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R A IR O Analyse numerique/Numerical Analysis
(vol 16,n°1,1982, p 5Sa26)

SINGLE STEP METHODS FOR INHOMOGENEOUS LINEAR
DIFFERENTIAL EQUATIONS IN BANACH SPACE (*)

by Philip BRENNER ('), Michel Crouzeix () and Vidar THOMEE (%)

Abstract — Considering the imitial-value problem for the differential equation

u(t) = Aut) + J(t)

in a Banach space X, where A generates a bounded semigroup on X, we analyze single step discreti-
zations of the form

Uy = rkA)u, + k i qikA) j(nk + 7, k),
=1

where ks the step size,r,q,, , q,, are rational functions, bounded for Re z < 0, and t, are quadrature
ponts in [0, 1]
Resume — On considere le probleme aux conditions wtiales pour | equation differentielle
u(t) = Ault) + /()

dans un espace de Banach X, ou A engendre un semi-groupe borne sur X, et on analyse des discreti-
sations a un pas du type

Uy = rkA)u, + k i q,(kA)f(nk +1,k),
=1

oukestle pas,1,q,, , g, sont des fonctions rationnelles, bornees pour Re z < 0, et T, sont des points
de quadrature sur [0, 1]

1. INTRODUCTION

Let X be a Banach space and assume that A4 1s a closed, densely defined linear
operator on X which generates a bounded semigroup E(t) = ¢'# on X The
solution of the mitial value problem (with u, = du/dt)

uy=Au+ j for t =0, u0) = v, (SEm))

(*) Regu le 19 ma1 1981

(!) Department of Mathematics Chalmers University of Technology, S-412 96 Goteborg,
Suede

(%) Laboratoire d’Analyse Numerique, Universite de Rennes, B P 25A, 35031 Rennes Cedex
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6 P. BRENNER et al.

may then be expressed by means of Duhamel’s principle as
t
u(t) = E(t)v + J E(t — s)j(s)ds.
0

We shall be concerned with the discretization in time of the problem (1.1).
For this purpose, let k be a small positive time increment and let r, gy, ..., g,
be rational functions which are bounded for Re z < 0. Then, since A4 has its
spectrum in Re z < 0, n(kA) and q/(kA) are well defined, and we may seek an
approximate solution u, at t, = nk of (1. 1) by the recursion relation

L= Eou, + kQ, /)(t), n=0,.., with up=0v, (1.2

where
By = kA), (@uN)(0) = 3 qfkd) St + 7,1,

with { t, }T distinct quadrature points, for simplicity in [0, 1].

In order to express the degree of approximation of (1.2) we consider first
the case when A is a bounded operator. We say that the scheme is accurate of
order p if for any choice of f and v, with f sufficiently regular with respect to ¢,
we have

~ Nyt

p, = ult,+,) — E ult,) — kiQ, j)(¢,) = k") as k-0, (1.3)

that is, if the solution of (1.1) satisfies (1.2) with an error of order O(kP*1!).
This will entail certain relations between r, the g, and the 1, which may be
stated, for instance, in the form

rz) — & =0(z*Y) as z-0, (1.4

andfor!/=0,..,p — 1,

T <r(z) Zo ]zj!> — i 1 qz) = 0zF7") as z—-0. (1.5)

We observe that the global error e,

u(t,) — u, satisfies
e,s1 =Ece, +p,, n=0,..., with ¢, =0.

Assuming that E, is stable in X we shall hence be able to infer a 0(k?) global
error estimate from the local estimate (1.3).
We shall then turn to the case when A is an unbounded operator and discover

R AIR O Analyse numérique/Numerical Analysis



INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 7

that in order for the analysis to yield an estimate of the form (1.3) we need to
assume that u, in addition to being smooth in ¢, will have to satisfy relations
like u(t) e D(AP* ' Hforl =0, ..., p + 1. In applications to partial differential
equations, this often demands not only smothness of 4! in the space variables,
but also that these functions satisfy certain boundary conditions which are not
natural to impose for [ = 0, ..., p — 1. In order to be able to avoid artificial
assumptions on the solution we shall consider schemes which satisfy a stronger
accuracy assumption than (1.3) : We say that the scheme is strictly accurate
of order p, < p if the truncation error vanishes for all f and v such that the
solution is a polynomial in ¢ of degree at most p, — 1. It will turn out that
this condition is equivalent to demanding that the first p, relations in (1.5)
hold with right hand sides replaced by zero. For schemes which are strictly
accurate of order p, or under a not very restrictive additional condition, accurate
of order p and strictly accurate of order p — 1, we shall then be able to show the
desired global error estimate.

The details of the above analysis are given in Section 2 below, where the
estimates are expressed in terms of the solution u of (1.1), and in Section 3
where error bounds in terms of the data f and v are presented.

Our main motivation for this study is the application to numerical methods
for partial differential equations, and to the situation when discretization also
takes place in the space variables. It may be the case, for instance, that an
initial value problem has been approximated in space by means of the finite
element method, leaving us with a semidiscrete problem of the form (1.1),
with A, f, and v replaced by A4,, /,, v,, depending on the small parameter h, and
such that the error in the solution of this problem is bounded by ¢, In order to
produce a completely discrete method, the above scheme may now be applied
to the semidiscrete problem and one hopes that the total error will be O(g,, + k7).
An example of a result of this nature is shown in Section 4 below.

The construction of schemes satisfying our above assumptions is the object
of Section 5. It is seen, among other things, that if { t; }" are chosen as the
Gaussian points of order m in [0, 1], the scheme may be constructed to be
accurate of order 2 m, but with no choice of { 1; }T can it be strictly accurate
of order m + 2.

A study which has many points in common with the present one was carried
out in Crouzeix [2] in the context of Runge-Kutta methods in a Hilbert space.

Conditions for stability of operators of the form E, = r(kA) in general
Banach spaces were discussed in Brenner and Thomée [1]. The present results
together with those of [1] thus allow application to completely discrete schemes
obtained from semidiscrete approximations with known error bounds in, say,
the maximum norm.

vol. 16, n° 1, 1982



8 P. BRENNER et al.

2. ERROR ESTIMATES IN TERMS OF THE SOLUTION

We begin this section by deducing the conditions for the time discretization
scheme (1.2) to be accurate of order p and strictly accurate of order p, < p,
in the sense introduced above. Assuming thus A to be a bounded operator
we obtain by Taylor series development of p, with respect to k, for u and f
sufficiently smooth with respect to t,

L k) k)’

")(t) — r(kA)u(t,) — k Z q,(kA) z 79%:) + R

n,p

t
n+1 t . S P
Ry, = f (—”},—v_)““’“’(s) ds =
th '

— 5P

th+kt, k 1
—k Z q_,(kA)J (t, + T, 1)' j(p)(s) ds. (2.1)

Using the fact that /O = «'*V — Ay® this may be written

Pkt
P = X T7M(kA)u’(t,) + R,,

where

ho@ =1 —r@ +z Y, 42,

J=1
hz) =1—-1% ©7lq)+2z) thqfz), for 1<I<p-—1,
=1 =1
and

hiz) =1—p Y 7' q(2).

Since R, , = 0(k?*') for small k, this representation of the truncation error
immediately yields the following lemma.

LEMMA 1 : The scheme (1.2) is accurate of order p if and only if
h(z) = 0z"*t7Y Jor 1=0,..,p. (2.2)
It strictly accurate of order p, < p if and only if

h(z) =0 for 1=0,..,py — 1. (2.3)

R A IR O Analyse numénique/Numerical Analysis



INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 9

We shall now turn to the error estimates, allowing A to be unbounded.
For this purpose we shall first briefly discuss the representation of functions of 4
in terms of the semigroup E(t).

Let M denote the set of Laplace transforms of bounded measures on R,

6(2) = i) = j & dus),
R+

and recall (¢/. [1]) that with A the generator of a bounded semigroup E(z) on X,
g(A) may be represented as

9(d) = J B d().
R+
Noting that p is uniquely determined by g, we may set

m(g)=JdluI(t),

and obtain that g (kA) is a bounded operator on X, and for any k > 0,

| g(kA) | sj | Ek) | dIpl(®) < Comlg), if |EQ®| <C,.

R+

Any rational function g which is bounded for Re z < 0 belongs to M, as is
seen by expansion into partial fractions. In this case dp has the form
Z;pit) e‘l'f dt where ) are the poles of g and p; are polynomials ; the above
representation of g(4) then reduces to the standard formulas for the resolvent
of A and its powers. Note also that if f, g € M then fg € M and

(J9) (4) = j(4) g(A).

Further, if f,g e M and g(z) = J(z) Z' then g(A) v = f(A) A' v for ve D(4))
(¢f. Lemma 4 in [1]).
In particular, if (2.2) holds we have

hiz) = z7@®* "D pz)eM for 1=0,..,p,
and if (2. 3) is satisfied as well, we may write the truncation error from (1.3) as
= krt?! v 1 hkA) APT1=1 D R 4
pn - [;, ﬂ l( ) u (tn) + n,p? (2' )
=Ppo

vol. 16, re 1, 1982



10 P. BRENNER et al.

provided u”(t,) e D(A?**~"). In order to estimate this expression we use the
relation

I+ 1
ko) = | (00 = (s = 900 s,
tn
to obtain for I = p,, ..., p,

k|| hkA) AP* 1 ~Hu0,) || <

Ty + 1
< J (I Alea) AP 71 us) || + || kAR(kA) AP~ u*D(s) ||} ds

and hence since /,(z) and also zh,(z) belong to M,

k|| hykA) AP 1) | <

T+t
< CJ (I AP u%s) ||+ | AP~ u*D(s) [1) ds .
t

n

For the remainder term R, , we have at once from (2.1),

<cre [ Qa1+ 119 1) ds
Jin

I R

n,p

In+ 1
< CkP f (I w®* () | + || Au®P(s) Il) ds ,

tn

and hence altogether

+1 fin+1
loull < Ck2'S J | AP+ 11405 | ds . 2.5)

1=po

tn

We may now easily prove the following.

THEOREM 1 : Assume that the scheme (1.2) is accurate of order p and strictly
accurate of order p, and let E, be stable in X. Then if u® e L}(0, t,; D(A?*17Y)
Jor | = py,...p + 1 we have

+1 fin
e — | < Cho 'S J | AP0 y0s) | ds

I=po Jo

R.A.LLR.O. Analyse numérique/Numerical Analysis



INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 11

Proof : Setting e, = u(t,) — u, we have since ¢, = 0,

n-1
- T B,

j=o

and hence by the stability of E,,

Iell < CZ el

The result is now an immediate consequence of (2. 5).

Note that the error estimate of Theorem 1 requires u'? € D(47*!~Y) for
I = pg..,p + 1 and t positive. In applications to initial-boundary value
problems for partial differential equations this generally demands not only
smoothness of the solution but also that its time derivatives satisfy certain
boundary conditions. Although it is appropriate to assume u” e D(A4), the
above conditions for [ < p are undesirable and the case p, = p is therefore of
special interest.

In our next result we shall show an optimal order error estimate without
requiring artificial boundary conditions if the scheme is strictly accurate of
order p — 1, only, but satisfies the additional condition

o(z) = h,_,(2)/(z(1 — r(2)) e M. (2.6)

Since r(z) = 1 + z + 0(z?) for small z, it follows in particular that (2.6) holds
ifr(iy) # 1for0 # ye R U { 00 }, or more generally, if r(iy) # 1for0 # ye R
and g/(z) = (| z|7") and (r(z) — 1)™" = 0O( z |') for large z and some [ > 0.
For example, this condition is satisfied for the first and second subdiagonal Padé
approximations r(z),0 < j — k < 2, to € (¢f. [1], p. 687), and also for the
diagonal approximations r,,(z) and r,,(z), but is not valid for r44(z) as a simple
computation shows. Also (2.6) will be fulfilled for schemes employing the
restricted Padé approximants R,(z) of orders k = 1,2, and 3 (¢/. [1], p. 688).

THEOREM 2 : Assume that the scheme (1.2) is accurate of order p, and strictly
accurate of order p — 1, that (2.6) holds and that E, is stable in X. Then under
the appropriate regularity assumptions,

ut) — u, | < Ck"{\] A=) | + j

0

tn

(Il AuP(s) || + 1| u®* ) 1) ds}

Proof : We have from (2.4),

kp+ 1

pn ( 1)

vol. 16, n° 1, 1982
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12 P. BRENNER et al.

The contribution to the global error of the last two terms is bounded as
indicated in Theorem 1 with p, = p, and it remains to estimate

n—1 ne1-i kp+1 N 2 p=1)
Sn = j;o Ek Jmhp_‘(kA)A u'’? (tj).

By the definition of ¢ we have kAE,,_l(kA) = o(kA) (I — E,) and hence

— k? S n—1-j (p—1)

Sn = WG(’(A) j;o Ek (I - Ek) Au (l'j)
kP
= ———0(kA) X
(p B 1) ' n—1 ) t;
x {Au“’_l)(t,,_l) -y E,:'"J AuP(s)ds — E}! Au(”*”(O)}.
j=1 t; -1

We conclude

ty

IS, < Ck"{ | Au?~B(@,) | + || Au®~ D) || + f

0

| 4us) | ds}

which is bounded as desired.

In the case with order of strict accuracy p, < p — 2 itis impossiblc i general
to infer a O(k?) global error estimate without making assumptions of the type
u® € D(AP™Y). Consider for example the problem

U= Au + pot™* 'w — P Aw for t >0, u0) =0,
with the solution u(t) = t*° w. Then

ulty) — uy = p, = KU (kA) APTITRo

In order to have p, = O(k?) we need kAh, (kA) AP~ 7 w to be bounded. This is
the case if w € D(47™#°) but not necessarily so if w is slightly less regular. To
demonstrate this, let X be a Hilbert space and let — A be self-adjoint,
positive definite, and unbounded. We shall show that p, = O(k?) implies
we D((— A)P~ 7% for any £ > 0, and thus that if w fails to satisfy this requi-
rement for some small positive €, then optimal order convergence cannot
take place. Let @; be the eigenfunctions and A; the corresponding eigenvalues
of — 4,andletw = X, ¢; ¢; € X.Since fzpo is a rational function which does not
vanish identically there exist positive ¥ and ¢ such that |xﬁp0(x) | > ¢ for

R.A.LR.O. Analyse numérique/Numerical Analysis



INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 13
v/2 < x < vy and hence
c= ” kAEpo(kA) APTPow ” Z l k’"} Po(k)\’}) )”f_po ¢ |2

>cr )y MR,
v2<m, <y

Hence for k = 27¢*1),

' |)\’P—po—e CJ |2 < C 2—ZIs ,
2ly i, €20+t

so that

o
SN P Y (NPT P4 C Y 27 < o0,
1=0

Sy

which shows the desired conclusion w e D((— A)?~?°7%). In a similar way we
can prove that p, = O(k”~®) implies we D((— A)?"7°~*7%) for any & > O.
As a concrete example we may take X = L,(0, 1)and
u, =, + 2tx(l —x) —t*) in [0,1] x R,, u0) =0,

with the exact solution u(x, t) = t* x(1 — x). For t > 0 this function belongs
to D(A9) only for g < 5/4, so with p = 4, p, = 2 we may not expect 0(k*)
convergence. In fact, withw = x(1 — x) wehavec, ~ j~*forjodd,and ¢, = 0
for j even, and since A, ~ j* a simple calculation along the above lines shows
I py > ekt

3. ERROR ESTIMATES IN TERMS OF DATA

Recall that the truncation error may be expressed in the form

(3.1)

n,p ?

e f T h(kA) A7+ 0(,) 4 R

where R, , is defined by (2. 1). For the purpose of estimating this in terms of the
data of the problem we use the differential equation (1. 1) to write

P
Apri-i, 0 u(p+1) _ z AP-J](D_
J=1

Inserting this into (3.1) we have

= ket i ,i YkA) A7 ) + R, ,, (3.2)

vol 16, n° 1, 1982



14 P. BRENNER et al.

where
~ L l
Yl(z) Z _T = 0’ D

and
p+i1

Rup = Ryp = S0 3,64 (1906 — V(1)

Before presenting precise bounds for the remainder term in terms of data
we shall restate the accuracy conditions in terms of our newly introduced
coefficients. Setting

vi(z) = 2271 §(2) for 1=0,..,p

we find easily from our definitions

16 = (0 - %7 -

qj(z) for I=0,..,p—1 (3.3

uMs

_p! L
and Yu(2) = T (r(z) - };0 ]—JT> .

We conclude at once from (3 3) and Lemma 1 the following result.
LEMMA 2 : The scheme (1.2) is accurate of order p if and only if

v(z) = 0zF"Y) for 1=0,..p, (3.4
and strictly accurdate of order py < p if and only if
Y(2) =0 for 1=0,..,ps—1.
Note that for [ = p the condition (3.4) may also be written
Hz) = & + 0(zP*!) as z—-0. (3.5)

We have thus expressed the order of accuracy condition in the form stated in
(1.4) and (1.5) of the introduction.

As a preparation for a global error estimate we shall now show that under
our present assumptions,

SsS<tp+

I R,, | <Ck"“{|| 0,(kA) u®*0) || + +, S I 126) || +

N Ckpj"” I |12+ o) || do ds} (3.6)

0

R A IR O Analyse numérique/Numerical Analysis



INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 15

where

0,(2) = (¢ — r(2))/z"*" .
Note that in view of (3.5),6, € M so that in (3.6),
| 0,(kA) u®* D) | < C | u?*10) | . 3.7

and also that u**1(0) may be expressed in terms of data; for I > 0 we have
recursively u’*1(0) = Au®™(0) + 9(0), with u¥0) = v.
For the purpose of showing (3. 6) we write R, »asasum of

p+1

th+ kT, k p—1
=—k Z qJ(kA)J t + = ) l) JPs)ds — kp—!\?p(kA)J(”’(tn)

and

N tn+1 — 5P p+1
R2, = j (t"—+ll-)—7—)—~u("+”(s) ds — kp  VpkA) u®* () .
o ! :

Since R,} » is obviously bounded as desired, it remains to consider R?  Weshall

n,p*
then use the fact that with v,,, = u?*10),

uP () = E(t) S j‘ E(t — 5) /P Y(s) ds ,

0

to write

! (tn - S)p

R, = kP*VE(t,)0,(kA)v,, | + J

tn

Js E(s—0) /%" o) do ds +
0

kp+1 tn
+ ?‘— '?p(kA) J E(t’l —_ S)j(p+ l)(S) ds N

0

where the term in v, , has resulted from the simple identity
1

p'0,(z) = J (1 —oc)fe*do — 7, (2) =
0

tn+1
=kr7t J (t, — s)P ™Mk ds — § (2).
‘"

It now follows by obvious estimates that 1?,,2, » 1s bounded as stated.
We may now state the following result. Note again in the first estimate the
artificial assumptions j® € D(A?~") for p, < p.

vol. 16, n° 1, 1982



16 P. BRENNER ¢! al.

THEOREM 3 : Assume that the scheme is accurate of order p, and strictly accurate
of order p, < p, and let E, be stable in X. Then under the appropriate regularity
assumptions,

| ut) — u, | < Ck? { ] 0,064) 00 | + 1, z sup | 4771 | +
S RCRETE I SR

I/ po=p — 1 and (2.6) holds we have

| wt) — u, || < Ck"{ t, || 8,(kA) u®*DO) | + | /C7O) || + £, || /P0) | +
¥ j (o — 9 1127 | ds } (3.9

Proof : The first estimate follows in a straightforward manner from the
representation (3. 2) for the truncation error, the estimate (3. 6) for the remainder
term, and the stability of E,. In the latter case we have to estimate in addition,

n—1
S, = ket Y EFTUT, (kA) A/
=0

Since now ¥,_,(z) = — Ep_ (z) we have as in the proof of Theorem 2,

Tn+ 1

0

nan<aﬂWWﬂ@u+j wwswﬁ,

which is bounded as desired.

Note again the inequality (3.7) bounding the first term on the right in (3.8)
and (3.9). In fact, the proof of these inequalities without 6,(kA4) could be
derived by a somewhat easier argument. In their present form they will be
applied in Section 4.

4. TOTALLY DISCRETE SCHEMES

We shall briefly consider the application of our above results to the case when
discretization also takes place with regard to the space X as would be the case
when finite element approximations are used in the space variables. Thus let
X, be a family of finite dimensional spaces approximating X, with norms || . |,.

R.A.LLR.O. Analyse numérique/Numerical Analysis



INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 17

and assume that we are given corresponding linear operators P, : X — X,
with

IPyolls<Cloll YWweX,

where P, v is thought of as an approximation of v. It could, for instance, be the
case that X, is a subspace of X, that | . ||, = || . |, and that P, is a projection
operator such that, with Y a dense subspace of X with norm | . ||y,

I Pov—vl<eglvly WVWweY, “.1)

where ¢, is small with k. In applications to isoparametric finite elements one
might have X = L,(Q) for some Q = R" and X, = L,(Q,) where Q, is an
approximation to €, in which case P, v would approximate v in Q N Q,.

Assume also that we are given approximations A, : X, - X, of A which
generate uniformly bounded semigroups ¢4 on X,. We may then consider
the semidiscrete problem to find u, : [0, c0) —» X, such that

du

—dt—"zA,,uh+P,,j for t>0, w(0)=P,v, 4.2)

and pose the corresponding completely discrete problem by application of our
scheme (1.2), namely

Upni1 = Epy thyy + k(Quy Prf)(t)) for n=0,1,.., 4.3)
P,ov,

Il

Up.0

where

Euvn = kA i, Q) O = 3 k)l + k).

Our purpose is now to show that under the appropriate regularity assump-
tions the combined error from both discretizations is O(g, + k”). In order to do
so we shall need an assumption concerning the choice of A4, which is satisfied
in typical applications. We introduce the « elliptic projection » @, : Y — X, by

Qv =(>I—4)"'P{ - Ao, (4.4

which exists for v € D(A) since A, generates a bounded semigroup. We also
assume that, ¢f. (4.1),

I1Qwv — Pyl <selvly YoeDA)NY,

vol. 16, n° 1, 1982



18 P. BRENNER et al.

and that the exact solution of (1.1) belongs to C'(0, T; Y) for any T > 0.
Under these assumptions we shall prove an analogue of Theorem 2 ; a counter-
part of Theorem 1 can be similarly derived.

THEOREM 4 : Under the assumptions of Theorem 2 for the time discretization
scheme (1.2) and under the present assumptions on the discretization in X, we
have, if E,,, is uniformly stable in X, that under the appropriate regularity assump-
tions

s = Pyute) o < Cou 0+ e sup 9 b+ tasup | 9y | +

+Ck"{ [d—A)u®=D0O) || + Jn(|| (I=A)uP(s) || + | (I—A)uP ™ 1)(s) Il)ds}.
0

4.5)

Proof : We find easily for the solution of the continuous problem

Qi (1) — Ay Qult) = flt) = Py f(t) + (@4 — Pu) (W) — u(t))

where
| 5@ =P @) ||, < 2, | () — u) |y -

Considering the time discretized version of the equation satisfied by @, u,
namely

Uy i1 = Epp iy, + k(Q ) for n=0,1,..
l’-Zh,o = Qh v,
we have by Theorem 2,

“ Uy, — Qy u(t,) "h < Ckp{ “ A, Q, u?~(0) “h +

+ J" (Il 4, Q, u?(s) Il + 1| Qn ulP*1(s) ll4) ds } .
0
Here
| An Qpull, = H A — A) P — A)ullh < C” I - A)u" s
and similarly

I Quuls<ClI—A)ul,

R.A.LLR.O. Analyse numérique/Numerical Analysis
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so that

| iy — Q) [ < Ckv{ | - 4)u0) | +
+ j (1 = A)uPs) || + || I — A)u?*(s) ||)d5}-
0

On the other hand, since r(kA,) is uniformly stable in X,, we find

" ah,n - uh,n "h <

n~-1 m ~
< c{ 1Po = Qo+ 'S S gk Gt + ) = Py S + k) }

< Cs,,{(l +t,) sup | uls) |y + ¢, sup [ w(s) |y }
s<ty s<ty
Together with the estimate

| Quu(t,) — Pyult,) |s <&, [ ut) |y

this completes the proof of the theorem.

Note that in the case that X, < X, | .||, = |. |, and that (4.1) holds, Theo-
rem 4 immediately bounds | u,, — u(t,) | by the right hand side of (4.5).

As an alternative to the above treatment we shall now indicate an analysis
which uses the error estimates for the time discretization in terms of data,
given in Theorem 3, and which assumes given an error estimate for the semi-
discrete homogeneous equation rather than the one for the elliptic projection.

Thus let again { X, } be a family of finite dimensional spaces approximating
X, let P, : X —» X, be uniformly bounded operators, and assume now that
E,(t) is a given uniformly bounded family of semigroups on X, which approxi-
mate E(t) in the sense that, with Y a dense subspace of X,

|.Eft) P,v — PLE@) v |, <& +vt)|vly WoeY. 4.6)

With A4, the generator of E,(t) we consider as before the semidiscrete pro-
blem (4.2) and its completely discrete analogue (4.3). Under the assumptions
of Theorem 3 we shall now present an estimate for the error between the solu-
tions of theése two problems. Combined with an error estimate for the semi-
discrete problem this would yield a complete error bound. We denote by Y,
the interpolation space Y, = (X, Y)y ,, between our basic space X and its
subspace Y.
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THEOREM 5 : In the present situation assume that the time discretization scheme
is accurate of order p, strictly accurate of order p — 1, that (2.6) holds, and that
E,, is uniformly stable in X,. Then under the appropriate regularity assumptions

p—1
“ uh(tn) uhn Hh Csh { (1 + tn) ” v ”Y + " AU “Y + tn l=20 “ j(l)(o) "Y| - l/p} +
roedul ool +u g 1001,
1=0

tn
+ s | + J (6~ 9 159 | ds}.
0
Proof : Direct application of Theorem 3 gives

) = e 1 < CK? {r 10, cay) ™ 9(0) [ +

£ P s OO o + 1] Py S OO [ + j = 9| Py 0S|, ds}
0
where

)4
uf*vO0) = AF* Po+ Y APTP, 190).
=0

Qinece P is bounded, the terms Cnn{ammo I are bounded as stated. In order to

Daaave £ Lill! S Siatll.

estlmate the first term on the right it sufﬁces by (3.7) to bound
S = kP { 0,(k4,) u?*V(0) — P, 0,(kA) u**1(0)},
or, with 0(z) = 2/ 0,(2),

S = 0,(kA)) A, P,v— Pe(kA)Av+Zk' _{kA,) P,—P, 8, _(kA)) { O(0)

4
- Sp+ 1 + Z Sl .
1=0
In order to deal with the different terms in S we shall need the following lemma.

LemMA 3 : If (4.6) holds and g, g’ € M we have

“ gkA,) Pyv — P, gkA) v “h e(m(g) + vkm(g")) | v lly -
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Proof : We have

9(2)=I e du(t) with J dip|()=mg),

R
and
¢w=J & dule),
R
so that
ftﬂmm=mw.
R4
Now
mumw—mmmw=j(mmm—mmmw@m,
R4
and hence

Hmmwﬂ—mmmwm<%f(umeumwmn
R4
< ey(mlg) + vim(g) | v | -

Note that since g(kA4,), P,, and g(kA) are bounded we have by interpolation,
for k bounded,

| gkAy) Pyv — PyglkA)v |, < Cefllv ] Yy for 0<O<1. (4.7

Note also that as a result of the lemma we have for the elliptic projection defined
in (4.4),

| Qpo—Pyv|,= | —=A4)~" P,—P(I-A)")(I—-A)v < Cey| I=A)v]y.

We may now complete the proof of Theorem 5 by estimating the S,
1=0,..,p+ 1Since 8, 8, € M we have by Lemma 3 and (4.7) for [ = 0, ..., p,

ISl < Ckl e ™ [ SO 1y, _,,, < CO" + &) | 1O 1y, -

In order to bound S, we first note that we may replace P, v by discrete
initial values v, = Q, v. For the difference in the solution between v, = Q, v
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22 P. BRENNER et al.

and v, = P, v may be bounded as follows,

| Ein(Qn = P o [l < Cey(ll Av lly + 10 lly) -
With v, = Q, v we have by a simple calculation
y, = 0,(k4,) A, Q,v — P,8,(kA) Av
= (0,(k4,) P, — P, 6,(kA)) Av + §(k4,) (Q, — Ppv,
and hence
ISpslln < Celll v lly + v lly).

The proof of the theorem is now complete.

5. CONSTRUCTION OF ACCURATE SCHEMES
Recall from Section 1 that the scheme (1.2) is of order p if and only if
nz) — & = z"*?) as z-0 (1)

and

vie) = ( \ L¥a@=0w) as 220, @

J
for I1=0,..,p—1,
and is strictly accurate of order p, < p if in addition

v(z) =0 for 1=0,..,po — 1.

For the case that the number m of quadrature points is less than p we shall
now give an alternative characterization of a scheme of order p which will be
used to construct accurate schemes below.

LEMMA 4 : Let m < p. Then the scheme (1.2) is accurate of order p if and
only if (i) holds together with

Y(2) = 0zF"Y) as z—0 for 1=0,...,.m—1, @y

and with o(t) = TI7-,(t — 1)),

1
Jm(t)tjdt=0 Jor j=0,.,p—m~—1. (iii)
[¢]
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Proof : Let us first note that (iii) is equivalent to the existence of b,, ..., b,
such that, with T ,_, all polynomials of degree at mostp — 1,

1 m
J ot)dt = Z bo(rt) Veell,_,. (i

0

To show the necessity of the conditions it thus suffices to show (iii)’ for ¢ = t/,
I=0,..,p— 1. But by (i) and (ii),

v(0) = l=0,.,p—1,
! l+ 1 J;
so that with b, = q/(0),
1 1 m
thdt = —— = b t.
L I+1 ,;0 Y

We now turn to the sufficiency of the conditions and it suffices then to show
that

v(z) =0z"""Y) as z—-0 for I=m..,p—1. 5.1
We have by integration by parts and by (i),

1
1+1 l zJ

]
Z“ J U0 ¢l dt = ; -Z——'—r(z Z —,+O(z”“) as z-0

o <
and hence

1 m
v/(2) = J U0l dr — ZO g2 +0z""") as z-0.
=

0

For (t) as above we write w(t) = ). «, t'. Then since w(t,) = 0 we obtain by
1=0

expanding the integrand and using (ii), for I =0, ...,p —m — 1,

™M=

1
o, V,4(2) = J F0thpt)dt + 02 ™ ) =0z as z-0.

Y 0

1

Since a,, = 1 we conclude (5.1) by induction over L
The above lemma provides a method for constructing a scheme which is
accurate of order p, and strictly accurate of order m, if m > p/2 : We first choose
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r(z) so that (i) holds, then select the distinct numbers { t, }T < [0, 1] so that (iii)
is satisfied and finally determine the rational functions { g (2) }T so that y(z) =
forl=0,..,m—1or

1 g2 = (r(z) - i i%) for [ =0,..m—1. (i)

;=0 J

”M5

J

Note that the matrix of this system is nonsingular since the t, are distinct, and
that the g (z) will have the same denominators as r(z), which is advantageous
for the implementation of the scheme. Note also that the condition p < 2m
is necessary for the existence of { t, }7 so that (ii1) holds ; if p = 2 m the points
are uniquely determined as the Gaussian points of order m on [0, 1].

It is now natural to ask if the conditions (i), (ii)” and (iii) (or (iii)’) in fact
imply strict accuracy of order higher than m. In this regard we have the fol-
lowing :

LEMMA 5 : Assume that the scheme (1.2) is accurate of order p and strictly
accurate of order m < p where m is the number of quadrature points. Then it is

strictly accurate of order m + 1if and only if witho(t) = ITZ,(t — 1)),
Z m=j Q)(J)
Hz) = =2 (5.2)
Z Zm oa“’(O)
The scheme cannot be strictly accurate of order m + 2 < p
m
Prooy : Recaiiing the definition of y,(z) and (r) Z o, I we have since

v{z) = 0for [ =0,...,m — 1,

Yul2) = ialv,(z)=z"'"+”{ i o ilzZ" 7 rz) — i i oc}i— " ‘“}
1=0 =0 =0

=0

M=

1=0

z"""“){ 12) 2" o(0) — i z"’"‘m")(l)},
1=0

which shows that v,,(z) = 0 if and only if (5. 2) holds.
Similarly, if the scheme is strictly accurate of order m + 1 < p we have with

@) = to(t) = Y o 't
1=0

m m
Ym+1(z) — Z—(m+2) { T(Z) Zo Zmt GJ(H-l) Z m— 1~(1+1) )}
1= 1=0
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and strict accuracy of order m + 2 would imply that in addition to (5.2),

Zm—l 6){1+ l)(l)
Hz) = -

(5.3)

INgEIBA g

Zm -1 G)(¢+ 1)(0)

[}
=)

Since @™ V(0) = (m + 1) ! = (m + 1) ®"™(0) a comparison between (5.2) and
(5.3) shows that we must have &“*Y(0) = (m + 1)@¥(0) for i =0, ..., m.
Since ®'(0) = ®(0) this is impossible if ®(0) # 0. But if ®(0) = 0 we have since
the t, are distinct that ©'(0) # 0 and since ®"(0) = 2 »'(0) we now conclude
m = 1. In this case ®(t) = t and (5.2) and (5. 3) both yield r(z) = 1 + z which
is not permissible.

For the case p = 2 m the function r(z) defined by (5.2) is the diagonal Padé
approximant r,,,(z) of e” since this is then uniquely determined by (i). The
particular case m = 1 corresponds to the Crank-Nicolson scheme

1 1 1
<I —-ikA>u,,H = (I +§kA)u,, + kj(t" +—2-k>

For m = 2 we have

_l iz 2 - 1 12 42
(1 2kA+12kA>u,,+1—(I+§kA+ﬁkA u, +

B e D) (P S)]

which is accurate of order 4, and strictly accurate of order 3. It is easy to check
that (2. 6) holds so that the error estimate of Theorem 2 applies.

One way of generating schemes of type (1.2) is to use implicit Runge-Kutta
methods (¢/. [2]). If the method is of collocation type, condition (5. 2) is satisfied
and y(z) = Ofor! = 0, ..., m — 1. An interesting class of such schemes is given
by Norsett [3] ; these schemes satisfy the relation (5.2) and the rational functions
r and g, have exactly one pole, which is the same for all these functions. For
related material, see also Nersett and Wanner [4].

vol 16, nv [, 1982



26 P. BRENNER et ul.

REFERENCES

1. P. BRENNER and V. THOMEE, On rational approximation of semi-groups, SIAM J.
Numer. Anal. 16, 1979, 683-694.

2. M. Crouzeix, Sur [l’approximation des équations différentielles opérationnelles
linéaires par des méthodes de Runge-Kutta, Thése, Université Paris VI, 1975.

3. S. P. N@RrSETT, Runge-Kutta methods with a multiple real eigenvalue only, BIT 16,
1976, 388-399.

4. S. P. NorseTT and G. WANNER, Perturbed collocation and Runge-Kutta methods,
Report, Université de Genéve, 1978.

R.A.LLR.O. Analyse numérique/Numerical Analysis



