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FINITE ELEMENT SUBSPACES WITH OPTIMAL RATES OF
CONVERGENCE FOR THE STATIONARY STOKES PROBLEM (*) (**)

by Lois MANSFIELD (%)

Communiqué par P G CIARLET

Abstract — When finite element methods are used to solve the stationary Stokes problem there
1s a compatibility condition between the subspaces used to approximate'the velocity u and the pressure p
which must be satisfied to obtain optimal rates of convergence Finite element subspaces of arbitrary
degree are constructed which have optimal rates of convergence for the stationary Stokes problem
These results include regions with curved boundaries where elements stmilar to 1soparametric elements
are used

Résumé — Lorsqu'on utilise des méthodes d’éléments fimis pour résoudre le probléme de Stokes
stationnaire, les sous-espaces utilisés pour I’approximation de la witesse u et de la pression p doivent
satisfaire une condition de compatibilité afin d’obtemir des taux optimaux de convergence On construit
1c1 des espaces d’éléments fims de degre arbitraire qui conduisent d des taux optimaux de convergence
pour le probléme de Stokes stationnaire Ces résultats sappliquent en particulier a des régions d
frontiere courbe, ou Pon utilise des éléments fimis analogues aux éléments finis isoparamétriques

1. INTRODUCTION

When finite element methods are used to solve the stationary Stokes problem
there is a compatibility condition between the subspace V" used to approxi-
mate the velocity u and the subspace P" used to approxi?nate the pressure p
which must be satisfied to obtain optimal rates of convergence. One usually
approximates the pressure by piecewise polynomials of degree k — 1, and
chooses the subspace V" = (V")", N = 2, 3, so that the compatibulity condition
is satisfied. Several examples of triangular finite element subspaces in two
dimensions and tetrahedral finite element subspaces in three dimensions are
given 1 [7]. The purpose of this note is to extend the quadratic and cubic
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50 L. MANSFIELD

conforming subspaces given in [7] to subspaces of arbitrary degree. The balance
between accuracy and ease of use may very well indicate that the lowest order
finite element subspaces which we give, namely those already given in [7)],
are the most practical. However, it seems worthwhile to show how to extend
these subspaces to subspaces of arbitrary degree so that the construction of
appropriate subspaces seems less ad hoc.

When the boundary of the domain is curved the usual procedure is to use
isoparametric elements on boundary triangles or boundary tetrahedra. In
Section 5 we show how to extend the idea of isoparametric elements to the
context of the Stokes problem where the variables u and p are approximated by
different types of finite element spaces. We also show that the optimal rate of
convergence can be preserved when isoparametric elements are used.

The same compatibility condition between V* and P" which arises when
finite element methods are used to solve the stationary Stokes problem also
arises when finite element methods are used to solve the stationary Navier-
Stokes equations for incompressible fluid flow, and so considerations regard-
ing the choice of appropriate finite element subspaces are the same for both
problems. An analysis of finite element methods for the stationary Navier-
Stokes equations at low Reynolds numbers is given in [9].

2. PRELIMINARY ANALYSIS

Let Q be a bounded domain of RY (N = 2, 3) with boundary I'. The sta-
tionary Stokes problem for an incompressible viscous fluid confined in Q
consists of finding functions u = (u,, ..., uy) and p defined over Q such that

—vAu+Vp=f in Q,
divu=0 in Q, (2.1

u= 0 on I,
where u is the fluid velocity, p is the pressure, f are the body forces and v > 0
is the viscosity. It is known that the velocity u is uniquely determined by (2.1)

while the pressure p is only determined up to an arbitrary constant.
Given any integer m > 0, let

H™Q) = {v|velXQ),velL*Q),|la| <m}

be the usual Sobolev space provided with the norm

[0l = (1 Y | uzzm,)’”.

af<m
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THE STATIONARY STOKES PROBLEM 51
We shall also need the seminorm

)0l = (. REE llzzm,>m

al=m
Let
Ho(@) = {v|ve H'(Q),v|0}.

Consider also the quotient space L?(Q)/R provided with the quotient norm
v "LZ(Q)/R = 11’1}; lo+c "LZ(Q) .
The problem (2.1} may be expressed in weak form as : find functions
ue (Hg(Q)", p e L*(Q)/R such that
v(Vu-Vv) — (p,divv) = (f-0), allve (Hs@)", 2.2)
(divu,q) =0, allge L*(Q)/R. 2.3)
To approximate u and p by the finite element method, we construct a tri-

angulation G, of Q with nondegenerate N-simplices T (i.e. triangles if N = 2
or tetrahedra if N = 3) with diameters < h. For any T € G,, let

WT) = diameter of T,
p(T) = diameter of the inscribed sphere of T'.

We assume that

G(T)=%>O(>0, allTeG,, 2.4

where o is an absolute constant. We are assuming here that Q is a polyhedral
domain. More general domains are considered in Section 5.

Let P" < LAQ)/R and V= (V'Y = (Hy(Q)" be finite dimensional
subspaces of piecewise polynomials over G,. The approximate problem is :
find u* € V*, p" € P" such that

v(Vu"-Vo") — (p, div v") = ("), allv"e V", (2.5)
(dive’, g =0, allg"eP". (2.6)

vol. 16, n° 1, 1982



52 L. MANSFIELD

We shall need to assume that the following compatibility condition holds
between the subspaces P" and V* : for any ¢" € P*, there is a function w" € V*
such that

(divw", ¢") = (¢", ¢"), allg"eP", 2.7)
Tw il o< Cld"log, (2.8)
where C is an absolute constant.

THEOREM 2.1 : Let ", p" be arbitrary elements of V* and P* respectively,
and let (', p") solve 2. 5) (2 6) where V" and P" satisfy (2.7)-(2.8). Let (u, p)
solve (2. 2) (2.3). If v < 1, then

1 N
2v | Ve — @ [fa + sz 1 = B" 50 <
N 1 N
<16(C2 +2V) Ju—a"|2q + 16(1 - ;) Ip =" ltaur- (2.9)

Proof : Letting v and v" equal " — @" — 61—2- w" in (2.2) and (2.5) where
w" satisfies
(div w", ¢") = (p" — p" ¢"), allg"eP",
I wlie < ClP" = p"lloq,

along with the fact that (div (v — "), 9"} = 0, all 4" ¢ P”, gives

Vil

V“V(uh_”')”on"' Hp - p* ||oQ—-
=("-p ,dIV(g—y_ ") = (p — B div @ — ") +

WV = )V — @) + =3 (p — Y div )

+ &2 (V0 — 2%)-Vw) — = (Vi — @), V)

—

N - 2 -
Sgal? =" lha+2Cu—a"lla+lp-0"lca

+ 3 VE — " Ba+2viu - i 120+ 5] VO - 29 3a

+20p— 5" I3+ P lEa + 3 1 VE — 2 [3a

8C2”p
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THE STATIONARY STOKES PROBLEM 53

v _ R v N
+E'é—2llp"—l7h||<2>,n+2V||2—2"||f,n+m|| A A F N
1 /5v 1 N 3v ~
= E;(—s— + Z) I " —B" 150 + T“ V' — @" |5
~ 2 ~
+QRC*+4v)|u—a" Il?,n+<;+ 2> lp—p3"13a,

from which (2.9) follows if v < 1.

Suppose that the subspaces ¥* and P* have the following approximation
properties. There is some p, > 2 and a constant C, independent of 4 such that
if ve (H'@Q) n (Hy(@Q)", 2 < r < py, then there is some 5" € V* such that

lo =" lma<CaW "lvle, m=01. (2.10)

There is some p, = 1 such that if ge H¥(Q), 1 < s < p,, then there is some
G" e P" such that

g —=3"loa<Calllqlsa- 2.11)

COROLLARY : Let (u, p) solve(2.2)~(2.3) and suppose u € (H"(Q))N ~ (H5(Q)",
p € HYQ)/R. Let (u", 7") solve (2.5)-2.6). Let V" and P¥ satisfy the compatibility
condition (2.7)<2.8) along with (2.10) and (2.11). Then

2"“ V(u - uh) ||(2)Q+ C2 lp— Ph “(2),9 <

SC ROV ullo+ Ch*|pllie- (2.12)

Assumptions (2.10) and (2.11) are satisfied if V" contains all polynomials
of degree r — 1 or less and P contains all polynomials of degree s — 1 or less.
From (2.12) one should choose s = r — 1 provided one can satisfy (2.7)-(2.38).
The purpose of the next two sections is to give spaces V* and P" for which
(2.7)-(2.8) are satisfied and for which s = r — 1. o

If Q is convex, we have the regularity property

Tullo+1Plie<Crllfloas (2.13)

where (4, p) is the solution to (2.2)-(2.3). L? error estimates for u— Eh may be
obtained using (2.13) along with a duality argument. The following is proved
in [7].

vol. 16, n° 1, 1982



54 L. MANSFIELD

THEOREM 2.2 : Assume the region Q is convex. Let (u, p) solve (2.2)-2.3)
and (", p") solve (2.5)-(2.6). Then

lu - lloe < Cphllu—u"llio+ P =P log) (2.14)

Our analysis is similar to that in [7]. We reduce their hypotheses, one of
which is equivalent to (2.7)-(2.8) and the other that there is an element ¥ h
which satisfies (2.10) along with

(div 5", ¢") = (div v, ¢"), all¢"eP”, (2.15)

to the single hypothesis (2.7)-(2.8). Our method of demonstrating (2. 7)-(2.8),
however, will essentially involve the construction of an element satisfying
(2.15).

Alternatively, one can obtain similar results by replacing our condition
(2.7)-(2.8) by the assumption

(div ", q")

vrerr |l Eh e

2Bl llon, alg'eP, (2.16)

for B > 0, and require (2. 15) along with (2. 16) as was done in [8]. It is not hard
to show that (2.7)-(2.8) implies (2.16).

3. SUBSPACES WITH OPTIMAL ACCURACY FOR N =2

We take for P* a set of piecewise polynomiais of degree k — 1 such that
P! < L*(Q)/R. Since no inter-element continuity is required, it has been
common in the mathematical literature [1], [7] to choose piecewise polynomials
with discontinuities across element boundaries. Since (2.7) only requires that
one be able to find a w" € V" such that div w" = ¢" holds weakly, i.e. that (2.7)
holds, there is no necgssit}Tto do this, and the dimension of P* is reduced with
no loss in order of convergence if P* € C(Q). In this section we construct sub-
spaces V" which contain all polynomials of degree k or less and which satisfy
(2.7) for P* consisting of piecewise polynomials of degree k — 1. Elements of
VP = V* x V* will be obtained by piecing together polynomials defined over
triangles T € G, to obtain piecewise polynomials which are in C(Q).

Suppose the triangle T € B, has vertices a;, i = 1,2, 3. Let A(x, y) denote the
barycentric coordinates of a point (x, y) € R? with respect to the vertices of T.
Equivalently, suppose the edge e; of T opposite the vertex a; has the equation
A{x, ¥) = 0 normalized so that A(a;) = 1. Let I, be the space of polynomials
spanned by the set of polynomials of degree k along with the polynomials

R.A.LLR.O. Analyse numérique/Numerical Analysis



THE STATIONARY STOKES PROBLEM 55

M A, A X'y i 4+ j =k — 2.1t is interesting to note that IT; consists of all
those polynomials which are polynomials of degree k along parallels to the
edges ¢; of T and which are polynomials of degree k + 1 or less. Thus for
k =2s — 1, I, is a subset of the set G,,_,(T) of polynomials which are of
degree 2 s — 1 or less along parallels to the edges of T, introduced in the cubic
case and called tricubic polynomials in [2], and used in another context in [3]
and [10].
We let V* = V* x V" where

V= {v"|v"ell oneach T €6, v" € H5(Q) } . 3.1
THEOREM 3.1 : With V* = V* x V* where V" is defined by (3.1), and P*

consisting of piecewise polynomials of degree k — 1 or less, given g" € P, there
exists a v" € V" such that (2.7)-(2.8) holds.

Proof : Given ¢" € P", by lemma 6 of [7), there exists a function v € (H(Q))*
such that

dive = ¢*,
v e <cll q floq-

Let w" be the orthogonal projection in (Hg(Q))* of v on V*. Let z = v — w/,
and define z" € V" by

Eh(gl)':o, l=132333 (l)
fzhlj+ldc=J‘ E)\'j"!"ldo-’ j=132,3’ i=01-":k_29 (11)
Jihx’fdxdy=j£x’fdxdy, O0<r+s<k-3, (iii)
T T
er"ly‘z'{dxdy—j le'ysz'{dc=J X'y z dx dy —
T aT T
—-J wxyzdo, r+s=k—-1, r=z1s=1, (iv)
or
j (k — 1) x* 2zt dxdy —J "' tydo =
T

eT

=I (k — 1)xk=2 2, dxdy—J‘ X! z.wvdo,
T

T

vol. 16, n° 1, 1982



56 L. MANSFIELD
J sx" Yy Zh dxdy—J Vv, x'y‘z’idc=j sx" 1z dx dy —
T oT T
—J‘ v, X' yzydo r+s=k—-1, r=z1s=21, ()
oT
J(k——l)y“"zz'idxdy—f Yyt Zevdo =
T T -

=J k — l)y"‘zzzdxdy—J ¥ ! zwvdo,
T oT -

on each T € G, where v = (v,, v,) is the outward normal on d7. In (ii) and
below subscripts on A are to be taken cylically, so A, , forj = 31s4,. Ifk = 2,
the conditions (iii) are absent.

Using the identity

J X"y div 2" dx dy = J X"y .vdo — j (rx"" Yy 2t 4 sx” T Aydxdy,
T aT T

it is straightforward to show that if Eh satisfies (i)-(v) on each T € G, then
(div 2", " = (div z, ¢"), all¢"e P".
We show that z" is uniquely defined on each T €6, by (i)-(v). On each

I € G,, we can write z* as

k-2

k-2 k—2
o= xlxz(z a3x3> + x2x3(z a}x;>+x3xl(z afxg> +
- - =0 1=0

1=0

+ Ay Ay k3< Y B, y’) + A A, k3< Y, B,x'y + lo. terms)),
1+y<k—-3 " t+j=k-2 "
(3.3)
where the o] and [_3l , are coefficients. The lower order terms in the sum in (3.3)
can be chosen so that

J Ai Ay As(x y? + lo. terms) x™ y"dx dy = 0,
T

i+j=k—-2, 0sm+n<k-2.

R A 1R O Analyse numérique/Numerical Analysis



THE STATIONARY STOKES PROBLEM 57

See Stroud [12, p. 67,ff]. One, j = 1,2, 3,

k-2
jgxgﬂdc:J x,“xm(z g{k;+l>7»5+ldc, 1=0,.k—2.

1=0
3.9
The coefficients o can be uniquely determined to satisfy (ii) since the coefficient

matrix for the linear system obtained by substituting (3.4) into (ii) is the Gram
matrix for the least squares problem with inner product

J\ )"J+l )"J+2 fq dG.

Here X +; A,+, 15 a non-negative weight function. The coefficients B,,
0 < i+ j<k — 3 can be uniquely determined from

j%,)%?%( Y E,,x'y’)x’"y"dxdy=fEx"‘y"dxdy-—
T

1+ <k-3 T

—J‘Eex'”y"dxdy, Os<m+n<k-3
T

where p, denotes the sum of the first three terms in (3. 3), since the coefficient
matrix is the Gram matrix for the least squares problem with inner product

J A Ay A5 fgdxdy.
T

Finally the coefficients B, , i + j = k — 2 can be determined from (iv) and (v)
since the resulting coefficient matrix is the Gram matrix with entries

j M A, Ay xK72 7ty xk=2 0 yidxdy, 0<i,j<k—2.
T

Let Tbe a standard reference triangle with vertices 4, There is a 1-1 affine
transformation which maps T onto T.In (3.3) and in the conditions
(i11)-(v) we could just as well written A} A4 in place of x* y’. Then the transform

vol 16, n° 1, 1982



58 L. MANSFIELD

2" of 2" to Tis given by

B, xz) T+, 13( T BGyds 4 Lo terms))
1+j=k—-2
3.5)

where (%, §) = 0 on &, the edge opposite 4, and ,(d) = 1. The functions 2,
can be bounded uniformly. Thus

Iz <Cy.

Since

k-2
Jx,ﬂxj”(z g{x;ﬂ)xjﬂdc=J A, do, 0<I<k-—2

=0

| e, IJ ,+17\ (_ x 3+1)7‘u+1d0—‘eljv Z}‘gﬂdo'

the coefficient matrix and right hand side of the linear system which determines
the o can be bounded independently of the geometry of T. Thus

or

i a N -~ ;1 - 1. ~ 2 _ 1 2
20 Z01,r>, VSISK— 24, J=1,409.

Similarly

Thus

12 v R
2" r <Cy h 207 < Cs A (21,7 + 12103

< G| Zlr + =t z llo,r)

so that
2170 <3CizBa+h 1 zloa) <Cilzlir,

where | J | is the Jacobian of the mapping from T'to T and the last inequality
follows from the Nitsche duality argument.

R A 1R O Analyse numérique/Numerical Analysis



THE STATIONARY STOKES PROBLEM 59
Finally, let v* = z* + w" Then v" satisfies
(div o, &% = (divp, ¢"), all ¢ P*,

I le<lvlia,

which proves the theorem.

If conditions (iv)«(v) are omitted, the proof of theorem 3.1 shows that (2.7)-
(2.8) holds if v" consists of C°-piecewise polynomials of degree k or less, and
P* consists of piecewise polynomials of degree k — 2 or less. It seems necessary
to augment V" as we have done in order to satisfy (2.7)-(2.8) for P" containing
piecewise polynomials of degree k — 1. These additional functions all have
support only on one triangle, and so shouldn’t add very much to the cost of
solving the resulting algebraic systems since condensation techniques can be
used. It was shown in [7] that one can satisfy (2.7)-(2.8) with K" consisting of
piecewise polynomials of degree k and P* consisting of piecewise polynomials
of degree k — 1 if non-conforming elements are used for V". Actually, this
doesn’t reduce the dimension of ¥* as much as it might first appear, if at all,
since basis functions corresponding to vertices are replaced by basis functions
corresponding to points along edges; and there are roughly three times as
many edges as vertices, see {3, p. 543).

The conditions (1)-(v) given in the proof of theorem 3.1 can be used to define
an interpolant E" toveH', 1 < r <k + 1, with the property that

(div 3", ¢") = (divy, ¢, all$heP".

Since #" = v for all polynomials of degree k or less, one can use the usual
finite element error techniques to conclude that the approximation property
(2.10) holds with r = k + 1. However, since interpolation schemes are also
used to provide suitable bases for computation, and since we don’t believe that
a basis derived from (i)-(v) above is the most practical to use, we give the
following alternative interpolation scheme.

LEMMA 3.1 : There exists a unique polynomial q € 1, which has given values

for
gla),i =123, (1)
q(gi,j) ,J=1,..,k — 1,0oneachedgee; of T,
where the points a; ; divide e; into
k equal parts, (i1)
ar+sq(c)

—, 0< s<k—2atth t it
7 oy r+ at the center of gravity

cof T. (iif)

vol. 16, n° 1, 1982



60 L. MANSFIELD

Furthermore there exists a unique o " € V* which interpolates
ve H**1(Q)n H(Q)

with respect to the conditions (i)-(iil) on each triangle T € G, and

ho = 3" lma < Co B " [0 lhs10, m=0,1. (3.6)

Proof : The number of conditions in (i)-(iii) is equal to the dimension of IT;.
Suppose g € I1; has the conditions in (1)-(iii) all zero. Then (i)-(ii) imply that g
is zero on the edges e¢; of T. Thus g = A; A, A5 p,_,, Where p, _, is a polynomial
of degree k — 2 or less. Since A(c) # 0, i = 1, 2, 3, the conditions (iii) imply
that p,_, = 0. Thus ¢ = 0. Let the piecewise polynomial #* interpolate
ve H*"Y(Q)n H(Q) with respect to (i)-(iii) on each triangle T €G,. Then
t"e C(Q)and 3" | = 0;s05" e V" Since 5" = v for v a polynomial of degree
k or less, the bound (3.6) follows from well-known finite element error tech-
niques, see [4] and [5], for example.

4. SUBSPACES WITH OPTIMAL ACCURACY FOR N=3

Again we take for P" a set of piecewise polynomials of degree k — 1 such that
P" = L%)/R. It would seem to be more practical in that the dimension reduced
for no loss in the order of convergence if P* = C(Q). For each tetrahedran
T € 6, with vertices a;, i = 1,2, 3,4, let I1; be the space of polynomials spanned
by the set of polynomials of degree k or less along with the polynomials

7\'1'1"4* Ki+2xllx’;x"’ l+m+n=k_2, i=132’3:4,
i+1 3

plus the polynomials A, A, A3 A4 x4 X7 x4, [+m+n = k—2. Here L{x,, X,, X3)
denotes the barycentric coordinates of a point (x;, X,, x;) € R*® with respect
to the vertices of T. As in the previous section we assume the subscripts of the
X; are augmented cyclically. Equivalently IT; consists of all polynomials which
are of degree k along parallels to the edges of T, are of degree k + 1 on parallels
to the faces of T, and are of degree at most k + 2. Thusfor k = 3,1y is a subset
of the set of tetracubic polynomials introduced in [11, p. 149]. We let V* = (V*)?
where

V"= {v"|v"ell; oneach TeG, v"e HL(Q)} . 4.1

THEOREM 4.1 : With V* = (V*)* where V" is defined by (4.1), and P* consist-
ing of piecewise polynomials of degree k — 1 or less, given q" € P*, there exists
a unique v* € V" such that (2.7)-(2.8) holds.

R.A.L.R.O. Analyse numérique/Numerical Analysis



THE STATIONARY STOKES PROBLEM 61

Proof : As in the proof of theorem 3.1, given ¢" € P, there exists a function
v € (Hg(€))* such that

divv = ¢*,
lolhae<caldloa-

Let w" be the orthogonal projection in (Hg())* of von V*. Let z = v — w",
and define z" € V* by

Pa)=0, i=1234, (i)

2(a,)=0, j=12,.,k—1oneachedgee,i=12,..,6,
where the points g, ; divide e, into k equal parts, (i1)

thxgﬂxj”dc:J NN, OSr4+s<k—2, (i)
F, F,

oneach face F,j = 1,2,3,4,

jz”xﬁﬁxgdx=J Xy x3x5dx, O<r+s+t<k—3, (iv)
T T

r—1 s t h 7 S t h — r—1 s t
J rx, Xi+1 X422, df‘f V, X X1 X422, dc"J rx, x1+1x1+221d§—
T T T

—J VX xSy X, z,do, r4s+t=k—1 r2ls=1lt>21, i=1,2,3 (v)
oT

1

-1 h s r S h

erf xfﬂz,dx-j {v,x{x,ﬂzf+§vl+2x,x,+lz,+2 do =
T aT

r—1 s S
=J‘ rx, xl+lzldlc_—J {le:x-:+lzz+ 1/2V1+2xrx1+121+2}d01
T aT
r+s=k—-1, r2z1ls>21, i=123,
r—1 s h r s r h —
J rX, xz+22( d§ - J {Vz X( xH—ZZ‘: + 1/2 Vit1 X, xf+221+1}d0 -
T or

=1 s
= rx’ X z, dx — roLs r s h
JT ¢ pr2 Mt J‘ {V: Xy X142 2, + 1/2V1+1x1 Xi+2 2141 }dG,
T

r+s=k—-1, r>1, s>1, i=123,
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62 L MANSFIELD
j (k—l)x’,“zzf‘dz—f xk71 Zrvdo =
T T
= J (k—1)x2Mdx — J x¥"lzwdo, 1=1,2,3,
T oT

on each T € G,, where again v = (v,, v,, v;) 1s the outward normal on 0T,
and the subscripts on the x, are to be taken cyclically so that for j = 4,
X,+1 = x; Ifk = 2, the conditions (1) are absent

Again 1t 1s straightforward to show that if 5" satisfies (1)-(v) on each T € G,
then

(dw 2, ¢") = (dvz, ¢"), all$"eP”

By writing z" similarly to (3 3), it can be shown 1n the same way as 1n the proof
theorem 3 1 that z" 1s uniquely determined on each T € B" by (1)-(v) Inaddition,
the interpolation conditions mn (1m)-(v) correspond to bounded linear functionals
n (H3(Q))* This enables us to show that

IZlie<Cillzlia
Finally, let v" = z" + w" Then 1" satisfies
(dv o", ¢") = (dwv v, ¢"), all $" € P,
" lia<lviias

which proves the theorem

If the conditions (v) are omitted, the proof of theorem 4 1 shows that (2 7)-
(2 8) holds if V" consists of C°-piecewise polynomuals of degree k or less and P"
consists of piecewise polynomuals of degree k — 3 or less Similarly to when
N = 2, we have the following alternative interpolation scheme which furnishes
a more practical set of basis functions than the mterpolation conditions of
(1)-(v) n the proof of theorem 4 1 Let 0/dt, ,) = 1,2, denote directional
differentiation m two specified nonparallel directions on the face F, of T

LemMMA 4 1 There exists a umque polynomial q €Il which has given
values for
gla), 1=1,23,4 ()

g, ), 1=12, ,k—1loneachedgee,1=1,2, ,6, wherethe (u)
points a, divide e, into k equal parts,
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r+s
" gle) 0<

r + s < k — 2, at the center of gravity c, of each face (iii)
611,1 o,

F of T,
ar+;+lq(£) 0

o, o, O <r+ s <k — 2,at thecenter of gravitycof T. (iv)

Futhermore there exists a unique "€ V" which interpolates
ve H*" Y Q) n HLQ)

with respect to the conditions (1)-(iv) on each tetrahedron T € G, and

|v—3" Imo < C4 A les1.0, m=0,1.

5. ISOPARAMETRIC ELEMENTS

We assume the region Q has been triangulated with boundary triangles or
boundary tetrahedra having a curved edge or curved face. As isoparametric
elements have been used by engineers the curved triangles or tetrahedra are
straightened by a change of coordinates which is described by the same class
of polynomials that are used as finite elements in the approximation of the
variables involved. Here we shall separate the coordinate transformation from
the definition of the finite elements.

The coordinate change may be described as follows. Let T be a boundary
triangle or tetrahedron, and let T be a standard reference triangle or tetra-
hedron. Let { g, 3 | be a set of distinct points in T and let { a, M | be aset
of distinct points in 7. Let { g, }, be a finite dimensional set of functions
such that

4(a) =3,, Il<ijs< M,

and let Q be the space of functions spanned by the g, Let F be the mapping

M
F=1Y ga,. (5.1
1=1
Note that F(@) = a,. The mapping F has been shown to be 1-1 for sufficiently
refined triangulations in [6]. It is usual to take Q to be a space of polynomials,

and here we take them to be the set of all polynomials of degree k or less.

The boundary triangle or tetrahedron T is defined by T = F(T). The edges
or surfaces of T which are along the boundary of Q will not coincide with
I" but will be a polynomial approximation to I'. Thus in this procedure the
region Q is replaced by a region Q, with piecewise polynomial boundary I,
For boundary conditions u |- = 0, it is easy to show in the same manner as in
[6, Section 1] that the inequality (2. 9) holds when the boundary is approximated
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and isoparametric elements are used except that all norms are over the approxi-
mate region (), rather than over Q. It is necessary, however, that I', consist
of piecewise polynomials of degree k in order that an interpolant #* to u, the
solution to (2.2)-(2.3), can be constructed such that ii* ¢ H 3(Q,,)3nd (2.10)
holds forr = k + 1.

On boundary triangles or tetrahedra, we suppose elements of P" are given
by functions of the form n* = {".F ~!, where F is the mapping defined by (5.1)
and 1" is a polynomial of degree k — 1 or less defined on T. For N = 2, for
boundary triangles T let I, consist of all functions of the form v* = #*-F ~!
where " is a polynomial of degree k or less defined on T along with certain
additional functions similar to those included in IT; in Section 2. To define
these additional functions, let Xi, i = 1,2, 3, denote the barycentric coordinates
of a point (%, y) € R? with respect to the vertices of T, and let A, = A,-F ~ .
In the first component of ¥*, we include in I1; all functions of the form A, A, A4

y where ¢ = %((X'-F‘l)(jf‘-F“l)), r+s=k—1, and in the second

component, we include all functions of the form A, A, A5 ¥ where
V= %((x'-F‘l)(y‘s-F“», rts=k—1.

THEOREM 5.1 : Let V" = V" x V" where V" is defined by (3.1), where I1,
for curved boundary triangles is defined above, and let P* consist of locally defined
functions which on each triangle are given by W' = #*-F !, where F is the
mapping defined by (5.1) and " is a polynomial of degree k — 1 or less on the
reference triangle T. Then given q" € P", there exists a function v" € V* such
that (2.7)-(2.8) holds.

Proof : For ¢"e P* let the functions v, z,and g" be defined as in the proof of
theorem 3. 1. We define a function z" € l/” by (1)~(i1) in the proof of theorem 3.1
along with

j 2 F 7Y (%5 F Y dx, dx, = J‘ X -F 7N (%5-F 7 dx, dx,
T T

O0<r+s<k-3, (i)

Ja—‘}((fc;-F‘l)(xz-F‘l))z?dxl dx, —J V(% F ) (83 F ") 2l do =
i

t T

- J L (%5 F ) (85-F ) 2, dx, dx, —J V(#F ) (35-F Y 7, do
T i

aT
r+s=k—-1, i=12.
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By mapping to the reference triangle T it can be shown in the same manner
as in the proof of theorem 3.1 that E" is uniquely determined on each triangle
T € G, by (i)-(v) and that

(div 2, ¢") = (divz, ¢"), all¢p"e P*.

Similarly || 2|l o < C, Il z |, o and so " = z" + w" satisfies (2.7)-(2.8)
for the given ¢" e P*. - -0 T

If on each triangle T, P* consists of transforms of polynomials of degree
k — 2onlesson T,(2.7)-2.8) will be satisfied for V'* consisting on each triangle
of transforms of polynomials of degree k or less. Thus in this case the situation
is identical for both straight and curved triangles.

For V" in the case of straight triangles and k = 2, the set of piecewise quadra-
tic polynomials was augmented by adding the single function A, A, A, for
each triangle. In the above, for curved triangles we had to add the two functions
which are transforms from the reference triangle 7of

x s & O a2 2 O

)"1)"2)"3%a Ay 7\2%35%:: (5.3a)
in the first component and

s s Ox 2 s a 0x

M )»27»35):), Ahahy 5z, (5.3b)

in the second component.

For N = 3, for boundary tetrahedra let IT, consists of all functions of the
formv" = #".F !, where i is a polynomial of degree k or less on T" or a polyno-
mial of the form A A Ay, R X2 X,l+m+n=k—2, i=1,2734,
along with, in the ith component of V* A, A, A3 A, \ where

V= (Y@ F Y@ F Y, T eman=k— 1.

As for N = 2 for triangles, one can prove for N = 3 for tetrahedra.

THEOREM 5.2 : Let V" = (V")3, where V" is defined by (4.1) where I, for
curved boundary tetrahedra is defined above, and let P" consist of locally defined
functions which on each tetrahedron are given by ¢" = ¢"-F ! where F is the
mapping defined by (5.1) and " is a polynomial of degree k — 1 or less on the
reference tetrahedron. Then given ¢" € P*, there exists a function v" € V" such
that (2.7)-(2.8) holds.
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