T is a real number p (because T is a self-adjoint operator)
such that Tu = pu for some non-zero function u € H°(Q). Clearly, for any
non-zero eigenvalue p of T, we have that A = 1/u is an eigenvalue of (1.6).
On the other hand, since A is an eigenvalue of (1.6), p = 1/A is also an eigen-
value of T.

Similarly, from Lemma 3.4 we know that, for any fe H%(Q), (3.5) has a

unique solution u* € SO(Q) < H'(Q). We denote by T, the linear operator
which maps f to «". T, is compact from H%(Q) to H°(Q). T, satisfies

B(T, f,v) = J(f,v), VYveSQ). (3.10)

Obviously, A" is an eigenvalue of (1.7) if and only if u(h) = 1/A" is an eigen-
value of T,
Let T}, denote the linear operator which takes fe H%(Q) to ™ ; T¥ satisfies

B(TY fv) = Jy(f,0), YoeS(Q). (3.11)

Obviously, for any non-zero eigenvalue p¥(h) of TF, AN = 1/u (k) is an
eigenvalue of problem (2.1). Namely, A*" = 1/u¥(h) is an eigenvalue of (1.9).
Since u"N € §(Q) < H'(Q), we know that T} is a compact operator from
HO@Q) to HOQ).

Now the error estimates for the solutions of (1.6) and (1.9) are reduced to
those for the eigenvalues and eigenfunctions of the compact operators T
and T¥.

Let :
| TS I nogey

N T = su -
Tl ¢% I f I roy

s EfH"(Q)

denote the norm of the operator T. We need to estimate the error || T — Ty |.

vol 16, n° 2, 1982



122 H. HAN

Moreover, we have
IT—-TYI<IT—-T, +1T,—TiI. (3.12)

In order to get theerror | T — TV ||, weestimate | T — T, |land || T, — TV ||
We have :

LeMMA 3.6 : For any fe H°(Q) there exists a constant C which is indepen-
dent of f such that

inf | Tf — 0 ey < Ch | S oy - (3.13)

[*]
veS(Q)

Proof : By Lemma 3.3, we know that Tf € H**(Q) and there exists a func-
tion v, € §(Q) such that

| Tf — v, ”H'(Q) SCh||Tf “HZ,'(Q)'
On the other hand, we know from Lemma 3.2

ITf 2oy = C I S llgowey = C S llnog »

here C is a constant independent of 4 and f. Therefore we get

| Tf — v HH!(Q) SChif | oy -
Thus
irglf VT —vlguey SUITf —v | = Chll f lnog -
ve S(Q)

LemMA 3.7 : There exists a constant C such that

I T— T, <CK. (3.14)

Proof : Since §(Q) is a subspace of I; Y(Q), for any fe H°(Q) from (3.2)
and (3.5), we obtain

B(T —T)fv)=0, VoeSQ. (3.15)

By Lemma 3.1 we have

(T = T f e S < | BAT — T (T =T, )|

L
o

~ L B@ Ty AT - T) S -], wed@.

R.A.LLR.O. Analyse numérique/Numerical Analysis



INFINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS 123
Therefore, we get

” (T - Th) f “H‘(ﬂ) S mf ” Tf -0 ”H‘(Q) .

1
& ve §(Q)

From Lemma 3.6 it follows that
I(T = Ty) f llaney < ChIl S llgoy - (3.16)
On the other hand, for any f, s € H°(Q) we have

J(T =Ty ) = B(T — T)) £, TV)

= B(T -T) £ Ty —v), YoeSQ).
Consequently

[J(T = T) LW | (T =T) f |me inf [TV —vlmng

ve S(Q)
< CR | f o IV Doy -

The last inequality is from (3.16) and Lemma 3.6. Thus we have

1T =T f oy =, sup _ [I(T = T L) | < Ch* 11 f oy

Finally, from the above inequality we get (3.14).

-LEMMA 3.8 : For any fixed 0 < & < 1, there exists a constant C(€) which
is independent of N and § such that

lJ(u, v) — Jn(u, v) | = C® (&:am)lu8 I |l goy I 0 Iy »
Yue H'(Q), ve H Q). (3.17)

Proof : Based on the imbedding theorem of the Sobolev space [7] we know
that for any real number p > 1 there exists a constant C,(p) such that

loll, < CiP) I vlge, YveH'(Q). (3.1

From the definition of Jy(x, v) and upon repeated use of the Cauchy inequa-
lity, we obtain

| J(u, v) — In(u, ) | = U‘J uv dx, dx,
QN

12 12
é{JJ Iulzdxldxz} {JJ Ivlzdxldxz}
QN QN

vol. 16, n° 2, [982



124 H. HAN

1/2
= | u [l goy { JJ lv]? dx; dx, }
Qn

1

1.1 P

< |l u |l goygy(meas Qy)* 7 (JJ | v P dx, dxz)
Qn

< (meas Q)2 » &) 0 (I IPPERe I P

Vp>2, Vue HYQ), ve H'(Q).
Taking p = 2/e, C(¢) = (meas Qy*5* C,(2/e) and using (3.18), we obtain
(3.17).

LeEMMA 3.9 : For any fixed 0 < ¢ < 1, there exists a constant C(g), such
that

i1, - 11 s Dy, (3.19

Proof : Equations (3.10) and (3.11) yield
B(T, — T) f,0) =J(f,0) — In(f0), WweSQ@  (3.20)

and from Lemma 3.8 we derive
BT—TN <C(8) Nyl—¢ OQ
| (T, h)fav)l S () |If"H°(Q) HU”HI(Q), Yve S(Q).
Takingv = (T, — Ty) f € g‘(Q), and using the Lemma 3.1 we obtain

[Ty = T 1 ey < S2EY 1 S oy -
Moreover,

” (Th TN) f "H"(Q) “ (T,, - TN) f “H‘(Q)

Therefore, we get (3.19).
From (3.14) and (3. 19) we obtain the following result.

THEOREM 3.1 : For fixed 0 < € < 1, there exist two constants C and C(g)
such that

C(s)

IT— Ty I < Ch? + ==Y 5. (3.2

R.A.1L.LR.O. Analyse numérique/Numerical Analysis
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Suppose that p is a non-zero eigenvalue of T with algebraic multiplicity m
and § > 0 is a fixed constant such that the interval [p — g, p + €] contains
no other eigenvalues of T. Then there is an 4, such that for 0 < 4 < h, there
exists an integer N, () such that if N > Ny(h), then there are exactly m eigen-
values (counting algebraic multiplicities) of T lying on [u — 8, p + 8].
All other eigenvalues of T, are located beyond [p — &, p + 8] (¢f- [6]). In this
case the operators T and TV are self-adjoint. Let pY(h), p¥(h), ..., pY(h) denote
the eigenvalues of T% lying on the interval [u — 8, p + 8]. From Theorem 3
in [6] and Theorem 3.1 we have the following theorem.

THEOREM 3.2 : There are two constants C and C(g) such that, for 0 < h < hy,
N 2 No(h)

max |p — pth) | £ Ch* + g—gl(i”)l_‘. (3.22)

1<is<m

With regard to the eigenfunctions, from Theorem 4 in [6], we have :

THEOREM 3.3 : Let u¥(h) be an eigenvalue of TY such that pW¥(h) — p as
h — 0, N - oo and suppose that, for each pair h, N, w is a unit eigenfunction
satisfying (W¥(h) — TY)w = 0. Then there is a function u which is an eigen-
Sunction of T corresponding to u such that

C(g)

=2, (3.23)

lu—w “HD(Q) < Ch +
where C and C(g) are two constants independent of h and N.

4. CHOOSING THE INTEGER N

The formula (3.22) and (3.23) are the error estimates of the infinite element
method for eigenvalue problems. Each of them contains two terms Ch* and
C—S)(é‘;”’)l". Therefore only v;Ihen h is sufficiently small and N is sufficiently
large we can get accurate approximate solutions. Now we shall discuss a
question regarding how to choose N for a fixed partition so that

lu— ) | < C?, i = IZm}

WY — u oy < Ch?

@.1

From (3.22), (3.16) and (3.23) we know that either (E¥)!™* = A? or
(EM)!17¢ = Ch?® needs to be chosen (where ¢ is constant) and that the constant §

vol. 16, n° 2, 1982



126 H. HAN

is dependent on A4, i.e,, §(h) — 1 when 2 — 0. Furthermore, we have the follow-
ing Lemma.

Lemma 4.1 : Suppose that the partitions satisfy the smallest interior angle
condition. Then there exist two positive constants C, and C which are indepen-
dent of h such that

C2h<1—§<C3h. (4.1)

Proof : We consider the triangle of which the length of one side is equal to A.
This triangle belongs to a quadrangle of the first layer. Let A 4; 4;,, AB
denote this quadrangle.

Ai+1
A
A,
B
L
AO
Figure 2.
Let
Lo =max {| Ao A, |,| Ao Azl | Ao Ap | } 5
and

Lmin =min{|AoA1 |’|A0A2 |""’|A0Am|}‘
i) If{ A4,,, | = hor | BA,| = h, then
Loin(1 — €) < | A4,y | (or| B4;|) < L1 — 8).

Ll and C; = L , we obtain (4.1).

‘max Lmin

i) | BA| = h is impossible, because of | 4; 4;,.,| > | B4 |.

R.A.1.R.O. Analyse numérique/Numerical Analysis



INFINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS 127

i) If | 4; 4,4, | = h, we have

VAd | 1A 4] “n
sin  A; A4, sin Ay, 4, A4

Because of | A4, A | =h>|A4,.,A|, then A4,A44,.,> A, A4 A
Namely, n — v, = 4, AA,., = (A,., A; A = vy, From (4.2) we get

(1-¢ sin 4,44
h  sin A; AA;,,

| Ao Aisy |

Consequently,

(1 - é) < I"max )
h sin v,

Lmin Sin Yo <

. . Lmax
In this case C, = L, sin yo, and C; = s vy
iv) If | A4, | = h, similarly we get some results as in case (iii). This proof

is completed.

Letl — & = A From (") * = h? we obtain (1 — &) NIn(1 — A) =2Inh
The conditions # < 1, and A < 1, lead to In(1 — A) & — A. Furthermore,
we have (1 — €) NA =~ — 2 In A. Namely,

—2Inh
N>~a—9a
By means of Lemma 4.1, we obtain
1 2Inh 1 2Inh
(1—e)c3<— 7 ><N<(1—s)c2<_ 7 > “.3
. Inh .
From (4.3) we know that, if N =~ Cf — - ) then we can get the error esti-

mates (4. 1). In this case the dimension of matrices Q) and Q2 is M x N which
can be approximated by C(—_—%l—ﬁ) . It is shown that, in order to get the appro-

ximate solutions of Equation (1.6) satisfying the error estimates (4.1), we
only need to calculate an eigenvalue problem of a symmetric matrix with the

dimension which is approximately C<——hl?—h> .

vol. 16, n° 2, 1982
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