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DISCRETE FORMS OF FRIEDRICHS’ INEQUALITIES
IN THE FINITE ELEMENT METHOD (*)

by Alexander ZENiSEK (1)

Communicated by P G CiARLET

Abstract — Auxthary theorems allowing to extend the theory of curved finite elements introduced
n (2], [3] to the case of boundary value problems with various stable and unstable boundary cond-
tions are proved As an example the problem of bending of thin elastic plates 1s considered

Résumé — On démontre des théorémes auxiliaires qur permettent d’étendre la théorie des élé-
ments finis courbes présentée dans [2], [3] au cas de problémes aux himites avec des conditions aux
hinutes stables et instables diverses Comme exemple, on présente le probléme de la flexion élastique
des plaques minces

Let Q, be a finite element approximation of a given domain Q and W;
a finite element subspace of the space C*~'(Q,) of all functions defined on
Q, which have continuous derivatives up to order s — 1 on Q, (s = 1). The
main aim of this paper is to show that for & < h (where & 1s sufficiently small)
the constants K(Q,) appearing 1n Friedrichs’ inequality and related inequa-
lities written for functions from W3 can be substituted by constants inde-
pendent on A. This result allows to extend the theory of curved finite elements
developed by Ciarlet and Raviart [2] and Ciarlet [3] to the case of boundary
value problems with various stable and unstable boundary conditions.

The inequalities appearing in this paper are called discrete forms of Fried-
richs’ inequalities because they are written only for the functions from the
finite dimensional spaces W3.

As usual, the symbol H¥ ) will denote the Sobolev space

HYQ) = {veL(Q): Dve Ly(Q) Vl|o|<k}

(*) Regu le 5 mai1 1980
(*) Computing Center of the Technical Umversity, Obrdnci miru 21, 60200
Brno, Czechoslovakia
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266 A. ZENISEK

where D% is the multiindex notation for derivatives, i.e., if & = (o, &,) € N2
then

o] =a; + o, D*v = 0% v/ox* 0y*2.

The norm and seminorms are defined in H*Q) by

k

(010 = ¥ [vBa,  IvBa= % j (D) dx dy
=7 Q

i=0

1. SOME DEFINITION AND LEMMAS

Let Q be a bounded domain in the x, y-plane with a sufficiently smooth
boundary I'. Let

x=0@), y=W¥s), a<s<b (1)

be a parametric representation of I'. Let us triangulate the domain Q, ie.,
let us divide it into a finite number of triangles (the sides of which can be
curved) in such a way that two arbitrary triangles are either disjoint, or have
a common vertex, or a common side. Let every triangulation t have the pro-
perty that each interior triangle (i.e. a triangle having at most one point com-
mon with the boundary) has straight sides and each boundary triangle has
at most one curved side. The curved triangies of the triangulation © will be
called ideal curved triangles.

With every triangulation t we associate three parameters h, h and 6 defined
by

h=maxhy;, h=minhy, 6= midb, )
Ter Tert Ter

where h; and 0; are the length of the greatest side and the smallest angle,
respectively, of the triangle with straight sides which has the same vertices
as the triangle T. We restrict ourselves to triangulations t satisfying

= 0,, 0, = const > 0, ©)
h>ch, co=const>0. 4)

Let T et be an ideal curved triangle and P,, P,, P; a local notation of
its vertices. Let P,(x,, y,), P;(x3, y3) be the end points of the curved side
of T and let the symbols s,, 55 denote the values of the parameter s for which

X = Q(s) Ve = Vlsy) k=1273). (5)

R.A.LR.O. Analyse numérique/Numerical Analysis



DISCRETE FORMS OF FRIEDRICHS INEQUALITIES 267

According to (1) and (5), the parametric representation of the curved side
P, P, of T can be written in the form

x =0t) = os, + 53, ), y= W) = Y(s, + 53, 1) (6)

where 0 <t < 1land 53, = 55 — s,.
Let @*(t) and ¥*(¢) be polynomials of degree at most n which satisfy

0*0) = x,, 9*(1) =x3, V*0)=y,, ¥*1)=y;. M

Then
O*(t) = x5 + X35t + ({1 — ) p,(2), (8)
VD) = y2 + Vst + (1 — 1) pa(0), )

where X3, = X3 — X3, y3, = y3 — y,. The polynomials p,(f), p,(t) depend
on the form of approximation of the curved side P, P;. If n = 1 then p, = 0
(i=1,2). If n =2 then we require @*(1/2) = 9(1/2), ¥*(1/2) = Y(1/2) and
obtain p, = 49(1/2) — 2x, — 2x3, p, =4Y(1/2) =2y, — 2y, If n > 2
then we restrict ourselves to the case n = 2r + 1 (r = 1) and require @*(z),
y*(1) to be Hermite interpolation polynomials of functions @(t), J(z) uniquely
determined by the function values and all derivatives up to order r inclusively
at the points t, = 0, t; = 1. This leads, with respect to (7), to the following
additional conditions for ¢*(t) and y*(¢) :

T oY) = 0*Nt),  k=1,..,r;i=23, (10)
V) =), k=1,.,r;i=23. (11)

Let n be chosen. Then the approximation T* of the ideal curved triangle
T et is defined in the following way : T* is the triangle which has the same
vertices Py, P,, P3 as T, straight sides P, P,, P, P, and the curved side defined
by the equations

x = @*(1), y=Vy*y, 0<t<I1. (12)

The curved triangle T* can be expressed as an image of the standard triangle
T, which lies in the plane &, n and has the vertices R, (0, 0), R,(1, 0), R5(0, 1).
The corresponding mapping is of the form

x=x*En) =x; + X%, &+ X3 + &Enpy(M), (13a)
= Y*&n) =y + 3, & + y3n + Enpy(n) (13b)

where X, = x, — X1, Y = ¥, — ¥, (see [8], [9]).
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268 A. ZENISEK

In this paper, besides the standard triangle T, we shall need the triangle
T& which lies in the plane & m and has the vertices R,(0, 0), R{(1 + g, 0),
R4(0, 1 + g), q being a given number, g > 0. The image of T¢ in transfor-
mation (13) will be denoted by T *?. The properties of transformation (13)
are summarized in lemma 1. (In this lemma and in what follows the symbol T
denotes a closed triangle and the symbol T its interior.)

LemMA 1 : Let n be given, let the boundary I" of the domain Q be of class
C"™* ! and let g = O(h*'?), g = 0. If h is sufficiently small then transformation
(13) has the following properties :

1. The Jacobian J*, n) of transformation (13) is different from zero on T4,
2. The vertex R, is mapped onto the point P(x,, y,), the vertex R% onto
the point P4(x, + X, q, y, + ¥, q) and the vertex R% onto the point
P(x3 + X3¢, ¥3 + V3 9)-

The sides R; R4 and R, RY are linearly mapped onto the segments P, P4 and
P, P4, respectively, and the side R% R% is mapped onto the arc s* = P% P}
which has the parametric equations

X=X, +X,9 +X3,n+ (1 +g—n)np,(n),
Y=Y+ Y29+ V5,0 + (1 +q—n)np(n),

where 0 < n<1+gq

3. The mapping (13) maps the triangle T% one-to-one onto the triangle T4
whose boundary 6T *? is the union of the segments P, P4, P, P% and the arc s*.

4. Both the mapping (13) and its inverse mapping are of class C* and it holds
Jor §,n)eTy, (x,y)eT™ :

cih: < |J*E, n)| < ch}k, ¢ =const >0, (14)
Dx*E,n) = O(h), D°y*E,n) = O, |al=1,2,.., (15)
D*EX(x,y) = O(hr '), D*n*(x,y) = O(hr "), |l =1,2,...,  (16)

where
£ =28%xy, n=n%xy (17)

is the inverse mapping to the mapping (13).
5. Let §,, S, be two arbitrary points of the triangle T4 and S,, S, their images
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DISCRETE FORMS OF FRIEDRICHS’ INEQUALITIES 269

with respect to the mapping (13). Let € be the distance between S,, S, and & the
distance between S,, S,. Then

bighy < 8 < byehy, byeh < 8 < byeh (18)
where by > 0, b, > 0 are constants independent on hy and €.

The proof of lemma 1 is a straightforward generalization of considerations
introduced in [7], [8] and [9]. Thus it is omitted.

Let us replace the ideal curved triangles T of the triangulation T of Q by
their approximations T* defined above and denote such a changed trian-
gulation by 1,. The union of the closed triangles of t, will be denoted by Q,
and the boundary of Q, by I',. Using triangular finite C™-elements we shall
construct finite dimensional subspaces W/"*! of C™(,). We restrict our-
selves to the cases m = 0 and m = 1. As such constructions are well-known
(see, e.g, [7], [8], [5], [9]) we introduce only the properties necessary for our
considerations.

Let us start with m = 0. If n = 1 then Q, is a polygonal domain and the
restriction v |7 of v € W,! to an arbitrary triangle T €1, is a linear function
uniquely determined by function values prescribed at the vertices of T.

If n = 2 then [, is piecewise quadratic and the restriction v |7 of v e W}
to an arbitrary interior triangle is a quadratic polynomial uniquely determined
by the function values v(P), v(Q) (i=1,23;j=1,2; k=2 3;j<k)
where P; are the vertices of T and Q;, the mid-points of the sides P; P,. The
restriction v |z. of v € W, to an arbitrary boundary triangle T* € 1, is such
a function that

pE, ) = v [7(x*(E, M), y*(&, n)) (19)

is a quadratic polynomial uniquely determined by the function values
P(R) = v [7:(P), p(Si) = v |5(Q;) where S is the midpoint of R; R,. (Let
us note that Q,; = (0*(1/2), V*(1/2)).)

If n=2k+ 1(k > 1) then T, is piecewise of degree 2 k + 1 and the res-
triction v |5 of v € W} to an arbitrary interior triangle T € 1, is a polynomial
of degree 2 k + 1 uniquely determined by the parameters

De(P). lal<k (i=1,23); DwPy. lal<k—1 (20)
where P; are vertices and P, the centre of gravity of T. The restriction v |5.
of v e W, to an arbitrary boundary triangle T* € 1, is such a function that

the function p(§, ) defined by (19) is a polynomial of degree 2k + 1 uniquely
determined by the parameters

Dip(R)., lal<k (i=1,23); DpRy), |al<k—-1 (21)
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270 A. ZENISEK

where R, is the centre of gravity of T,. Each of the derivatives D°p(R,),
| ¢ | = J is a linear combination of the derivatives D*v(P,), |« | = j and can
be obtained from (19) by means of the rule of differentiation of a composite
function. (Let us note that P, is in this case the image of R, in transforma-
tion (13).)

In the case m = 1 we restrict ourselves to the case of the simplest C'-ele-
ments. Thus the restriction v |5 of v e W2 to an arbitrary interior triangle
Te 1, is Bell’s polynomial of fifth degree uniquely determined by the para-
meters

Dw(P), |a| <2, i=123 22)

and by the condition that dv/0v;, be a polynomial of third degree along the
side P; P, (j < k,j = 1,2; k = 2, 3), v, being the normal to P; P,. The res-
triction v |7« of v € W2 to an arbitrary boundary triangle T* € 1, is such a
function that the function p(&, n) defined by (19) is a polynomial of degree
4 + n uniquely determined by the parameters described in [9, theorem 3].
The number n depends usually on the boundary conditions prescribed on I'.

Let us consider the case that Q represents the middle plane of a thin elastic
plate. Then from the point of view of boundary conditions the boundary T’
is divided into three disjoint parts : a clamped part I';, a simply supported
part ', and a free part I'5. Let I',,; (i = 1, 2, 3) be the part of I', approximating
I'; and let n; be the degree of curved sides ¢, from which I';; consists. It is not
difficult to see that the degrees n, = 3, n, = S are necessary and sufficient
for the validity of implication (98). Further, it will be seen in section 3 that
the degrees n, = 3, n, = 5, n; = 3 are sufficient for the validity of inequa-
lity (99). In this case also the second term on the right-hand side of inequality
(100) is of the same numerical accuracy as the first term. Thus we set

n,=3,n,=5n =3. (23)
The following lemma will be useful in our considerations :

LEMMA 2 : Let a part AT of the boundary T be of class C"** and let ¢ = AT’
be the curved side of an ideal curved triangle. Let (6) be parametric equations
of c. Let the functions ©*(t), \ *(t) defining the approximation c, of ¢ be either
Lagrange or Hermite interpolation polynomials of degree n of the functions
©(2), W(2) on the interval I = [0, 1]. Then it holds on I

| 0*9(0) — §V() | < ChE*Y, j=0,1,..,n, (24a)
l Y*0 () — _\DU)(I) I SChEtY, j=0,1,..,n, (24b)
() > Chy 25)
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DISCRETE FORMS OF FRIEDRICHS' INEQUALITIES 271
where
p0) = { [o'@ + ['()* }'72 (26)
and where C depends only on T

The proof of lemma 2 is similar to the proof of {10, lemma 2]. Thus it is
omitted.

At the end of this section we introduce a notion of a natural extension v
of a function ve W' from the domain Q, to the domain Q, + (Q — Q,).
This notion will be important in the proof of theorems 1 and 2.

The set Q — €}, is a union of sets T, — T* (j = 1,..., N) where N is the
number of curved triangles in T, T €T is an ideal curved triangle and T *
its approximation. Let us choose g = 0(h/?) and let T*¢ be the image of T‘1
in transformation (13 (The index j expresses that transformatlon (13) con-
cerns the triangle T ) If T, — Ty # Jthen, according to (18) and (24), the
part of the curved s1de of T, which forms a part of the boundary of T, — T}
lies in T — T}

If we transform the restriction v |7+ of ve W"*! from T* onto the stan-
dard triangle TO by means of transformation (13), we obtam a polynomial
p&m)ofdegreed (d=nifm=0,d=4+nif m=1),

P& M) = vz (x}(E n), ¥ n)). (27)

The polynomial (27) is defined uniquely in the whole &, n-plane. Transforming
p,& n) from the triangle T% onto the triangle T*" by means of the inverse
transformation (17), we obtain a function v*(x, y). Its restriction to the domain
T} 4 (T, — T})is the natural extension of v lz+from T to T, + (T, — T).
Doing this for all boundary triangles we obtain the natural extension v of
ve Wrt! from Q, to Q, + (Q — Q).

2. DISCRETE FORMS OF FRIEDRICHS’ INEQUALITIES

THEOREM 1 : Let n = 2k + 1 (k > 0) or n = 2. Let the boundary T" of Q
be of class C""*. Let S be a part of T consisting of a finite number of disjoint
arcs S, = I such that mes S, # 0. Let S, be the part of I, which approxima-
tes S. Let every triangulation T be chosen in such a way that S is a union of some
sides of ideal boundary triangles. Then the constant K(Q,) appearing in the
inequality

uvlli,gh<K(Qh)U vzds+|v|%,9,,] Voe W} (8)
Sh

vol 15, n° 3, 1981



272 A. ZENISEK

can be chosen in such a way that
K@) - K@ if h-0 (29)

where K (Q) is an arbitrary constant which can occur in Friedrichs’ inequality
010 < K@ [ vasrivka| wem'@. G0
S

THEOREM 2 : Let n = 3 and let the other assumptions of theorem 1 be satis-
fied. Let S be not a part of a straight line. Then the constant K(Q2,) appearing
in the inequality

10120, < K(Q”)H v ds + |v1§,ﬂh] wew? G
Sh
can be chosen in such a way that
KQ) > KyQ if h-0 (32)

where K,(Q) is an arbitrary constant which can occur in the inequality

v ”%,9 < Kz(Q)[J

N

v2ds + | v |§,Q] Ve HYQ). (33)

Proof of theorems 1 and 2 : If v = 0 then both (28) and (31) hold with an
arbitrary constant K(Q;). Thus we consider only v # 0. Let us set

W,y =Q, —Q, 0, =0Q-Q,. (34
It holds
J‘ vids + | v |2, (j o2 ds + |3|i2,9>(1 + &+ &y — &)
Sh _ N
v Hzrzn v ”;29(1 + 5i+ - 6;)
where

g: =17 ’%mht /(J D2ds + |V |129> ) (35)
s
8i’r=<J vzds—Jﬁzds)/(|5|§Q+J32ds>, (36)
Sh S S

iz = 17 [20,./17 Iia- (37

R.A.LR.O. Analyse numérique/Numerical Analysis



DISCRETE FORMS OF FRIEDRICHS’ INEQUALITIES 273

Taking into account (30) and (33) we see that it suffices to prove
&r—=08: 208,20 if h-0(3(=12). (38)
a) First we shall prove that
1760 > CH?AG), 1917 > CB@&) (39

where C is an absolute constant and

N d
A= % 3G (40)
m@—z[zw—% +Z(w4 1)
1= i=s+1
6 = (@ + & + - + ad)s. @2)

The symbols appearing on the right-hand sides of (40)-(42) have the following
meaning : N is the number of the boundary triangles and &/ are the parameters
uniquely determining the polynomial p(€, n) which is defined by (27) and which
can be written in the form

d .o~
pEm) = Y. & b, m) @)

i=1

where b, n) are basis functions corresponding to the parameters &, In the
case of C°-elements the number of basis functions is given by

d=mn+1)m+ 2)2,

in the case of C'-elements by d = (n + 5)(n + 6)/2. The parameters &
and the basis functions b, n) are ordered in such a way that the first s para-

meters &, ..., & are all parameters which have the meaning of function values.
Thus

Y b =1. (44
In proving the first estimate (39) we start from the inequality
—— N -
3 Q2 '21 |? Ig,T,- (45)
f=

where T; = Q (j = 1, ..., N) are ideal boundary triangles. Let x; be the arc
which lies in the &, n-plane and which is mapped by transformation (13);
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274 A. ZENISEK

onto the arc 6T; N I, 0T; being the boundary of T; Let 0 < r < 1/2 be a
fixed number. Let T o(r) be the triangle which lies in the &, n-plane and has the
vertices R}(0, 0), R5(1 — r,0), R50, 1 — r). It follows from (18) and (24) that
for sufficiently small h the arcs ; (j = 1, ..., N) lie outside the triangle T o(r).
Thus it holds, according to (4) and (14),

| v l(z),r,- Z €1 € W | D; |%,To(r) (46)

where the polynomial p(&, n) is given by (43). It follows from the equivalence
of norms in a finite dimensional space that

d
123 Biror > ¢ 3. @ @7)

where the constant ¢ depends only on T o(r) and on the basis functions b€, m).
Relations (45), (46) and (47) imply the first estimate (39).

Now we prove the second estimate (39). After some elementary calculations
we obtain

N N
|v ﬁn = '21 |v |%T >cheytc 'Zl | p; ﬁ,ro(r) (48)

J= J=
where ¢* is a constant depending only on 6, and where the meaning of the
other symbols is the same as in the preceding case. Let n* = n in the case of
CP-elements and n* = n + 4 in the case of C'-elements. The seminorm
| pj 11,70 18 @ norm of the class [p;] e P,/P, where P, denotes the space of

all polynomials p(&, n) of degree < k. Thus

d
| p; |§,To(r) >¢ inf ) (&) (49)

pelpili=1

where &, ..., &, are the parameters uniquely determining the polynomial
pE,m)e[p]. As every polynomial pe[p;] can be written in the form
p = p; + K with K e P, it is easy to find that

nf Y @2 =Y @ - Y @ (50)

relpli=1 i=s+1

where &} is defined by (42). Relations (48), (49) and (50) imply the second
estimate (39).

b) Now we estimate g, ,, &_, 8, 8, (k = 1, 2). Ifv = const on the union U
of the boundary triangles T* theng,, = 0.Letv # conston U.Then B(&!) > 0
and we can write, according to (30), (33), (35) and (39),

&- < C.KUQ) |7 [, /BE) (k=12 (1)

R.AILR.O. Analyse numérique/Numerical Analysis



DISCRETE FORMS OF FRIEDRICHS’ INEQUALITIES 275

where C is an absolute constant. (In what follows C will denote an absolute
constant not necessarily the same in any two different places.)

Let ¢ be a quadrilateral lying in the &, n-plane, having vertices 4,(1 — f, 0),
Ay(1 + B,0), 43(0, 1 + B), A4(0, 1 — B) and containing all arcs k; (j = 1, ..., N).
According to (18) and (24), we can choose B so small that

mes ¢ = 0(h") . (52)
Using (14), (16) and (44) we find

N N
|U|1o>,, Z 1T, T,"gc.zllpj%
= =
. | X (53)
CYlp—6l},<C) M’meso
& &
where
M; = max { max |&f — &, max [&f|}. (54)
i=1,.., s i=s+1,..., d

As, according to (54) and (41),

(i Mf) / B@) <1 (55)

relations (51), (52) and (53) imply
_ = 0H"). (56)

In the same way we can obtain g, , = O(h").
As to the estimate of &, _ we can prove

g,. = 0(h""?). (57)
Estimate (57) follows from (51), (52), (55) and from the estimate
| D l%,T,-—T} < C(| D; ’%c h™?* + | 14 io) . (58)

In the same way we obtain &,, = O(h"2).
Now we estimate 8, , and §,_ (k = 1, 2). Let us set for the sake of brevity

F@) = |7 15,0, (H*A@)), (59a)
k
G(v) = <Z ,mh_> / B(&}) (v # const on U). (59b)
If v = const on U then, according to (37) and (39),

8. < C.F@). (60a)

vol. 15, n° 3, 1981



276 A. ZENISEK
If v # const on U then
- < C[FQ@) + G()] . (60b)

According to preceding considerations, G,[) = 0(h"), G,({v) = O(h""2).
It remains to estimate F(v). It is easy to find

N
1D [§0n. < Ch2< zl mf.> mes & (61)
=
where
m; = max |&|. (62)
i=1,..., d
As

(i m?) / A@) < 1 (63)

we obtain, according to (52), (59) and (61), F(v) = O(h"). Thus
8, =0, 8,_ =0(h"?). (64
Similarly &,, = O(h"), 8,, = O(h"~2).

According to the assumptions of theorems 1 and 2 concerning n, we proved

) (78) for the terms Ex+s 5,”_, (k =1, 2}

¢) It remains to estimate g, r (k = 1, 2). It holds

J Z J L t), U¥(t) () dt, (65)
Sn Jj=
Ns _
J o ds = -le T2(@(0), VA1) A0 dt (66)
S J= 0

where N is the number of boundary triangles along S, p(t) is given by (26) and
P = { [@* O + N () }'*. (67)
Let us set
Ajy = @F(0) — 0ty Ay = VD) — V). (68)
According to lemma 2, it holds for the i-th derivative
AY = O(hys ), AY = 0(mr')  (i=0,1,..,n). (69)

R.ALR.O. Analyse numérique;Numerical Analysis



DISCRETE FORMS OF FRIEDRICHS INEQUALITIES 277

Using Taylor’s formula we can write
@}, VFO) = TS, V(1) +

+200) 3 (@) A, +2TQ) Q) 4, (10)

where _
0, =@ +6,A,Vn+806A,, 0<6<1.

Using (24), (25), (26) and (67) it is easy to find
P70 = b0 [1 + O3 )] (71)

Subtracting (66) from (65) and using (69)-(71) we obtain after an easy com-
putation in which we use the fact that both Q, and (,(2), J(2)) belong to
TJ + Ty < T¥:

J vzds—Ji)'zds
Sh s

wherec, = 8T, n T. Using (30), (33), (36), (39), (63) and (72) we obtain
gor =0 Y (k=12).

Ns Ns
<Ch" Yy mlmesc, < Ch"*' Y m> (72
J=1 ’ J=1

Thus (38) is proved in the case n > 2.
It remains to estimate €, - in the case n = 1. Let us denote H, = min | 7 |

<

where ¢, = 0T, n I'. Then we can write

Ns 3
1Tig + J v’ds > C Zi{ Zl & — &)* + h(H,)Z} (73)
s =1 (1=

because mes ¢, > h, Ng < N and the numbers s and d appearing in (41)
satisfy s = d = 3. Let us choose y such that 0 < y < % . Then after a simple
analysis (which 1s enabled by a simple structure of finite elements in the case
n = 1) it can be found that there exists h, (dependent only on y) such that for
h < h, we have

Ns 3 1 Ns
3 { S (6 — sy + h(H,)z} > 1m Y e (74)
=1 =1 =1

Thus, according to (36), (72)-(74), we obtamn €, r = 0(h?Y). Theorems 1 and 2
are completely proved.
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Remark 1 : In order to prove theorems 1 and 2 together we restricted our-
selves to one type of boundary C!-elements in theorem 2. Usually we use two
types of boundary C'-elements (see (23)). In such a case the assumptions of
theorem 2 can be easily modified. The proof of theorem 2 remains the same,
only some formulas are more complicated.

Remark 2 : Under the assumption of theorem 1 that T is of class C"*!
we obtained the maximum rate of convergence in the case of €., 6, ; :
€.+ = O(h"), 8, . = O(h"). The following two statements (i) and (ii) allow to
weaken this assumption. (The rate of convergence will be then lower but this
is not important in our considerations.)

(i) Let n=2k +1 (k> 1) and k < n < n. If we assume in lemma 2
that I"is of class C™* ! then

| @*O(t) — 39V(0) | < CH3* L, j=0,1,...,7

where @*(z) is the Hermite interpolation polynomial of degree n of the function
@(t) (see Section 1). Relation (24b) is modified in the same way. (This statement
can be proved similarly as the first part of lemma 2; instead of the classic
remainder theorem for Hermite interpolation we use a one-dimensional analo-
gy of [1, theorem 2].)

(1) Letn =2k + 1(k > 2)andk < 7 < n. Let the right-hand sides of (13)
be polynomials of degree n and let us assume in lemma 1 that I' is of class
C"+ 1 Then estimates {15), (16) hold for |a | = 1, ...,n — 1. The remaining
assertions of lemma 1 are not changed. (This statement follows from (i).)

Remark 3 : The question of weakening the assumptions of theorem 2 is
quite topical. It may happen that I is only of class C* and we must approximate
the simply supported part I', of I piecewise by quintic arcs in order to gua-
rantee (98).

Inspecting the proof of theorems 1 and 2 and changing lemmas 1 and 2
according to (ii) and (i), respectively, we obtain the following corollaries :

COROLLARY 1| : Let n = 2k + 1(k = 0) or n = 2 and let W;, be the corres-
ponding C 0-ﬁnite_element space which is described in section 1. Let the boundary T"
of Qbe of class C*** wheren = nforn < 3andk + 1 <7 < nfor

n=2%k+1(k>2.

Let the assumptions of theorem 1 concerning S and S,, be satisfied. Then
lvl?g, < Cl[j vids + |v |f,ghi| Yoe Wi, h<h (75a)
Sh
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where h is a sufficiently small fixed number and C, a constant independent on v
and h.

It should be noted that a similar result can be obtained in the case of curved
triangular isoparametric elements which are described in [2] and [3].

COROLLARY 2 : Let a part of the boundary T, be piecewise cubic and the
remaining part piecewise quintic. Let W} be the corresponding C*-finite element
space which is described in section 1. Let the boundary T of Q be of class C*.
Let the assumptions of theorem 1 concerning S and S, be satisfied. Then

| v llf,ﬂh < C,(J vids + |v |§_Qh> Yoe Wi h < h (75b)
Sh

where h and C, have the same meaning as in corollary 1.

COROLLARY 3 : Let the assumptions of corollary 2 be satisfied and let S be
not a part of a straight line. Then

v l3a, < C2<j vids + |v lﬁ,ﬂh) Yoe W2 h < h (76)
Sh

where I is a sufficiently small fixed number and C, is a constant independent
onv and h.

3. APPLICATIONS

Applications of theorem 1 and its corollary in the case of second order
elliptic equations are introduced in [10]. In this section we restrict ourselves to
the case of fourth order problems.

Let us consider the following problem of bending of thin elastic plates :

A’u = finQ (77)
u=gols), Ou/dv=g,(s)onT, (78)
u=gys)onT, (79)

My = P(s)onT, + T'5 (80)
Nu=Q()onIy (81)

where v is the outward normal to the boundary I'=T, + T, + I
T T; =@)f 9o, 91, 9o, P, Q are sufficiently smooth functions and

Mu=pAu+ (1 —p)d2uov? O<p<l)), (82)
0 0 [ 0%u Pu 5, 0lu
Nu = — E(Au) + (1 - ”)E;[Eﬁvl v, — m(Vl - v3) — a_yz\’le (83)
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where p is a constant, v, and v, are the direction cosines of v and s is the tan-
gential direction with direction cosines — v,, v,. We assume that I is of class
C* and that mesI'; < mesT.

Let us define the space

Vo={weH?*Q):w=00onT, + I',,dw/dv =00onT,

in the sense of traces } (84)
and the set
V,={weHQ):w = gys), ow/ov = gy(s)on T, ,

w = g,(s) on I, in the sense of traces } . (85)

The variational formulation of problem (77)-(81) then reads as follows :
Find u € V, such that

a(u, w) = L(w) YweV, (86)
where
_ *w *w\ &*v *w o*w\ 0%v

o = ”[(a“* “a?)és?*(sy—z* “af)a—yﬁ

v O*w
L(w) = L%w) + LN(w). (88)
L%w) = J [ fwdxdy, (89)

JQ
L'(w) = J P%—W ds + J' Qwds. (90)
I+r3 v I's

We shall solve the problem (86) by the finite element method. Let W} be
the C'-finite element space introduced in section 1. Then, according to (23),
I'yy + I'ys is piecewise cubic and I',, piecewise quintic. Let V, be a sub-
space of W2 defined by

Vor ={weW?}:w=00onT,, + T, dw/dv=0o0nT,,} 1)

where v,, is the outward normal to T',. Finally, let V,, be the subset of W}
consisting of those functions which satisfy the following at the nodal points
P, lying on I', : boundary conditions (78) and (79) and all consequences of
these conditions containing at most second order derivatives. (The reason :
according to the definition of W, the derivatives D*w(P), | o < 2 are all
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parameters prescribed at P, € I',.) E.g, if P, e [, then every function w € W}
satisfies the following conditions at P, :

WP) = ga(5), 0(5) e (P) + wr(s.)%ﬂ (P) = g465)
" ! az U
756) = [P S5 (P) + 20160 Vis) s ay = (P) +

[\I/(S)]2 e S (P + <P"(S)—(P) + \J!”(S)-—(P)

Now we can formulate the discrete problem corresponding to problem (86) :
find i, eV, such that

Aw) YweV,, 92)

where d,(v, w) is defined by an expression similar to the expression appearing
on the right-hand side of (87) — only Q is substituted by Q,. The linear form
L,(w) is defined by the relation analogous to (88) and

L w) = J‘J‘ fwdx dy, 93)
Qn

~ f'
Lyw) = Y ds + J Q,wds. 94)

T3

Py 8
Jrh2 +Th3 Vi

The symbol fdenotes a contmnuous extension of the function f to a domain
0> Q,(h<h and P, Q, are functions obtained by « transferring » the
functions P, Q from I'" onto I, (we explain it in the case of the function Q) :
let ¢(P,, P5) be an arc lymng on I'5, P, and P being 1ts end points denoted in a
local notation. Let ¢,(P,, P;) = I',; be the approximation of ¢(P,, P3). The
parametric representations of c¢(P,, P;) and c,(P,, P;) are expressed by (6)
and (12), respectively. To every point t € [0, 1] there exists just one point

(x, y) = (¢*(0), ¥*(1)) € &(P5, P3) ©5)

and just one point (@(t), Y(t)) € c(P,, P5). Thus at every point (95) we can define
the function Q,(x, y) by the relation

Qulx, ) = Q@) W) - (96)

Then, according to the definition of the line integral, we have

f 0y wds = f OO, T(0) woH0), V(1) p*(r) de ©7)
Ch 0

where p*(t) is given by (67).
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Let us restrict to the case that f is a constant. Then f = f and from the theo-
retical point of view it is possible to solve problem (92) and not to use numerical
integration. As the applications of theorems 1 and 2 are the same in both cases
with and without numerical integration we restrict our considerations to
problem (92). (Details concerning the use of numerical integration can be
found in [4].)

It follows from (10), (11) and from the definition of the space V, and the
set V,, that it holds

v,weVy,=>v—weV,. 98)
Using this implication it is easy to prove the following theorem (the proof is

omitted because it is only a modification of the proofs of similar theorems
from [2] and [3]):

THEOREM 3 : Let a family of discrete problems (92) be given. Let there exist a
constant y > O independent on h such that we have for h < h

YIvl3a, < @GLv) YveVy,. 99
Then for every h < h problem (92) has a unique solution i, and it holds

N . N a,(i, w) — L(w)
| & — @, IIZ,Qhﬁc[mf & —vl,q, + sup L i) | (100)

veVgn weVon “ w ”2,!1;.

where il is an arbitrary function in H *(Q) and C is a constant independent on @ and

h.

In what follows i will denote a continuous extension of the exaci solution of
problem (77)«(81) to the domain § > Q, (h < k). We shall use theorem 3 for
estimating || & — @, ||, q,-

First we establish the validity of inequality (99) which expresses the uniform
V on-¢llipticity of the bilinear forms @,(v, w) (h < h). It is easy to see that

av,0) 21 - Wlvlha, VoeWi, Vh. (101)

If mesI'; > Oand I', is not a part of a straight line we use corollary 3 and (101)
for arbitrary v e V,, We obtain inequality (99) with y = (1 — p)/C,. If T,
is a part of a straight line we use the inequality

1
|v 50, = 5 (1 00/0x L, + | 00/0y [1.0,)

Modifying some ideas of the proof of theorems 1 and 2 it is not difficult to prove
that

Cy(] v/ox |y q, + | 80/0y [} 0,) = 1V i, Yve Vo
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where h < h and C, is the constant from corollaries 1 and 2. Using then
corollary 2 we obtain inequality (99) with

y =500 - Wmin(l, 2 C2).

IfmesI'; = OthenmesI", = mesI" — mes I'; > 0. In this case we assume
that I, is not a part of a straight line (a necessary condition for the uniqueness
of the solution of problem (77)-(81)). Using (101) and corollary 3 for arbitrary
v € V,, we obtain inequality (99) with y = (1 — p)/C,.

In estimating the first term on the right-hand side of (100) we shall use
[9, theorem 5] and a similar theorem for Bell’s elements 1, p. 819]. In accordance
with assumptions of these theorems we shall assume that ii € H >(Q). Let w, be
the function from W} which interpolates & {i.e. the parameters uniquely deter-
mining w, are the function values and derivatives of # at the corresponding
nodal points). Then w; € ¥, and we have

0 18— a0, <1 7=y lag, < OF [ Tlsg,. (102)

It remains to prove that the second term on the right-hand side of (100) is
0(h%). The assumption i € H () allows to use Green’s theorem and we can
establish

| G, wy — Lw) | < l”

Qn

(A2~—f)wdxdy1 +

+ +

Vi
Th2+Th3

J (N,ii — Q)wds| (103)
T

where the operators M, and N, are defined by relations similar to (82) and (83),
respectively. (The only change is that we write v,, v,;, Vi, S, instead of v, vy,
v,, 5.) As I is approximated by I', at least with accuracy O(h*) and A’u — f = 0
in Q it is easy to find that

j J WA — f) dx dy‘ < 1w llag, K. (104)

Let us denote for simplicity 6, = M, % — P, 0, = N, % — Q,. Using
the Cauchy inequality and the trace theorem we can write

ow
o, =—ds
1oy
Tha+Tha h

J o, wds
Tn3

< C/mes I‘,‘rmfly_( foy l lw g, (105)
h2 h3

< C/mesT, nlx_ax Loy Lt wiza, - (106)
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It follows from the proof of the trace theorem (see [6, p. 15-16]) and from lemma 2
(or remark 2, part (i)) that the constant C appearing in (105) and (106) is inde-
pendent on h.

According to the Taylor formula and lemma 2 (or remark 2) we have

A(@*(e), V(1) = Au(®(2), W(®) + Oh),

22 0%0.4°(0) = S5 30, T0) + 0.

Thus
M,id|, = Mu|, + 0(h3) . (107)
As

Mu |, = P(®(1), ¥(1),
Py lo, = P@*(®), V() = P(), ¥()
we obtain from (107)
malehu_'PI_‘O(h)chcrh2+rh3‘ (108)

As mes ', < 2mesT relations (105) and (108) imply

<SCRwlag,- (109)

[ (N, — Q)wds
| Jras
Theorem 3 and estimates (102), (103), (104), (109), (110) give the final result :

the solution #, of the discrete problem (92) exists and is unique for sufficiently
small h. If i e H>(Q) then || & — @, ||, o, = O(h).

< CR [ w0, - (110)

Remark 4 : Let Vo ={veH'(Q):v =0 on I'; in the sense of traces }.
The minimum value of K,(Q) in Friedrichs’ inequality

ivlge < K(@iviig WweV, (111)
is equal to A; ! where A, is the first eigenvalue of the problem
Au+ 2 =0inQ, u=0onl,, dufov=0onl —I,. (112)
It holds

2 2
)\'l — min I v |lﬂ _ |u1 |1,Q (113)

VGVo"/loQ |u1 |(2),Q
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where u, is the first eigenfunction of problem (112). Let us assume that I" is
of class C"*! and let us define the finite element approximation of A, by
vl
Ay = inf =<k 114
1k veVon l v ‘%,Qh ( )

Considerations introduced in the proof of theorems 1 and 2 imply
An = Ay(1 + O(R™). Thus

lim Ay, = A, . (115)

h—0
In the case n > 2, u; € H""1(Q) it can be proved that

limA, =24, . (116}
h—0
Let w,, € V, be the interpolate of the extension @, € H"**(Q) of u,. It is

not difficult to find that

lim | wy, Iiz,Q;. =|u, I.za (i=0,1) (117)
h—0

where the rate of convergence is O(h" ‘). We have

| Wi, ﬁnh/l Wi |(2),Q,, 2 Ay - (118)
Letting h —» 0 we obtain from (117), (118) and (113)

Ay = lim Ay, . (119)

h—0

Inequalities (115) and (119) imply the desired result (116).
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