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R A I R O Analyse numerique/Numencal Analysis
(vol 16, n°2, 1982, p 113 a 128)

THE ERROR ESTIMATES FOR THE INFINITE ELEMENT
METHOD FOR EIGENVALUE PROBLEMS (*)

by Houde HAN (X)

Commumcated by P G CIARLET

Resumé — Cet article analyse les estimations d erreur pour la methode des éléments « infinis »
Le domaine est partage en un nombre infini de triangles On utilise des éléments linéaires pour les
deux espaces en cause

Abstract — This paper analyses the error estimâtes for infinité element method apphed to eigen-
value problems The domain is divided into inflnitely many triangles and hnear éléments are used
for the trial space and test space

1. INTRODUCTION

In the numencal solution of elhptic boundary value problems, ît is well-
known that the présence of corners m the domain can cause a loss of accuracy
in the solution Many methods have been developed to overcome the loss
of accuracy, such as the use of singular functions [9], mesh refinements [10],
and the infinité element method [11, 2] The infinité element method may be
considered as a kind of mesh refinement, but has the advantages that the
refinement is easy to construct, ̂ the stiffness matra is cafculated more effi-
ciently, and an approximate solution is obtained which îtself has a singulanty
at the corner Recently, we showed how the infinité element method may be
apphed to eigenvalue problems on domains with corners [1] In this paper,
we obtain the error estimâtes for the infinité element method, when apphed
to an eigenvalue problem
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We consider the following eigenvalue problem.

Au + Xu = 0, i n û , (1.1)

, on Fo and F M , (1.2)

« = 0 , on F 0 . (1.3)

M

Hère Q is an open polygonal domain in the xl5 x2 plane and F = U F
J=0

is the boundary of Q. with the F/s denoting the side of Q.

F0 = N F, and —̂ dénotes the outward normal derivative of u on Fn
— 1 VV

and FM. At (i = 0, 1, ...5 M) dénotes the vertice of Q with cpt being theînterior
angle of Q as shown in figure 1.

Figure 1.

For the sake of simplicity, we suppose

n < cp0 ^ 2 7i ; 0 < q>x , cpM ^ ^ ; 0 < cp, ^ n (j = 2,..., M - 1).

(1.4)

Without losing generality, we assume Ao is the origin of the rectangular coor-
dinate System.

Let Wm>p(ÇÏ) dénote the Sobolev space on Q with norm

(m
= s Z

L l = 0 J Jn

j dx2
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INFINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS 115

where m is a non-negative integer and p is a positive real number. As usuaL,
when p = 2, wm'2(Q) is denoted by #m(Q) ; when m = 0, w°>p(Q) is denoted
by Lp(Q). Moreover, we shall introducé the Sobolev space with weight, //m'r(Q),
with the norm

— II u

"IL
i l ôxf dx?

dx1 dx2, m (1.5)

where r2 = x\ + x\ and t is a real number.
Let

H 1(Q) = { u | u e /ƒ A(Q) and w = 0 on T° (in the trace sensé) }.

HX(Q) is a subspace of i/ H^).
We know that the eigenvalue problem (1.1)-(1.3) has the following varia-

tional form : find a complex numbers X and a nonzero u e i/1(Q) such that

B(u, v) = XJ(u, v), Vu e H\Q) , (1.6)
where

o/ \ I I / ôw 3v du dv
B(u, v) = 3— 3 h ~— ^—

uv dxx dx2 -

Let us now recall the procedure of obtaining the approximate solution of
(1.6) using the infinité element method [1], In the first step the domain Q is
divided into infinitely many similar element layers D^ D2,..., Dk,..., where
Dk dénotes the fc-th layer. Every layer is divided into several triangles in the
same manner as in [1]. 0 < ^ < 1 is the constant of proportionality. Point
Ao is the center of similarity, Therefore

Q = U Dk.

vol. 16, n° 2, 1982
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QN= U Dk (N = 1, 2 , . . . ) .

Let h dénote the length of the side which is the longest among all triangles
in Q. Moreover, we suppose the angles of all triangles are greater than y0,
where 0 < y0 < n/3 is a constant. This criterion is called the smallest interior
angle condition.

For this partition we introducé a closed subspace of H1(ÇÏ) denoted by

= { u | u e H 1(Q) n C(Q) and u is a linear function on each triangle }.

o *

Using the space S(Q) instead of Hi(Q) in the problem (1.6) we obtain the
following eigenvalue problem : find a complex numbers X and a nonzero
weS(fi), such that

B(u, v) = U(u, v), Vu e S(Q) . (1.7)

The eigenvalue problem (1.7) is the discretized model of (1.6). (1.7) is equi-
valent to the following eigenvalue problem of the pencil of the infinité dimen-
sional matrices

[Qx - (1-8)

where
K -

-A

AT

K -AT
o\

\o

02 =

L

-t? D

\O
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INFINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS 117

K = Ko + K'o and L = l? Lo 4- L'o. The matrices Ko, Kf
Q, A and Lo, L'o,

i) constitute the stiffness matrix of the /c-th layer

- ^ 2

-D L'o

corresponding to équation (1.1). We do not have a method to solve the
eigenvalue problem (1.8) in the present form. By means of a technique in [1],
the eigenvalue problem (1.8) was changed to a eigenvalue problem of the
pencil of finite dimensional matrices :

ter - = o , (1.9)

where yi,...,yN are M-dimensional column vectors,

ef =

K

-A

\O

AT

K -AT
O

-A K -AT

~A K-ATX{0) (M x AT) x (M x N)

\o
o \

Here X(0) is a solution of the matrix équation

- A + KX(0) - AT(X(0))2 - 0

of which the solution can be obtained using the direct method or the itérative
method [2], [3],

The solutions of (1.9) are the approximate solutions of (1.6). In this paper
we shall study error estimâtes.

vol. 16, n°2, 1982



118 H. HAN

2. THE VARIATIONAL FORM OF (1.9)

Prior to discussing the error estimate for the solution of (1.6) and (1.9)
we introducé a variational form of the matrix eigenvalue problem (1.9).
Consider the following eigenvalue problem. Find a complex numbers X

o

and a nonzero function u e S(Q) such that

B(u, v) = XJN(u, v)9 Vu e S(O), (2.1)
where

= [ [
J J

uv dxt dx2 - (2.2)

For the problem (2.1), if /c ̂  N the stiffness matrix of the fc-th layer is

/ Ko -AT\
\-A K'J D L'o

and, when k > N, the stiffness matrix of fe-th layer is

Ko -AT

-A K'o

It is straightforward to show that the problem (2.1) is equivalent to the
following eigenvalue problem :

(K-XL)yi-(A
T- V

-{A- V?«- »D)yk_1+(K- të,2*- » L) yk -
- ( A T - X ^ 2 k D T ) y k + 1 = 0 , fc = 2 , . . . , J V - 1 , ( 2 . 3 )

-{À- K2^- »D)yN-l+(K- ^2(JV"1) L'o) y* ~ A T yN+, = 0 ,

-Ayk_, +Kyk- ATyk+1 =0, k = N + 1, N + 2,...

From the above équations it is seen that X does not appear in the last part
of (2.3). Therefore, we consider the System of infinitely many équations

- Ayk_x + Kyk - ATyk+1 = 0 j

k = N + 1, N + 2,... J l ' '

From Lemma 1.4 in [1] we know that, for any given yN, problem (2.4) has a
unique solution { yN, yN+1,...} which corresponds to the function uN e H1^^)
and

yk+1 =X(0)yk, k = N,N + l,... (2.5)

R.A.I.R.O. Analyse numérique/Numerical Analysis



INFINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS 119

We have :

LEMMA 2 . 1 : Suppose Xh'N is an eigenvalue of (2.3) and uh>N is an eigen-

function corresponding to Xh'N. Then y^N
y j ^ ] J V , ..., yfyN are not ail zero-vectors

(uh'N corresponds to the séquence j ^ î i v , yh{N, ..., j ^ ) N , . . . ) .

Proof : Suppose the conclusion is f aise, then y^N = y\'N = ••• = yfyN = 0.

Since uh>N is an eigenfunction corresponding to Xh>N, we know that

h,N h,N Jt^

satisfy the System (2.3) in which XKN is used instead of X. Moreover, from
(3.5) we obtain

Consequently, we have yh
0>

N = /{N = - - ^ j iV = j ^ = - - 0. Namely

Mfĉ  ^ Q j^ -g c o ntradicts the fact that uhiN is an eigenfunction. This contra-
diction shows that our conclusion is correct.

LEMMA2.2 : The eigenvalue problem (2.3) is equivalent to (1.9).

Proof : Suppose \h*N is an eigenvalue of (2.3) and {yh{N,..., /k>
N,...} is

an eigenvector corresponding to ^ J*. Since y^i+x =X(0)yh^N, we know
that \h-N; /IN

9/2'
N>-,/NN satisfies (1.9) and that, from Lemma 2.1 ,

h,N h,N
l •> • • • 5 / J V

are not all zero vectors. Therefore XhfN ; j ^ w , . . . , yfyN is a solution of the eigen-
value problem (1.9).

On the other hand, if Xh'N,yh{N,...,// is a solution of (1.9) let

)ly%\ 7 = 1 , 2 , . . . .

Obviously, Xh>N
9 y\>N

9 yh
2'

N,.., yh/, yh/+u ••• is a solution of the eigenvalue

problem (2.3).

F rom the above lemma we have

LEMMA 2.3 : The eigenvalue problem (2.1) is equivalent to (1.9). The varia-
tional form (2.1), instead of (1.9), will be used for the following discussion.

3. ERROR ESTIMATE

Before the discussion of the error estimate we recall sortie results which are
used in this paper.

vol. 16, n° 2, 1982



120 H. HAN

LEMMA 3 . 1 : There exists a constant a > 0 such that

B(u,u)^0L\\u\\2
Hl{a), VueH\Q). (3.1)

LEMMA 3.2 : For any f e //°'r(Q) (where 1 — n/<p0 < t < 1), then

l(Q) (3.2)

has a unique solution u G H2>Î(Q) n i/*(Q) Ö«J there exists a constant c > 0
independent of f such that

(3.3)

LEMMA 3 . 3 : For any u e H2>t(Q) n H*(Q) (1 - 7i/q>0 < / < 1) fftere
o

a function uI e S(Q) swc/z

il w ~ ul lljyitfï) ^ CA || M ||fl2,t(n) , ( 3 . 4 )

c w a constant which is independent ofu and h. The proof of l£mma 3 .1

can befound in [8]. The lemma 3 .2 is quotedfrom [4], whereas lemma 3 .3 &

Theorem 1 zw [5],

LEMMA 3.4 : for an^ ƒ e H°(Q\ the problem

B(u, v) = J(f v), Vu e S(Q) (3.5)
o

a unique solution u e S(£ï) and

ll«*llH.,n ,<|ll/llH«Hp). (3-6)

Proo/ : Since ƒ e /f °(Q), we know that ƒ is a bounded linear functional
o

on the space S(Q). Moreover, from Lemma 3.1 we note that B(u, t?) is a posi-
tive definite bilinear form. Thus there exists a unique solution uh e S(Q) such
that

Btf9v)=J(f,v)9 Vu£5O(Q). (3.5)'

Taking v = uh in (3.5)' we obtain (3.6) from Lemma 3.1. Similarly, we can
prove the following Lemma

LEMMA 3.5 : For any f e H°(Q) the problem

(3.7)

R.A.I.R.O. Analyse numérique/Numerical Analysis



INFINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS 121

o

has a unique solution uh>N G S(Q) and

II^IlH.m^ll / lUn,. (3.8)

From Lemma 3.2 we know that, for any ƒ e H°(Q\ problem (3.2) always

has a unique solution u e H2}t(Q) n i/^Q). Therefore, we dénote by T the
linear operator which maps ƒ to u, Moreover, we know that T is a compact
operator from H°(Q) to H°(Q). It satisfîes

B(Tf9v)=J(f,v), VveH\Q). (3.9)

An eigenvalue of T is a real number ji (because T is a self-adjoint operator)
such that Tu = [m for some non-zero function u e H°(Q). Clearly, for any
non-zero eigenvalue [t of T, we have that X = l/\i is an eigenvalue of (1.6).
On the other hand, since X is an eigenvalue of (1.6), \x = l/X is also an eigen-
value of T.

Similarly, from Lemma 3.4 we know that, for any f e H°(Q\ (3.5) has a
o

unique solution uh e S(Q) a /^(Q). We dénote by Th the linear operator
which maps ƒ to uh. Th is compact from H°(Q) to H°(£ï). Th satisfies

B(Thf9v)=J(f,v), VveS(Q). (3.10)

Obviously, Xh is an eigenvalue of (1.7) if and only if \i(h) = l/Xh is an eigen-
value of Th.

Let Tl dénote the linear operator which takes ƒ e i?°(Q) to uh>N ; T* satisfies

B(TN
h f9v)= JN(J9 v), Vz; e S(Q). (3.11)

Obviously, for any non-zero eigenvalue \iN(h) of T*, Xh>N = l/\iN(h) is an
eigenvalue of problem (2.1). Namely, Xh>N = l/\iN(h) is an eigenvalue of (1.9).

o

Since uh'N e S(Q) <= H1 (Cl), we know that T% i& a compact operator from
tf°(Q) to H°(Q).

Now the error estimâtes for the solutions of (1.6) and (1.9) are reduced to
those for the eigenvalues and eigenfunctions of the compact operators T
and 7*

Let :

dénote the norm of the operator T. We need to estima te the error || T — T£||.

vol 16, n° 2, 1982



122 H. HAN

Moreover, we have

| | T - T ? || < | | T - Th\\ +\\Th- TN
h\\- (3-12)

In order to get the error || T - TN
h ||,weestimate|| T - Th\\ and|| Th - T? ||.

We have :

LEMMA 3.6 : For any f e H°(Q) there exists a constant C which is indepen-
dent offsuch that

inf \\Tf-v \\HHn) g Cfc || ƒ ||H0(n). (3.13)

Proof : By Lemma 3.3, we know that Tf e H2>t(Q) and there exists a func-
o

tion Vj e S(Q) such that

il Tf - vj \\HHn) S Ch || Tf | U H a ) .

On the other hand, we know from Lemma 3.2

\\Tf\\H^m)^C\\ ƒ ILo , £ ( n ) ^C | | ƒ ||„o(n),

hère C is a constant independent of A and ƒ Therefore we get

II Tf - vj \\HHn) ^ C h \ \ f \\mn).

Thus
inf || Tf - v \\HHQ) £\\Tf- vj || ^ Ch || ƒ ||H0(O).

LEMMA 3 . 7 : T/zere ex/5r5 a constant C such that

il T - T, || SCh2. (3.14)

iVoo/ : Since S(Q) is a subspace of ^ x ( ^ ) , for any feH°(Q) from (3.2)
and (3.5)', we obtain

- T f c ) / i ; ) = 0 , VüeS(O). (3.15)

By Lemma 3.1 we have

II (T ~ Th) ƒ |||1(Q) ^ i | B((T - Th) ƒ ( T - T J ƒ) |

i - Th) ƒ (T - TJ ƒ - v) \, VveS(Çl).

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Therefore, we get

II (T - Th) ƒ | | „ l ( n ) ^ i inf \ \ T f - v \\HHn).
veÈ(Q.)

From Lemma 3.6 it follows that

\\(J -Tùf | | f l . ( a ,<CA|| / | | „o ( n ) . (3.16)

On the other hand, for any ƒ \|/ e H°(Q) we have

'((T - ï \ ) ƒ vk) = *((T - TJ ƒ TvJ/)

= £((-T - T») f,Tty-v), Vu e S(Q) .
Consequently

ƒ *|r) | £ || (T - TO ƒ ||H1(n) inf || Tv|/ - v \\HHtl)
v e §(H)

ƒ

The last inequality is from (3.16) and Lemma 3.6. Thus we have

II (T - Th) ƒ ||H0(n) = sup | J((T - TO ƒ v|/) | S C/î2 || ƒ
| |>H|jfO(fi)=l

Finally, from the above inequality we get (3.14).

•LEMMA 3.8 : For any fixed 0 < 8 < 1, there exists a constant C(e) which
is independent ofN and Ç such that

i?) | ^ C(e) (^J1"- || u ||Ho(n) || v \\HHa),

Vwe//°(Q), ü e / f 1 ^ ) . (3.17)

: Based on the imbedding theorem of the Sobolev space [7] we know
that for any real number/? ^ 1 there exists a constant C^p) such that

\\v\\LP<Ci<J>)\\v\\HHa>> VveH\Q). (3.18)

From the définition of JN(u, v) and upon repeated use of the Cauchy inequa-
lity, we obtain

\J(u,

vol. 16, n°

v) - JN(u,

2, 1982

v) 1 —

V
II

rr
uv dxJ JnN

l J JaN

ldx2

dx1 dx2 TUL-
• ) l / 2

|2 dx, dx2 1
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S II U 11*0(0) |

HAN

J JQN

è II « | |Ho (n)(measQA

v |2 dx± dx2 r
v\» dxx dx2j

!_!

Taking /? = 2/e, C(e) - (meas Q)1^1 C^/s ) and using (3.18), we obtain
(3.17).

LEMMA 3.9 : For any fixed 0 < 8 < 1, there exists a constant C(e), such
that

\\Th- TN
h\\ £<MQ?)i-y (3.19)

Proof : Equations (3.10) and (3.11) yield

B((Th - TN
h) ƒ v) = J(ƒ a) - Jw(ƒ Ü) , VÜ € S(fl) (3.20)

and from Lemma 3.8 we dérive

I B((Th -TN
h)f,v)\< ^ ( e ) 1 - || ƒ ||H0(a) || v \\HHn), Vc e S(Q) .

Taking v = (Tft — T£) ƒ e S(Q), and using the Lemma 3.1 we obtain

11 (rp TN^ / .M < C (g ) ^ J V ^ l - e M ƒ ||

Moreover,

jj /T^ X"iV\ r || < |j / y T^\ f II
|| U h ~ 1 h) J \\H°(Q) = II VJ ft ~ 1 h ) J \\HHQ) •

Therefore, we get (3.19).
From (3.14) and (3.19) we obtain the foUowing resuit.

THEOREM 3 . 1 : For fixed 0 < s < 15 there exist two constants C and C(s)
such that

T - TN
h || ^ Ch2

R.A.l.R.O. Analyse numérique/Numerical Analysis
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Suppose that \i is a non-zero eigenvalue of T with algebraic multiplicity m
and 8 > 0 is a fixed constant such that the interval [\i — e, |a + e] contains
no other eigenvalues of T. Then there is an h0 such that for 0 < h g h0 there
exists an integer N0(h) such that if N ^ N0(h\ then there are exactly m eigen-
values (counting algebraic multiplicities) of T^ lying on [JI — S, [i + 8].
AU other eigenvalues of Th are located beyond [|i — 8, |i + 8] (cf. [6]). In this
case the operators T and T* are self-adjoint. Let |i?(/z), H^X •••> tfW dénote
the eigenvalues of T% lying on the interval [\i — 8, \i -h 8]. From Theorem 3
in [6] and Theorem 3.1 we have the following theorem.

THEOREM 3.2 : There are two constants CandC(s) such that, for 0 < h < h0,
N ^ N0(h)

max | n - m?(A) | ^ CA2 + ^ M ^ ) 1 " 8 • (3.22)
1 ̂ i^m OC

With regard to the eigenfunctions, from Theorem 4 in [6], we have :

THEOREM 3 . 3 : Let [iN(h) be an eigenvalue of T% such that \iN(h) -> \i as
h -• 0, N -> oo i3«J suppose that, for each pair h, N, w is a unit eigenfunction
satisfying (\iN{h) — T%) w = 0. Then there is a function u which is an eigen-
function ofT corresponding to \isuch that

Il u - w ||H0(n) ^ Ch2 4- ^ ( ^ y - z , (3.23)

where C and C(e) are two constants independent ofh andN.

4. CHOOSING THE INTEGER N

The formula (3.22) and (3.23) are the error estimâtes of the infinité element

method for eigenvalue problems. Each of thena contains two tenus Ch2 and

—-(£,Ny~e- Therefore only when h is sufficiently small and N is sufficiently

large we can get accurate approximate solutions. Now we shall discuss a
question regarding how to choose N for a fixed partition so that

| l i - ( ! ? (* ) | < C*2 , i = 1,2,..., m,

il w*'* " u \\Hom < Ch2

From (3.22), (3.16) and (3.23) we know that either (t)
N)1~t = h2 or

(^N)1~£ = Ch2 needs to be chosen (where c is constant) and that the constant Ç

vol. 16, n° 2, 1982
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is dépendent on h, Le., ̂ (h) - • 1 when h -• 0. Furthermore, we have the follow-
ing Lemma

LEMMA 4.1 : Suppose that the partitions satisfy the smallest interior angle
condition. Then there exist two positive constants C2 and C3 which are indepen-
dent of h such that

C2h^l ~^^C3h. (4.1)

Proof : We consider the triangle of which the length of one side is equal to h.
This triangle belongs to a quadrangle of the first layer. Let AAtAi + 1 AB
dénote this quadrangle.

B

Figure 2.

Let

^max ~ max { | Ao Ax |, | Ao A2 |,..., | Ao AM \ } ,

and

Anin = m i n { M o ^ l U A0 A2 I, "•> I A0 Am \ } •

i) I f |^^ [ + 1 | =hoT\BAt\ = A, then

Lmin(l - Ö < I ̂ ^ i + i I (or I i » ^ |) < Lmax(l - Q .

Taking C2 = j — and C3 = j — , we obtain (4.1).

ii) | BA | = h is impossible, because of | At Ai+1 | > | BA |.

R.A.l.R.O. Analyse numénque/Numerical Analysis
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iii) If | At Ai+1 | = h, we have

\A(Ai+1\ \Ai+1A\
sin LA( AAi + 1 sin LAi+x AtA ' (4.2)

B e c a u s e o f | A i A i + 1 \ = h ^ | A i + 1 A |, t h e n L A i A A i + i ' ^ L A l + i A
Namely, n — y0 ^ LAiAAl + 1 ^ j ^ + i ^ 4 ^ y0. From (4.2) we get

( 1 - Ç) _ s i n L A i + 1 A i A l A

h ~ s m . A . A A ^ , l ^ o A + i l -

Consequently,

siny0

In this case C2 = Lmin sin y0 and C3 = ^-ma

smy0

iv) If | AAt | = h, similarly we get some results as in case (iii). This proof
is completed.

Let 1 - Ç = A. From (Ç*)1 ~e = h2 we obtain (1 - e) N In (1 - A) = 2 In h.
The conditions h < 1, and A <̂  1, lead to ln(l — A) « — A. Furthermore,
we have (1 — E) NA ^ — 2 In //. Namely,

jV ^ — .

By means of Lemma 4.1, we obtain

1 / o i« &\

(4.3)(1 - e) C3

From (4.3) we know that, if N « Cf 7— j , then we can get the error esti-

mâtes (4.1). In this case the dimension of matrices öf and g* is M x N which

can be approximated by C( —-^— 1. It is shown that, in order to get the appro-

ximate solutions of Equation (1.6) satisfying the error estimâtes (4.1), we
only need to calculate an eigenvalue problem of a symmetrie matrix with the

dimension which is approximately Cl ~
h\

vol. 16, n° 2, 1982
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