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FINITE ELEMENT APPROXIMATIONS
OF THE VON KÂRMÂN EQUATIONS (*)

by F. BREZZI (*)

Communiqué par P. G. CIARLET

Abstract. — We analyse a général technique in order to prove the convergence and optimal error
boundsfor suitable finite element approximations of the von Kârmân plate bending équations.

0. INTRODUCTION

Consider a thin isotropic elastic plate which occupies a given région Q in the x,
y plane. Suppose that the plate is clamped along the entire boundary ôQ and that
a uniformly distributed load p{x, y) is acting on the plate. Under suitable
assumptions one can prove that the transverse displacement w2 (x, y) in the z-axis
direction is a solution of the von Kârmân équations [1] :

A2 Wtix, y)= -l/2[w2, w2] in Q,

A2w2(x, y) = [w1, w2] + p in Q,2w(x y) [ w] + p in Q ƒ

where: w1(xf y) is another unknown function depending on the "in-plane"
displacements of the plate, the expression [u, v] is defmed by

[u? v] = uxx vyy + uyy vxx - 2 uxy vxy, (0.1)

and a certain number of physical constants have been put equal to 1 for
simplicity. Since the plate is clamped on 50, w2 will also satisfy the boundary
conditions w2 — dw2/dn = 0 on dQ; w1{x> y) will also satisfy some suitable
boundary conditions which for simplicity we assume to be w1^dw1ldn~0.

(*) Reçu octobre 1977.
(l) Université di Pavia and Laboratório di Analisi Numerica del C.N.R., 27100 Pavia (Italie).
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304 F. BREZZI

Problem (0, 0) can therefore be written, in a more précise way, as follows:

find w = (wlt w2)e(Hl{Q))2 such that: \

A2wt=-1/2[w2, w2] in Q, ! (0.2)
A2w2= [w1} w2]+p in Q, )

Equations (0 .2) have long since been carefully analysed, from the theoretical
point of view (see e. g. [2] and the références contained therein). It can be shown
that for each given peH~2(Q) there exists at least one solution (in gênerai not
unique) of problem (0.2).

In the present paper we analyse a gênerai technique in order to prove the
convergence and the error bounds of suitable finite element approximations of
équations (0.2). In order to simplify the exposition only the so called
"displacement" f. e. approximations will be presented in detail. However the
same technique can be applied to prove error bounds for different and, perhaps,
more interesting approaches, such as mixed, hybrid, etc. The convergence of a
particular type of mixed approximations has been proved in [3], while a hybrid
approach has been used in [4].

The tools that will be used are of the classical type: we refer for instance to [5],
and to the références included therein, for similar approaches, though in different
contexts.

The main results, for simplicity, are summarised in theorem 3, at the end of the
paper.

1. SOME FURTHER REMARKS ON THE CONTINUOUS PROBLEM

We introducé the following notations:

V=(H2
0(Q))2, H-(L°°(Q))2 (2), (1.0)

a{u, v)= (Au1Av1+Au2Av2)dx, (1.1)
h

b{w, u, u )= l /2 { -v2{[wlt u2] + [w2, UiD + ^ ^ 2 , u2]}dx, (1.2)

f
pv2dx, (1.3)

f
> v)=

and we observe that problem (0.2) becomes:

find weV such that:

, } (1 4)
a(w>v) + b(w,w,v) = (p,v), " - - - " f v • >

(2) The norms on V and H will be denoted by ||. || and |. | respectively.
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We also note the following properties that will be used later on:

V u , y e F , a(u, v) ̂  A\\u\\ .\\v\\, (1.5)

V u e F , a{v,v)töL\\v\\2, (1.6)

V w , u , v e V , b ( w , u , v) ̂  B \ \ w \ \ . \ \ u \ \ . \ v \ ^ l î \\w\\ . \ \ u \ \ . \ \ v \ \ , (1.7)

Mu\u,veV, b(w, u, v) = b(u, w, v). (1-8)

Suppose now that w is an isolated solution of (1.4); by définition this will imply
that the bilinear form

(M, v)-+a{ut v) + 2b{w, u, v) (1.9)

is non singular on V x V. More precisely: for any givenfs V', there exists a
unique ueV which satisfies

a{u,v) + 2b(w,u, v) = (ftv), \fveV. (1.10)

Moreover one has

\\u\\SL\\f\L, (1.11)

with L independent off.

We will need the following lemma:

LEMMA 1: Suppose that (1.9) is non singular. Then there exists a positive
constant S such that for any given w with

\\w-w\\£& (1.12)

the bilinear form

{u,v)->a{u, v)+2b(w,u,v) (1.13)

is non singular,

Proof: The lemma is almost obvious; nevertheless we shall state the proof for
sake of completeness. It is known {cf. e. g. [6, 7]) that a bilinear form

(utv)-+l{u,v) (1.14)

is non singular iff there exist two positive constants c^ and c2 such that

Sup I(u, v) ̂  c, \\u\\; sup l(u} v) ̂  c2\\v\\. (1.15)

Let now (cl, c2) be the two constants associated with the bilinear form (1.9), and
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let z be an element of V. We have

sup a{u, v) + 2b(w + z, u, v)
H-i

è sup a{u, v) + 2b(w, u, v) — 2 Sup b(z, u, v)
H III

provided that 2B \\z\\ ^ d / 2 .

In a similar way we also get

(1.16)

sup a(ti, iO + 2ft(w + *. u, i>) ̂  (c2/2)||v)| (1.17)

if 2B || z|| ^ c2/2. Therefore the lemma holds with

1 , c 2 ) . (1.18)

2. THE DISCRETISED PROBLEM: EXISTENCE OF THE SOLUTION AND ERROR
BOUNDS

Suppose now that we are given, for any he]Q, h0], a fînite dimensional
subspace Vh of V=(HQ(ÇÏ))2 with the following properties:

| B W \ \ u - M \ w m £ c h r ~ ë \ \ u \ \ v r w ' 5 = 1>2> )
[for all Me(fT(Q))2 n(Hg(Q))2, s % r ^ /c+1, j

where the constant c is independent of u and h, and k is a given parameter
associated with the family { Vh} (in the applications, fe^degree of the piècewise
polynomial approximation). Families of spaces Vh satisfying (2.0) are well
known; cf. e. g. [8, 9, 10].

We consider the following approximate problern:

Find whe Vh such that: 1
a (wh, vh) + b (wh, wh> vh) = (p, vh), V vh e Vh j

The existence of a solution of (2.1) and the corresponding error bound will be
obtained by means of a "modifîed Newton" method. We need, therefore, some
more information on the behaviour of the linearized operator. For that purpose
suppose first that wh G Vh is defmed by

(2.2)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Since w is isolated, we have from (2.0), (2.2) and lemma 1 that, for h
sufficiently smaîl the biîinear form

(w, v) -* a {u, v) -f 2 b {wh, u, v) (2.3)

is non singular onVxV. This wiîl not imply, a priori, that (2.3) is non singular
on Vh x Vh; nevertheless this will be true in our case, at least for h sufficiently
small, as shown in the next lemma.

LEMMA 2: If the biîinear form (2.3) is non singular on VxV then.for h small
enough, it is non singular on Vh x Vh.

Proof; Since Vh is finite dimensional, we need only to prove that

Sup a(uht vh) + 2b(wht uh, vh) ̂  K\\uh\\, VuheVh. (2.4)

For any given uheVh^ V, we have, from the non singularity of (2.3) on V x V,
that

Supa(ttfc,i>) + 26(tt5fc,Mfcfü)^(c1/2)||ufc||. (2.5)

Therefore there exists 2LVGVsuch that ||i7|| = 1 and

\\. (2.6)

Let now vh e Vh be the solution of the problem

à (2.7)

It is easy to see that vh exists, is unique, and satisfîes

\\vh\\^(A/a)\\v\\=A/oi. (2.8)

Suppose now that the domain Q has the foliowing property: for any given
f e L2 (Q) there exists a 9 e H2 +£ (Q) n H2

0 (Q) (0 < s < e0 («)) with A2 9 = ƒ and

MU-^)^||À2(p|| i2{a) (2.9)

(This is a very weak regularity assumption on Q; for instance any polygon will
satisfy it). If (2.9) is satisfied one can apply the duality technique of Aubin-
Nitsche {see e. g. [ 9,10]) in order to get an error bound for v — vh in L2 (Q). Then,
by means of the Sobolev injection of H i + O ( a > 0) in L00 and interpolating
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between L2 and H2 (cf [14, chap. 1]), one gets

\vh-v\ ^c/ î n | | i7 | | =chrx

for some positive r\ (for instance r\ =so/4).

Therefore we have

t vh) + 2b(wh> uh> vh) = a{uh, v) + 2b(wh, uh, v) + 2b_(wh, uh> vh-v)
^(c1/4)\\uh\\-2B\\wh\\.\\uhp^

(2.10)
and for h sufficiently small we obtain (2.4) with K = OLC1/$A.

REMARK: Results of this kind are quite classical. See for instance [11 or 12] for
similar cases.

Using the statement of lemma 2 we are now able to define the folio wing map cp:
y h -* y hl fc>r any given uheVh, cph = cp (M,,) is defined as the unique solution of

Û(<Ph. »h) + 2 b (wh> <ph, vh) = 2b (wht uh> vh) - b {uh, uh> vh) + (p, Ü J ,

It is easy to see that any solution oj (2.1) is ajixed point of cp and vice-versa. In
order to prove the existence of a solution of (2.1) we can therefore show that cp
has a fixed point.

THEOREM 1: There exist tvoo positive constants Rx (h) and R2 such that, for any
uheVh,

\ \ \ \ l I ^ l l ^ l l ^ - ^ H . (2.12)
Proof: We have from (2 .4) that there exists a vh e Vh such that || vh || — 1 and

|| c p ( u h ) ~ w h \ \ ^ {2/K) (a(cp(uh)-wh, vh)) + 2b{wh, cp (u h ) -w h , vh). (2.13)

On the other hand, using (2.11) we have :

a(<p{uh)-whf vh) + 2b{wht <p{uh)-wh, vh)

= 2b(wh, uhi vh)-b{uht uh, uft) + (p, vh)

~a(wht vh)-2b{wh, wh, vh) = [-a{wh, vh)-b(wh> wh, vh) + (p, vh)]

-[b{uh, uh, vh)-2b(wh, uh> vh) + b(wh> wh, vh)]

= [a{w, vh)-a(wh> vh) + b(w, w, vh)-b(wht wh, vh)]-b(uh-wh, uh-wh, vh)

^ I I ^ / ^ H 1 C - 4 H - 2 : ^ r H ^ 11 > H x ^ — ^ „ I j - H ^ r | | ^ — i ^ ^ | 1 ^ - H ^ 7 ! ] M / t — £75,,tl^> ( 2 - 1 4 )
where, in the last inequality the formula

x2-y2=(x-y)2-2y{x-y)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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has been used. We set now

^(/i) = (2/K){(^ + 2 Ê | | W ; | | ) | | u ; - ^ j | + B | | W - ^ | | 2 } , (2.15)

X = 2B/K (2.16)

and from (2.13), (2.14) we get

which implies (2,12) with

(2.17)

COROLLARY 1: For any given R with

Ri(h)SRSR2,

there exists a solution wh of (2 .1) such that:

(2.20)

Proof: We have from theorem 1 that for any R satisfying (2.19), the
continuous mapping <p maps the closed sphère with center wh and radius R into
itself.

Therefore <p has at least a fixed point, wh, in the closed sphère, which is a
solution of (2.1) and vérifies (2.20).

COROLLARY 2: There exists at least a solution wh of {2.1) which satisfies

\\w-wh\\4ch'-2\\w\\iirm, 2 £ r £ f c + l. (2.21)

Proof: Putting R = Ri(h) in the statement of corollary 1 we have

Ww-WtW^Ww-^W + Rdh). (2.22)

On the other hand, from (2.15) we have

j iW^VxIl iü-^H (2-23)

with vi constant independent of h; therefore from (2.17) we have, always for h
small enough,

lMfc)^v2 | |u;-5; fc | | (2.24)

with v2 constant independent of h. And finally (2.22), (2.24) and (2.0)
give us (2.21).
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3. A CONSTRUCTIVE PROCEDURE FOR SOLVING THE DISCRETISED PROBLEM

The resuit s of the previous paragraphe aithough optimal from the theoretical
point of view, are of little practical interest. In fact the solution wh of the
discretised problem (2.1) has been characterised as a fixed point of a map, q>,
which in order to be computed requires the explicit knowledge of wh, that is, in
some sensé, of the solution itself. It is therefore evident that, in a practical case, a
different procedure for the computation of wh has to be sought.

We will show in the following that, if the initial guess w° is sufficiently close to
wh (and so to w), the Newton itérâtes, defined by

l, vh) + {p, vh), VvheVh (3 .0)

converge quadratically to wh.

From lemma 1 and 2 we have that there exist two positive constants 8, K

independent ofh, such that for each zh such that || zh — wh || ^ 5 and for each uh G Vh

we have:

Sup a(uh, vh) + 2b{zh, uh, vh) ̂  K \\ uh\\. (3.1)

We shall also suppose from now on that

i^iW^Ô/2, (3.2)

which will obviously hold for h small enough.

THEOREM 2: Let p be defined as

p = min (KAB, 8/2) (3.3)

and let wh be a solution of(2,1) which satisfîes:

Ho>h-w»H g S/2; (3 .4)

then if the initial guess w® vérifies

\\u>H-Wk\\âp, (3-5)

the Newton itérâtes (3 .0) are well defined and converge quadratically to wh.

Proof: W e note first that (3 . 3 ) . . . (3 .5) imply

| | w » - w * | | £ 8 , ( 3 . 6 )

R.A.I.R.O. Analyse numérique/Numëhcal Analysis
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and therefore (3 .0) makes sensé for n = 0. We shall prove that if vo\ satisfies

K-«4||^p, (3.7)

then voX"1 also satisfies

K - i ü ï + 1 | | ^ P , (3.8)

and moreover

Therefore, always together with (3 .3) and (3.5), we will have by induction that,
for each n,

5, (3.10)

and so the itérâtes (3 .0) are well defined. Let us now prove that (3 .7) implies
(3 .8) and (3.9). From (3 .1) we have first that there exists a vhe Vh such that
U^U=1 and

l+1-wh>vh)^K\\wn
h
 + 1-wh\\, (3.11)

On the other hand from (3.0) we have

a(wn
h
+1-wh, Uh) + 2b(wn

h, wn
h
+i-wh, vh)

= b(wn
ht w

n
h, vh) + (p, vh)-a(wh, vh)~2b(wn

h, wh, vh)
n
h, ufh, vh)-2b{wl wh> vh) + b(wh, wh, vh)

ûB\\wk-ufh\\
2. (3.12)

which together with (3.11) gives us (3 .9). From (3 .9) and (3 .7) we obtain now

which implies (3 .8) since p ̂  K/B.

We also note that the définition of p in (3 .3) does not depend on h or on wh. In
particular we can conclude that the solution wh is unique in a sphère of center wh

and radius p, since, of course, the choice wl =wh cannot give rise to a séquence
which converges to two different limits at the same time.

All the previous results can be summarized in the following theorem.

THEOREM 3: If w is an isolated solution of(l .4) and if { Vh}h is afamily of
subspaces of Vsatisfying (2.0), then there exist an h^ > 0 and an p > 0 such that
for each h e ]0, hx ] the problem (2 .2) has a unique solution wh in the sphère of centre
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wh {projection ofw on Vh) and radius p. Such a solution satisfies:

| wh — M; || g r/ 2 ^ r

Moreover if the initial guess w® satisfies

then the Newton itérâtes (3 .0) are we// defined and converge quadratically to wh.

REMARK: The method discussed above has the "advantage" of converging
towards both kinds of physical solutions: stable and unstable. This is sometimes
of some interest; on other occasions, a method that converges only to the stable
solutions may be préférable for pratical purposes. In that case some modification
of the Newton procedure, as in [13], is suggested.
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