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R A I R O Analyse numénque/Numerical Analysis
(vol 15, n° 3, 1981, p 265 u. 286)

DISCRETE FORMS OF FRIEDRICHS' INEQUALITIES
IN THE FINITE ELEMENT METHOD (*)

by Alexander ZENÏSEK (*)

Communicated by P G CIARLET

Abstract — Auxihary theorems allowing to extend the theory of curved finite éléments introduced
m [2], [3] to the case ofboundary value problems with varions stable and unstable boundary condi-
tions are proved As an example the problem of bending of thin elastic plates is considered

Résumé — OM démontre des théorèmes auxiliaires qui permettent d'étendre la théorie des élé-
ments finis courbes présentée dans [2], [3] au cas de problèmes aux limites avec des conditions aux
limites stables et instables diverses Comme exemple, on présente le problème de la flexion élastique
des plaques minces

Let Qh be a finite element approximation of a given domain Q and W\
a finite element subspace of the space C5~1(Qh) of all fonctions definçd on
Q^ which have continuous derivatives up to order s — 1 on Qh {s ̂  1). The
main aim of this paper is to show that for h < K (where W is sufficiently small)
the constants K(Q.h) appeanng in Friedrichs' inequality and related inequa-
lities written for fonctions from Ws

h can be substituted by constants inde-
pendent on k This resuit allows to extend the theory of curved finite éléments
developed by Ciarlet and Raviart [2] and Ciarlet [3] to the case of boundary
value problems with various stable and unstable boundary conditions.

The inequahties appeanng in this paper are called discrete forms of Fried-
richs' inequahties because they are wntten only for the fonctions from the
finite dimensional spaces Ws

h.
As usual, the symbol H k(Q) will dénote the Sobolev space

H\Q) = { v e L2(Q) : D*v G L2(Q) V | a | < k }

(*) Reçu le 5 mai 1980
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Brno, Czechoslovakia
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266 A. ZENISEK

where D*v is the multiindex notation for derivatives, i.e., if a = (a ls a2) e N2

then

| a | = ax + a2 , Dav = ô|al v/dx*1 ô / 2 .

The norm and seminorms are defined in Hk(Q) by

\ia = t | v \\a , | v ftn = I f f (D«o)2 dx dy .
j=o N = J J J Q

1. SOME DEFINITION AND LEMMAS

Let Q be a bounded domain in the x, y-plane with a sufficiently smooth
boundary F. Let

x = <p(s), y = \|/(s), a ^ 5 < b (1)

be a parametric représentation of F. Let us triangulate the domain Q, i.e.,
let us divide it into a finite number of triangles (the sides of which can be
curved) in such a way that two arbitrary triangles are either disjoint, or have
a common vertex, or a common side. Let every triangulation T have the pro-
perty that each interior triangle (i.e. a triangle having at most one point com-
mon with the boundary) has straight sides and each boundary triangle has
at most one curved side. The curved triangles of the triangulation x will be
called idéal curved triangles.

With every triangulation x we associate three parameters h, h and 0 defined
by

h = max hj , h = min hT , 0 = min 6T (2)
Tez Tez Ter

where hT and 0T are the length of the greatest side and the smallest angle,
respectively, of the triangle with straight sides which has the same vertices
as the triangle T. We restrict ourselves to triangulations x satisfying

0 ^ e 0 , 0O = const > 0, (3)

h > cQh , c0 = const > 0 . (4)

Let T ex be an idéal curved triangle and Pu P2, P3 a local notation of
its vertices. Let P2(x2, y2), ^3(^3, 3̂ ) be the end points of the curved side
of T and let the symbols s2, s3 dénote the values of the parameter s for which

yk = Msk) (k = 2 , 3 ) . (5)

R.A.I.R.O. Analyse numérique/Numerical Analysis



DISCRETE FORMS OF FRIEDRICHS' INEQUALITIES 267

According to (1) and (5), the parametric représentation of the curved side
P2 P 3 of T can be written in the form

x = cp(t) = <p(s2 + s32 t), y = vj/(t) = \|/(s2 -f 532 £) (6)

where 0 ^ t ^ 1 and s"32 = s3 — s2.
Let <p*(t) and i|j*(t) be polynomials of degree at most n which satisfy

q>*(0) = x 2 ï <P*(1) = X 3 , V(Q) = y2, f ( i ) = y 3 . (7)

Then

<p*(t) = x2 + x32 t + t(l - t) px(t), (8)

**W = y2 + 3*32 ' + *(1 - O P 2 W , (9)

where x32 = x3 — x2, y32 = y3 — ,y2. The polynomials Pi(£)> P2W depend
on the form of approximation of the curved side P2 P3. If n = 1 then pf = 0
(Ï = 1, 2). If n = 2 then we require <p*(l/2) = cp(l/2), \|/*(l/2) = \j/(l/2) and
obtain px = 4 cp(l/2) - 2 x2 - 2 x3, p2 = 4 \j/(l/2) - 2 y2 - 2 y3. If n > 2
then we restrict ourselves to the case rc = 2 r + l ( r ^ l ) and require <p*(t),
\|/*(t) to be Hermite interpolation polynomials of functions <p(t), \|/(t) uniquely
determined by the function values and all derivatives up to order r inclusively
at the points t2 = 0, t3 = 1. This leads, with respect to (7), to the following
additional conditions for cp*(t) and \|/*(t) :

532 9(/£)fe) = (p*<k>(tl.), fc = 1,..., r ; ï = 2, 3 , (10)

1 3 2 Vk)fe) - xl/*(k)(^), k = 1,.... r ; Î = 2, 3 . (11)

Let n be chosen. Then the approximation T * of the ideal curved triangle
T e T is defined in the following way : T* is the triangle which has the same
vertices Pu P29 P 3 as T, straight sides P1 P2, Px P 3 and the curved side defined
by the équations

x = <p*W. y = v|/*W, o < t ^ 1 . (12)

The curved triangle T * can be expressed as an image of the Standard triangle
To which lies in the plane £,, n and has the vertices Rx(09 0), R2(l9 0), R3(0, 1).
The corresponding mapping is of the form

X = X*(£, Tl) = Xj + X2 ^ + X3 Tl

where xfc - x* - x1 ? y, = yk - j i (see [8], [9]).

vol. 15, n» 3, 1981



268 A. ZENISEK

In this paper, besides the standard triangle To we shall need the triangle
Tl which lies in the plane Ç, J\ and has the vertices R^O, 0), H|(l + q, 0),
^1(0, 1 + q\ q being a given number, 4 > 0. The image of T$ in transfor-
mation (13) will be denoted by T*q. The properties of transformation (13)
are summarized in lemma 1. (In this lemma and in what follows the symbol T
dénotes a closed triangle and the symbol T its interior.)

LEMMA 1 : Let n be given, let the boundary Y of the domain Q be of class
Cn+1 and let q = 0(/i1/2)5 q ^ 0. If h is sufficiently small then transformation
(13) has the following properties :

1. The Jacobian J*fe n) of transformation (13) is différent from zero on Tq
0.

2. The vertex R1 is mapped onto the point Px(xu yx), the vertex Rq
2 onto

the point Pq
2(x2 + 3c2 q, y2 + ~y2 q) and the vertex Rq

3 onto the point

+ 3c3 q9 y3 + y3 q).

The sides Rx Rq
2 and Rx R% are linearly mapped onto the segments Px P\ and

P1 P%9 respectively, and the side R\ R% is mapped onto the arc s*q = P\ Pq

which has the parametric équations

x = x2 + x2 q + 3c32 r| + (1 -h q - n) HPiOl),

y = yi + yi q + y32 n + (i + q - v) Tip2(n),

where 0 ^ r| ^ 1 + q.

3. The mapping (13) maps the triangle T% one-to-one onto the triangle T*q

whose boundary dT*q is the union ofthe segments Px P | , P1 P
q and the arc s*q.

4. Both the mapping (13) and its inverse mapping are of class C00 and it holds
for fë, n) e Tl (x, y) e T*q :

, n) | ^ c2h
2
T , c, = const > 0 , (14)

D«x*& n) = 0(/t'«'), Day*fë, n) = 0(/i'*i), | a | - 1, 2 , . . . , (15)

D-Ç*(x, y) = 0(/ifA), D a
n*(x, 3̂ ) = (Xfcf1), | a | = 1, 2 , . . . , (16)

where

% = %*(x,y), T, = n*(*,30 (17)

is the inverse mapping to the mapping (13).

5. Let Su S2 be two arbitrary points ofthe triangle T% and SUS2 their images

R A T R O Analyse numénque/Numencal Analysis



DISCRETE FORMS OF FRIEDRICHS' INEQUALITIES 2 6 9

with respect to the mapping (l3).Let e be the distance between §u S2 and 5 the
distance between Sl9 S2. Then

b±zhT ^ 8 ^ b2ehT , b^zh ^ ö ^ b2zh (18)

where bl > 0, b2 > 0 are constants independent on hT and e.

The proof of lemma 1 is a straightforward generalization of considérations
introduced in [7], [8] and [9]. Thus it is omitted.

Let us replace the ideal curved triangles T of the triangulation x of Q by
their approximations T* defined above and dénote such a changed trian-
gulation by xh, The union of the closed triangles of xh will be denoted by Qh

and the boundary of Q,, by Th. Using triangular finite Cm-elements we shall
construct finite dimensional subspaces W™+1 of Cm{Qh). We restrict our-
selves to the cases m = 0 and m — 1. As such constructions are well-known
(see, e.g., [7], [8], [5], [9]) we introducé only the properties necessary for our
considérations.

Let us start with m = 0. If n = 1 then Qh is a polygonal domain and the
restriction v |f of v e W£ to an arbitrary triangle T G xh is a linear function
uniquely determined by function values prescribed at the vertices of T.

If n — 2 then Fh is piecewise quadratic and the restriction v |f of v e W£
to an arbitrary interior triangle is a quadratic polynomial uniquely determined
by the function values «(PJ, v(Qjk) (i = 1, 2, 3 ; j = 1, 2 ; k = 2, 3 ; j < k)
where Pi are the vertices of T and Qjk the mid-points of the sides P} Pk. The
restriction v |f* of u G W,,1 to an arbitrary boundary triangle T * e x A is such
a function that

n) - « I P ( X * K , n),j>*fé, n)) (19)

is a quadratic polynomial uniquely determined by the function values
p(R.) = v |^(P.)B p(SJfc) = i; |f*(Öjjt) where Sjk is the midpoint of Rj Rk. (Let
us note that Q23 = (<p*(l/2), \|/*(l/2)).)

Ifn = 2 fc+ l ( f c ^ 1) then Fft is piecewise of degree 2 /c + 1 and the res-
triction v \f of u e W^1 to an arbitrary interior triangle T e xh is a polynomial
of degree 21c + 1 uniquely determined by the parameters

£>V(P;) , l a | ^ k (i = 1, 2, 3) ; D«u(P0) , | a K k - 1 (20)

where Pi are vertices and P o the centre of gravity of T. The restriction v \j*
of v e Wl to an arbitrary boundary triangle T * e x h is such a function that
the function pfc, r\) defined by (19) is a polynomial of degree Ik + 1 uniquely
determined by the parameters

D"p(Rd > i a | ^ fc (i = 1, 2, 3) ; D*p(R0), | a | < k - 1 (21)

vol. 15. n° 3, 1981



270 A. ZENISEK

where Ro is the centre of gravity of To. Each of the derivatives
| a | = j is a linear combination of the derivatives D*v(Pk), \ oc | = j and can
be obtained from (19) by means of the rule of differentiation of a composite
function. (Let us note that Po is in this case the image of Ro in transforma-
tion (13).)

In the case m = 1 we restrict ourselves to the case of the simplest C ̂ élé-
ments. Thus the restriction v \f of v e W% to an arbitrary interior triangle
Te xh is Bell's polynomial of fifth degree uniquely determined by the para-
meters

D*v{Pd > I « I ^ 2 , i = 1, 2, 3 (22)

and by the condition that dv/dvjk be a polynomial of third degree along the
side Pj Pk (j < k, j = 1, 2 ; k = 2, 3), vjfc being the normal to P, Pk. The res-
triction v\T* oî v e Wl to an arbitrary boundary triangle T* exh is such a
function that the function p(^, r\) defined by (19) is a polynomial of degree
4 + n uniquely determined by the parameters described in [9, theorem 3].
The number n dépends usually on the boundary conditions prescribed on F.

Let us consider the case that Q represents the middle plane of a thin elastic
plate. Then from the point of view of boundary conditions the boundary F
is divided into three disjoint parts : a clamped part F l 5 a simply supported
part F2 and a free part F3 . Let Thi (i = 1, 2, 3) be the part of Fft approximating
Tt and let nt be the degree of curved sides ch from which Thi consists. It is not
diffîcult to see that the degrees rn = 3, n2 — 5 are necessary and sufficient
for the validity of implication (98). Further, it will be seen in section 3 that
the degrees nl = 3, n2 — 5, n3 = 3 are sufficient for the validity of inequa-
lity (99). In this case also the second term on the right-hand side of inequality
(100) is of the same numerical accuracy as the first term. Thus we set

ni = 3, n2 = 5, n3 = 3 . (23)

The following lemma will be useful in our considérations :

LEMMA 2 : Let a part AF of the boundary F be ofclass Cn+1 and let c cz AF
be the curved side of an idéal curved triangle. Let (6) be parametric équations
of c. Let thefunctions (p*(0> ty*(t) defining the approximation ch of c be either
Lagrange or Hermite interpolation polynomials of degree n of the functions
cp(r), \|/(r) on the interval I = [0, 1]. Then it holds on I

^ CHf i t j = OyU _9 n 9 (24a)

^ afT
+ \ j = 0 ,1 , . . . , n , (24b)

P(r) ^ ChT (25)

R.A.I.R.O. Analyse numérique/Numerical Anaîysis



DISCRETE FORMS OF FRIEDRICHS' INEQUALITIES 271

where

m = {[?«]2 + int)? v12 (26)

and where C dépends only on T.

The proof of lemma 2 is similar to the proof of [10, lemma 2]. Thus it is
omitted.

At the end of this section we introducé a notion of a natural extension v
of a function v e W™+1 from the domain Qh to the domain Qh + (Q - Qh).
This notion will be important in the proof of theorems 1 and 2.

The set Q - Qh is a union of se_ts T} - Tf (j = 1,..., N) where N is the
number of curved triangles in x, T, e x is an idéal curved triangle and Tf
its approximation. Let us choose q = 0(/z1/2) and let Tfq be the image of T%
in transformation (13)r (The index j expresses that transformation (13) con-
cerns the triangle fr) If T, - Tf # 0then, according to (18) and (24), the
part of the curved side of T, which forms a part of the boundary of Tj — Tf
lies in Tf* - Tf.

If we transform the restriction v \f* of v e W^"+1 from T,* onto the stan-
dard triangle TQ by means of transformation (13), we obtain a polynomial
Pj(4, T|) of degree tó( (d = n if m = 0, d = 4 + n if m = 1),

The polynomial (27) is defined uniquely in the whole £, q-plane. Transforming
pjfe, x\) from the triangle T% onto the triangle Tfq by means of the inverse
transformation (17), we obtain a function ug(x, y). lts restriction to the domain
T* + (Tj - Tf) is the natural extension of v |f;from Tf to T, + (T7 - T*).
Doing this for all boundary triangles we obtain the natural extension U of
v e W™+ x from Qh to Qh + (Q - Qh).

2. DISCRETE FORMS OF FRIEDRICHS' INEQUALITIES

THEOHEM 1 : Let n = 2k + 1 (fc ^ 0) or w = 2. Let the boundary T of Q

be ofclass C B + 1 . Let S be a part of Y consisting of afinite number of disjoint
arcs Sj c F 5WC/Ï t/iaï mes S7 # 0. Let SA be t/ze part o/ Fft wfcic/i approxima-
tes S. Let every triangulation x be chosen in such a way that S is a union ofsome
sides of ideal boundary triangles. Then the constant K(Qh) appearing in the
inequality

r r ~|
v2ds+\v\la VveWl (28)

sh J

vol 15, n^ 3, 1981



A. ZENISEK

can be chosen in such a way that

K(Qh) -> K x ( 0 ) if h^O (29)

where KX(Q) is an arbitrary constant which can occur in Friedrichs1 inequality

f f "I
il v llï,n < ^ i ( " ) v2ds+\v\2

ua\ VveH^Q). (30)

THEOREM 2 : Let n ^ 3 and /et t/ie ot/rer assumptions of theorem 1 be satis-
fied. Let S be not a part of a straight line. Then the constant K(Qh) appearing
in the inequality

|| v \\lah ^ K(Qh) \ [ v2ds + \v \2
2}ÇlJi Vv e W2 (31)

iLJsh

can be chosen in such a way that

K(Qh)^K2(Q) if h^O (32)

where K2(O) is an arbitrary constant which can occur in the inequality

II » III n < K2(Q) \[ v2ds + \v | i J V» e H2(Q). (33)
U s J

Proof of theorems 1 and 2 : If v = 0 then both (28) and (31) hold with an
arbitrary constant K(Qh). Thus we consider only v ^ 0. Let us set

It holds

V2ds + \ v \ f n , ( I ^ ^ S ^ ' " ' 2
Qh vds + \v \ a

where

l(l2 fX (35)

8 i ; r = ^ f v2 ds - [ v 2 ds\l(\ v \ln + f v2 ds\ , (36)

Si± = \\v\\tj\\v\\ln. (37)

R.A.I.R.O. Analyse numérique/Nu mer ical Analysis



DISCRETE FORMS OF FRIEDRICHS' INEQUALITIES 273

Taking into account (30) and (33) we see that it suffices to prove

£i,r -• O. £i± -> 0, 5f± ~> ° i f fc -• 0 (i = 1,2). (38)

a) First we shall prove that

I v Ha > Ch2A{a{), | v |?,n ^ CB(à{) (39)

where C is an absolute constant and

AW) = t t Wf , (40)
* r s - • 2 d *• 2 I

â£ = (ót{ + óci + - 4- &§/s. (42)

The symbols appearing on the right-hand sides of (40)-(42) have the foliowing
meaning : N is the number of the boundary triangles and &{ are the parameters
uniquely determining the polynomial pjfe, r\) which is defined by (27) and which
can be written in the form

Pj^ r|) =: YJ &i îfës Tl) (43)

where bfâ, r\) are basis functions corresponding to the parameters àt. In the
case of C°-elements the number of basis functions is given by

d = (n + 1) (n + 2)/2,

in the case of C1-éléments by d = {n + 5) (n 4- 6)/2. The parameters àt

and the basis functions 5 ^ , rj) are ordered in such a way that the first 5 para-
meters dj,..., ocs are all parameters which have the meaning of function values.
Thus

In proving the first estimate (39) we start from the inequality

Z

where T;- c Q (7 = 1,..., N) are ideal boundary triangles. Let K;- be the are
which lies in the £, r\ -plane and which is mapped by transformation (13),-

vol. 15, n° 3, 1981



274 A. ZENISEK

onto the arc dTj n T, dT} being the boundary of Ty Let 0 < r < 1/2 be a
fixed number. Let T0(r) be the triangle which lies in the i;, r|-plane and has the
vertices R[{0, 0), Rr

2(l - r, 0), Rr
3(0, 1 - r). It follows from (18) and (24) that

for sufficiently small h the arcs Kj (j = 1, ..., N) lie outside the triangle T0(r).
Thus it holds, according to (4) and (14),

Iv^r^c.coh^pjll^ (46)

where the polynomial pfit>, r\) is given by (43). It follows from the équivalence
of norms in a finite dimensional space that

IP;lo,roW^I (Mf (4V)

where the constant c dépends only on T0(r) and on the basis functions bfâ, r\).
Relations (45), (46) and (47) imply the first estimate (39).

Now we prove the second estimate (39). After some elementary calculations
we obtain

» \I\ITJ > cl clx c* f | p. IJ o (48)
I

where c* is a constant depending only on 0O and where the meaning of the
other symbols is the same as in the preceding case. Let n* = n in the case of
C°-elements and n* = n H- 4 in the case of C ̂ éléments. The seminorm
I pj li,rO(r) i s a n o r m °f the class [pj\ e Pn*/P0 where Pfc dénotes the space of
ail polynomials p( ,̂ n) of degree ^ k. Thus

Pj |f >To(p) > c inf f (a,)2 (49)

where âl3 ..., àd are the parameters uniquely determining the polynomial
pfè, r|) e [pj. As every polynomial p G [pj can be written in the form
p = Pj + K with K G P o it is easy to find that

inf t (à,)2 = t (à{ - ai)2 + t @b2 (50)

where aJ
0 is defined by (42). Relations (48), (49) and (50) imply the second

estimate (39).

b) Now we estimate 8fctlefc„,8k+,Sk_(/c = 1, 2).Ifu = const on the union U
ofthe boundary triangles Tf thenek± = O.Letü ^ const on U. Then B(ÔL{) > 0
and we can write, according to (30), (33), (35) and (39),

efc_ < C.Xk(Q) | v iï^JBiâl) (k = 1, 2) (51)

R.A.I.R.O. Analyse numérique/Numericaî Analysis



DISCRETE FORMS OF FRIEDRICHS' INEQUALITÏES 275

where C is an absolute constant. (In what follows C will dénote an absolute
constant not necessarily the same in any two different places.)

Let a be a quadrilatéral lying in the Ç, r\ -plane, ha ving vertices Ax(l — P, 0),
A2{1 + P, 0), 43(0,1 4- P), A4{Q,1 - p) and containing all arcs K,- (j = 1, ..., N).
According to (18) and (24), we can choose P so small that

mes a = 0{hn). (52)

Using (14), (16) and (44) we find

i=1
N

 j=1
 N (53)

= C t \Pj-àh\l^C f M/mes a
where

M.- = max { max | à{ — àj
0 |, max | af |} . (54)

i= l , . . . , s i = s+l , . . . ,d

As, according to (54) and (41),

.£ Ml)lmï) ** 1 (55)

relations (51), (52) and (53) imply

6 l_ =0(hn), (56)

In the same way we can obtain e1+ = 0(/i").
As to the estimate of £2_ we can prove

£2_ = 0 ( / Ï " - 2 ) . (57)

Estimate (57) follows from (51), (52), (55) and from the estimate

l « l l , T , - r j ^ C ( | p J | l i O h - 2 + | p 7 l U - (58)

In the same way we obtain £2+ = 0{hn~2).
Now we estimate 5fc+ and 8k_ (fc = 1, 2). Let us set for the sake of brevity

J(h2A(à{)), (59a)

Gk(v) = ( t \ » \U- )/*<«/) (y ̂  const on V) •

If Ü = const on U then, according to (37) and (39),

5k_ ^ C.F(v). (60a)

vol. 15, n° 3, 1981



276 A. ZENI§EK

If v 7̂  const on U then

Sk_ ^ C[F(v) + G ^ ) ] . (60b)

According to preceding considérations, G^) = 0(hn\ G2(v) = 0{hn 2).
It remains to estimate F(ü). It is easy to find

\v\l9ah. ^ C/i2^£ m2) mes a (61)

where
nij = max | ótf | . (62)

As

f jjVA(dft ^ 1 (63)

we obtain, according to (52), (59) and (61), F(v) = 0(hn). Thus

5,_ =0(/iB)> 52_ =0( / i"" 2 ) . (64)

Similarly 5 1 + = 0(/z"), ô 2 + = 0(/in"2).
According to the assumptions of theorems 1 and 2 concerning n, we proved

(38) for the terms ek±, Sfc± (k - 1, 2).
c) It remains to estimate skr {k = 1, 2). It holds

(65)

(66)\v2ds= X Ïï

where ATS is the number of boundary triangles along S, p^t) is given by (26) and

P*W = { [<P*'W]2 + [v|/*W]2 } 1 / 2 • (67)

Let us set

A,! = <tf(t) - 9/t), Aj2 = W(t) - Ut). (68)

According to lemma 2, it holds for the i-th derivative

A« = O 0 £ ^ A» = 0(*^x) (i = 0, 1,..., R) . (69)

R.A.LR.O. Analyse numérique/Numerical Analysis
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Using Taylor's formula we can wnte

, § , i , 0 y ,2 (70)
where

e, AJ1; fyt) + e, AJ2) , o < e, < ï .
Using (24), (25), (26) and (67) it is easy to find

P,*W = PM) [1 + 0 ^ ; ] • (71)

Subtracting (66) from (65) and using (69)-(71) we obtain after an easy com-
putation in which we use the fact that both Q} and (cp/4 ^7M) belong to

<z T f :

f v2 ds - f v2

Jsh Js
ds Chn X rn) mes c} ^ Chn+Ï ^ m) (72)

where c} - dT3 n T. Using (30), (33), (36), (39), (63) and (72) we obtain

Thus (38) is proved in the case n Js 2.
It remains to estimate eir in the case n — 1. Let us dénote # , = min | v |

C

where c, = 37"^ n T. Then we can write

\v\U +[&ds>cfl\t(ài- ^o)2 + MHZ j (73)
J l J

because mes c, ^ h, Ns ^ iV and the numbers 5 and d appearing in (41)

satisfy s = d = 3. Let us choose y such that 0 < y < - . Then after a simple

analysis (which is enabled by a simple structure of finite éléments in the case
n = 1) it can be found that there exists hy (dependent only on y) such that for
h < hy we have

m) . (74)

Thus, according to (36), (72)-(74), we obtain s i r = 0(h2y). Theorems 1 and 2
are completely proved.
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Remark 1 : In order to prove theorems 1 and 2 together we restricted our-
selves to one type of boundary C1-éléments in theorem 2. Usually we use two
types of boundary C ̂ éléments (see (23)). In such a case the assumptions of
theorem 2 can be easily modified. The proof of theorem 2 remains the same,
only some formulas are more complicated.

Remark 2 : Under the assumption of theorem 1 that F is of class Cn+X

we obtained the maximum rate of convergence in the case of e1±, ô 1 ± :
e1± = 0(/z"), S l t± = 0(/f). The following two statements (i) and (ii) allow to
weaken this assumption. (The rate of convergence will be then lower but this
is not important in our considérations.)

(i) Let n — 2k + 1 (k ^ 1) and k ^ n ^ n. If we assume in lemma 2
that T is of class C"+1 then

where cp*(r) is the Hermite interpolation polynomial of degree n of the fonction
cp(t) (see Section 1). Relation (24b) is modified in the same way. (This statement
can be proved similarly as the first part of lemma 2 ; instead of the classic
remainder theorem for Hermite interpolation we use a one-dimensional analo-
gy of [1, theorem 2].)

(ii) Letw = 2 k + 1 (k ^ 2) and A: ̂  n < n. Let the right-hand sides of (13)
be polynomials of degree n and let us assume in lemma 1 that F is of class
C"+ \ Then estimâtes (15), (16) hold for | a. \ = 1,..., n - 1. The remaining
assertions of lemma 1 are not changed. (This statement foliows from (i).)

Remark 3 : The question of weakening the assumptions of theorem 2 is
quite topical. It may happen that F is only of class C4 and we must approximate
the simply supported part F2 of F piecewise by quintic arcs in order to gua-
rantee (98).

Inspecting the proof of theorems 1 and 2 and changing lemmas 1 and 2
according to (ii) and (i), respectively, we obtain the following corollaries :

COROLLARY 1 : Let n = 2k + 1 {k ^ 0) or n = 2 and let W\ be the corres-
ponding C°-finite element space which is described in section i. Let the boundary F
of Q be of class C ï ï+1 where n = nfor n ^ 3 and k + 1 ^ n ^ nfor

n - 2k + 1 (k > 2) .

Let the assumptions of theorem 1 concerning S and Sh be satisfied. Then

l f v2 ds + \v |?>£J VveWl,h<K (75a)
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where îi is a sufficiently smallfixed number and Cx a constant independent on v
and h.

It should be noted that a similar result can be obtained in the case of curved
triangular isoparametric éléments which are described in [2] and [3].

COROLLARY 2 : Let a part of the boundary Fh be piecewise cubic and the
remaining part piecewise quintic. Let W\ be the corresponding C1-finite element
space which is described in section L Let the boundary TofQbe of class C4.
Let the assumptions oftheorem 1 concerning S and Sh be satisfied. Then

II v \\lQh ^ c J [ v 2 d s + \ v \ l Q \ Vv e W2
h9 h < h ( 7 5 6 )

\Jsh /

where h and Cx have the same meaning as in corollary 1.

COROLLARY 3 : Let the assumptions of corollary 2 be satisfied and let S be
not a part of a straight line. Then

II v \\tah < c l f v2 ds + | v \ l a \ Vv e W2
hJ h < h (76)

where h is a sufficiently small fixed number and C2 is a constant independent
on v and h.

3. APPLICATIONS

Applications of theorem 1 and its corollary in the case of second order
elliptic équations are introduced in [10]. In this section we restrict ourselves to
the case of fourth order problems.

Let us consider the following problem of bending of thin elastic plates :

A 2 M = / i n a (77)

u = go(s), du/dv = gx{s) on I \ (78)

u = g2(s) on T2 (79)

Mu = P(s) on T2 + T3 (80)

Nu = Q(s) on T3 (81)

where v is the outward normal to the boundary F = I \ + T2 + T3

(rt n Tj = 0), f g0, gl9 g2, P, Q are sufficiently smooth functions and

Mu = \x AM + (1 - n) d2u/ôv2 (0 < j i < 1), (82)

\T ^ /A \ i /i \ 3 ÏS2U Ô2U ( 2 2\ Ô2U

Nu = -Tv(Au) + (1 - rt^^v, v2 -j-ë-yiy\ ~ vD - ^ V l
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where [i is a constant, vx and v2 are the direction cosines of v and s is the tan-
gen tial direction wit h direction cosines — v2, vx. We assume that F is of class
C 4 and that mes F 3 < mes F.

Let us define the space

Vo = {we H2(Q) : w = 0 on r x + F2 , dw/dv = 0 on Tx

in the sensé of traces } (84)

and the set

Vg = {we H2(Q) : w = go(s\ Ôw/Ôv = gi(s) on Tx ,
w = 9iis) o n T2 in the sensé of traces } . (85)

The variational formulation of problem (77)-(81) then reads as foliows :
Find ueVg such that

a(M, w) = L(w) Vw e Vo (86)

where

w <Pw\dh)_ fÔ^w Ô2w\ Ô2v

L(w) - La(w) + Lr(w). (88)

Ln(w) = IJ fwdxdy, (89)

Lr(w) - f p^ds + f Qwds. (90)
Jr2 + r3

 V Jr3

We shall solve the problem (86) by the finite element method. Let W\ be
the C1-finite element space introduced in section 1. Then, according to (23),
Ffci + rh3 is piecewise cubic and F„2 piecewise quintic. Let VQh be a sub-
space of w\ defîned by

Voh - { w G W2 : w = 0 on r h l + Fft2, dw/dv = 0 on rfcl } (91)

where vft is the outward normal to rfc. Finally, let V9h be the subset of W2

consisting of those functions which satisfy the following at the nodal points
Pl lying on Th : boundary conditions (78) and (79) and ail conséquences of
these conditions containing at most second order derivatives. (The reason :
according to the définition of W£, the derivatives Daw(PI)î | a l ^ 2 are ail
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parameters prescribed at P, e Th.) E.g., if Px e Th2 then every function w e W\
satisfies the following conditions at Px :

Now we can formulate the discrete problem corresponding to problem (86) :
find üh G Vgh such that

ah{ün, M>) = Lb{w) Vw 6 Voh (92)

where ah(ü, w) is defined by an expression similar to the expression appearing
on the right-hand side of (87) — only Q is substituted by ü.h, The linear form
Lh(w) is defined by the relation analogous to (88) and

= ff
J J

fwdxdy, (93)

ds+ I Qhwds. (94)
Jrh3

The symbol ƒ dénotes a contmuous extension of the function ƒ to a domain
Ü => fih (/z < /*) and Ph, Qh are fonctions obtained by « transferring » the
fonctions P, Q from F onto Fft (we explain it in the case of the function Q) :
let c(P2, P3) be an arc lymg on F3 , P 2 and P 3 being lts end points denoted in a
local notation. Let ch(P2, P3) c Fft3 be the approximation of c(P2, P3). The
parametric représentations of c(P2, P3) and ch(P2, P3) are expressed by (6)
and (12), respectively. To every point t e [0, 1] there exists just one point

(x, y) = (cp*W, v|/*(t)) G ch(P2, P3) (95)

and just one point (cp(t), ty{i)) e c(P2, P3). Thus at every point (95) we can define
the function Qh(x, y) by the relation

(96)

Then, according to the définition of the line intégral, we have

Qh w ds = f 0(9(0, Mt)) w(9*(0, **tó) P*W at (97)

where p*(t) is given by (67).
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Let us restrict to the case that ƒ is a constant. Then ƒ = ƒ and from the theo-
retical point of view it is possible to solve problem (92) and not to use numerical
intégration. As the applications of theorems 1 and 2 are the same in both cases
with and without numerical intégration we restrict our considérations to
problem (92). (Details concerning the use of numerical intégration can be
found in [4].)

It follows from (10), (11) and from the définition of the space VOh and the
set Vgh that it holds

v -weVOh. (98)

Using this implication it is easy to prove the following theorem (the proof is
omitted because it is only a modification of the proofs of similar theorems
from [2] and [3]) :

THEOREM 3 : Let afamily of discrete problems (92) be given. Let there exist a
constant y > 0 independent on h such that we have for h < h

TlMllft,^»,») ^eVOh. (99)

Then for every h < h problem (92) has a unique solution iïh and it holds

F âdîL w) — LJw) H
II 2 - fi* h A ^ q inf II Ü -v ||2iOh + sup ' * - ^ l (100)

where ü is an arbitrary function in H 2(Q) and Cis a constant independent on ü and
h.

In what follows ü will dénote a continuous extension of the exact solution of
problem (77)-(81) to the domain Û => Qh {h < h). We shall use theorem 3 for
est imating \\u - uh \\2Slh.

First we establish the validity of inequality (99) which expresses the uniform
FOft-ellipticity of the bilinear forms âh(v, w) (h < h). It is easy to see that

âh(v, v)>(l-\i)\v \2
2iQh Vü e W\ , \fh. (101)

If mes Fi > 0 and F t is not a part of a straight line we use corollary 3 and (101)
for arbitrary v e VOh. We obtain inequality (99) with y = (1 — |i)/C2. If Yx

is a part of a straight line we use the inequality

Modifying some ideas of the proof of theorems 1 and 2 it is not diffîcult to prove
that

Cx(\ dv/dx \UQh + | dv/Ôy I tn j > I v \\A VÎ; G VOh
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where h < h and Ct is the constant from corollaries 1 and 2. Using then
corollary 2 we obtain inequality (99) with

Y = i ( l - |i)min(1,1/(2 0?)).

If mes I \ = 0 then mes T2 = mes T — mes F 3 > 0. In this case we assume
that F2 is not a part of a straight line (a necessary condition for the uniqueness
of the solution of problem (77)-(81)). Using (101) and corollary 3 for arbitrary
v e VQh we obtain inequality (99) with y = (1 - v)/C2-

In estimating the first term on the right-hand side of (100) we shall use
[9, theorem 5] and a similar theorem for BelFs éléments [1, p. 819]. In accordance
with assumptions of these theorems we shall assume that iï e H 5(Q). Let Wj be
the function from W\ which interpolâtes ü (i.e. the parameters uniquely deter-
mining wf are the function values and derivatives of M at the corresponding
nodal points). Then Wj e Vgh and we have

inf \\ü-v
2iCï

^ (102)

It remains to prove that the second term on the right-hand side of (100) is
0(h3). The assumption üeH5(Ü) allows to use Green's theorem and we can
establish

w) - Lh(w) (A2ü-f)wdxdy

(Mhü-Ph)^ds (Nhü-Qh)wds (103)

where the operators Mh and Nk are defined by relations similar to (82) and (83),
respectively. (The only change is that we write vft5 vftl, vft2, sh instead of v, v1$

v2ï s.) As F is approximated by Th at least with accuracy OQt4') and A2w ~ ƒ = 0
in Q it is easy to find that

w(à2iï - ƒ ) dx dy (104)

Let us dénote for simplicity aj_ = Mh ïï - Phi <J2 = Nhïï ~ Qk. Using
the Cauchy inequality and the trace theorem we can write

dw
<JX j — ds ^ Cernes Tk max | at 1.1| w ||2ïîlh, (105)

rh2+rh3

o 2 w ds (106)
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It follows from the proof of the trace theorem (see [6, p. 15-16]) and from lemma 2
(or remark 2, part (i)) that the constant C appearing in (105) and (106) is inde-
pendent on h.

According to the Taylor formula and lemma 2 (or remark 2) we have

A«(cp*(0,

0 (cp*(O,

= Au(cp(t),

Thus

As

we obtain from (107)

(107)

M M |C =

max | Mh Ü - Ph | = ), c» h2 + Th3Th3 . (108)

As mes Fh ^ 2 mes F relations (105) and (108) imply

i (Mh u-Ph) -£ds ^ Ch* || w II 2,nh. (109)

Similarly we obtain

(110)

Theorem 3 and estimâtes (102), (103), (104), (109), (110) give the final resuit :
the solution üh of the discrete problem (92) exists and is unique for sufficiently
small *. If ueH5(Ù) then \\ ü - uh ||2tfth = 0(h3).

Remark 4 : Let Vo — { v e H1(Q) : v = 0 on Tx in the sensé of traces }.
The minimum value of KX(Q) in Friedrichs' inequality

o,n lî,n

is equal to X^1 where Xx is the first eigenvalue of the problem

Au -f Xu = OinQ, w = 0 o n F l s ow/̂ v = 0 on F -

It holds

(111)

(112)
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where ux is the first eigenfunction of problem (112). Let us assume that F is

of class C"+ 1 and let us define the finite element approximation of \ x by

XXh= inf ! ^ . (114)

Considérations introduced in the proof of theorems 1 and 2 imply

îfc > M 1 + °(fe"))- T h u s

lim^^X.!. (115)

In the case n ̂  2, i^ e Hn+1(Q) it can be proved that

limX1& = \ x . (116)

Let w/ft e 70A be the interpolate of the extension üi eHn + 1{Û) of w r It is

not difficult to find that

^\wIh\fA=\u1\la (£ = 0, 1) (117)
h-O

where the rate of convergence is Offe""'). We have

I w, h\Uj\ wIh \lQh ^ Xlh. (118)

Letting h-^0we obtain from (117), (118) and (113)

Xx ^ \ïmXlh. (119)

Inequalities (115) and (119) imply the desired result (116).
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