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R A I R O Analvse numénque/Numencal Analysis
(vol 12 n° 3, 1978, p 211 à 236)

PERTURBATION
OF MIXED VARIATIONAL PROBLEMS.

APPLICATION
TO MIXED FINITE ELEMENT METHODS (*)

by M. BERCOVIER (*)

Communiqué par P -A RAVIART

Abstract — Degrees of freedom which are Lagrange multipliers anse in the finite element
approximation of mixed vanational problems. When these degrees of freedom are "local", the
intioduction of a small perturbation {conespondinq hv duality to a penalty function) enables the
élimination of these unknouns at the element level We fitst examine this method in the continuons case
and show that the solution of the perturbed problem is close to that oj the original one. We extend this
result to the FEM Several examples are gwen and the construction of a number of the element stiffness
matrices is outhned

1. INTRODUCTION

Mixed fmite element methods have been intensively used in the numerical
solution of various physical problems; these mclude hnear constraint problems
such as the continuity équation in Stokes' équations.

The main feature of these methods is the introduction of a Lagrange multiplier
in order to avoid the difficult problem of constructing basis fonctions which
satisfy this constraint. This technique has two drawbacks: it introduces a large
number of degrees of freedom corresponding to the multiplier, and the resulting
stiffness matrix is not positive definite.

Moreover when the constraint is "local", i. e., imposed element by element,
the corresponding Lagrange multiplier is also local, i. e. its basis functions have a
support limited to one element. Thus it seems natural to try to eliminate the
corresponding degrees of freedom at the element level (static condensation).
However, this is not possible because of the non positivity of the element stiffness
matrix. In this publication we show that the introduction of a small regular
perturbation (or by duality an adequate penalty function) allows us to eliminate
the unwanted degrees of freedom at the element level. Since this perturbation is

(*) Reçu août 1977, révisé février 1978
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the Hebrew Umversity of Jérusalem, Jérusalem, Israël
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212 M. BERCOVIER

regular we do not encounter the usual difficulties of the penalty function
approach while avoiding the drawbacks of mixed finite element methods.

After recalling some notations we define our abstract variational problem and
its perturbed version. We establish an approximation resuit relating the two sets
of solutions and illustrate this by several examples. We then extend this theorem
to mixed finite element methods. We finish by outlining the construction of some
of the corresponding element stiffness matrices.

2. NOTATIONS AND PRELIMINAIRES

In all our examples we consider a bounded open subset Q<=/£", with
boundary F. We dénote by n the unit outward normal along F. On Q we
introducé the Sobolev spaces:

Hm(Q)={veL2(Q)\d*veL2{Q), | a | ^

where m is an integer and a an m-tuple integer with:

a=(«i «„).

and

On Hm(Q) we have the semi-norms:

and the norm:
,1/2

We define:
Hh(Ü)={v\veH1{Q), i?|r = 0}.

5

Given a vector valued function qeX= Y[ %i> Q = (fli» • • - * QÙ w e s e t :

We shall also need the following space:

H (div; Q H { q | q e L 2 (Q)"; div qeL2 (Q)},

R.A.I.R.CX Analyse numérique/Numerical Analysis



PERTURBATION OF MIXED VARIATIONAL PROBLEMS 213

with the norm:

Let V be a real Hilbert space, F' its dual space, ( . , ,)v dénotes the scalar
product on V, || . ||K the corresponding norm and < ., . > r K the duality
product:

<y,x>r.v=y(x). yeV', xeV.

When there is no risk of confusion, we will not indicate on which space the scalar
product, the norm or the duality product are defined.

Given a second Hilbert space W, let a (., . ) and b (., . ) be two continuous
bilinear forms on F x F and Vx W respectively, we dénote by Ae<£{V\ F')
[resp. B G S£ (F; W') and B* e S£ {W; F')] the linear operator associated with the
bilinear form a(., .) [resp. b (., . )], i. e.:

V\|f, cpeK,

)eVx W, <

< A \|/, <p > = a (\|/, <p),

Set:

we say that the bilinear form a (. , .) is V = elliptic if a > 0 .

We shall need the spaces:

7 = K e r B= { v|/ | \|/ G F, ft (\|/, n) = 0, V ji e P

* = { X\Xe W, b (\(/, X) = 0, V \|/ e

fir= ^ x orthogonal set of Z in PF.

REMARK 2.1: Since £> (., . ) is continuous, Z is a closed subset of PFand we can
make the foliowing indentifications:

W

Our final aim is to construct an approximate solution of:

PROBLEM P (ƒ, g): Given f e V' and geZ°, find a pair (\\f,X)eVxW which
satisfies:

V<pGF, a(vl/,

vol. 12, n° 3, 1978



2 1 4 M. BERCOVIER

Note that this is equivalent to:
find (ty,X)eVxW such that:

Introducing the closed affine manifold:

\|/ can be characterized as a solution of:

find \|/e Y (g) such that:

VcpeF, a(\|f,q>) = <ƒ,?> (2.3)

Hence X in (2.1) or (2.2) is the Lagrange multiplier corresponding to the linear
constraint \|/e Y (g).

We can now state the basic abstract resuit:

THEOREM 2.1: Under the following hypotheses:

(H 1) There exists a constant k^.0 such that:

sup

(H 2) The bilinear form a ( . , . ) is Y-elliptic;
problem P (ƒ g) has a unique solution (\|/, X)e V x W.

This resuit is due to Brezzi [8] who actually proved that under (H 2),
hypothesis (H 1) is a necessary and sufficient condition for problem P ( ƒ, g) to be
well posed. The importance of (H 1) was also pointed out by Babuska [2].

REMARK 2.2: Consider the Lagrangian functional 5£\ Kx W -^ R:

( q>)-< ƒ, cpn) a(<

If the bilinear form a (., . ) is symmetrie positive and y-elliptic and if b (. , . )
satisfies (H 1) then the Lagrangian functional $£ (., .) has a unique saddle
point (\|/, X)eVxW:

V(\lr, \i)eVxW, J (̂<p, n)^i?(\k, X)^J?(<p, 31);

moreover (\|/, X) is the solution of problem P(f, g). By a standard technique of
convex analysis [14], it is natural to introducé the Lagrangian functional:

so that we have also a quadratic form in (x.

R.A.I.R.O. Analyse numérique/Numerical Analysis



PERTURBATION OF MIXED VARIATION AL PROBLEMS 215

A classic duality argument shows that this is equivalent to the introduction of
a penalty function in the primai problem:

which becomes:

min-a(q), <p)-</, 9 > + — \\B9-g \\2
W.

It is these perturbation techniques which we want to develop for problem P ( ƒ g)
and its numerical approximation.

3. REGULARIZATION OF A MÏXED VARIATIONAL PROBLEM

We now replace problem P (f, g) by a slightly more regular one:

PROBLEM Pe (ƒ, g): Givenfe V and geZ°, find a pair (\[/e, Xe)eVxW such
that:

<pe , a „ <p <p, e - ^ f <p , 1 ^ ^

REMARK 3.1 : Note that here we are looking for a solution on Vx PFand not
on V x W. We shall see that in some practical cases this brings an important
simplification to the actual computation of approximate solutions.

REMARK 3.2: Since this is the case in all the applications we are going to study,
we make the foliowing convenient assumption: W=W''.

We then can write:
1
8

so that (3.1) is equivalent to:

V cp 6 F, a (\|/e, (p) +

Formally we can state problem Pe (f, g) in two equivalent forms:
1° find (\|/£, À,e) such that:

(3.2)

2° find \|/E such that:

1
A \|/e H— B* (B \|/e — g) =fy (3.3)

E

vol. 12, n° 3, 1978



216 M. BERCOVIER

(3.2) and (3.3) illustrate the relation between penalization and regularization
approaches, as mentioned in remark 2.2. •

THEOREM 3.1: Assume that hypotheses (H 1) and (H 2) holà and thaï there
exists a constant a > 0 such that:

(H 3) VcpEK, (|fl(9,q>)| + | |B<p| |^ 2^a | |<p | | r .

Then problem Pe (f g) has a unique solution (\|/e, Xt)eVx W; moreover l £ eW and
if{y\r, X) is the unique solution of problem P ( ƒ, g), there exists an e0 >0, such that
for e<e0 ;

| | V | / - V | / E | | K + | | ^ - ^ | U ^ C S , (3.4)

where C is a constant depending on a, k,f and g only.

(In ail that foliows C may designate different constants.) The proof of this
theorem rests on:

LEMMA 3.1: Assume that hypotheses (H 1), (H 2) and (H 3) hold then there
exists an e o >0 such that for e<£0 , the unique solution of problem P£ (0, g), say
(^e, S£), satisfies:

\\g\\w, (3.5)

where C is a constant independent of z.

Proof of theorem 3.1; Using remark 3.2, we transform problem Ps (f g) into:

flnd \|/ee V such that:

VcpeF, fl(i,<p) + -(B9.fl^=</q)> + V 9 . ^ - (3-6)
o o

By hypothesis (H 3) and the continuity assumptions on the bilinear forms, there
exists a unique \|/8 satisfying (3,6). The second équation in (3.1) implies
that Xe must be unique and

Since geZ°, for ail |aeZ = Ker B* we have

and

Hence:

R.A.I.R-O. Analyse numérique/Numerical Analysis



PERTURBATION OF MIXED VARIATIONAL PROBLEMS 2 1 7

so that according to remark 2.1 Xe e W. It remains to establish (3.4). Subtraction
of(3.1)from(2.1)leadsto:

.«p.X-XJ-O. j
-\|».,H)=-s(X,|i). ƒ

V (pe V, #(V|/ \|/£, \yj i Kj V Y , ,v, #*g/— v , ^ ^ 7 ^

(3 8)

Let (a, P) be the unique solution of problem Pt (0, — eX):

VcpeF,

Define:

adding (3.7) and (3.8) it is clear that:

X = 0 and r ^ O . (3.10)

By lemma 3.1, for e<s 0 :

where || X\\w dépends on ƒ and g only. Inequality (3.4) now results from (3.9),
(3.10) and (3.11). Q

Proof of lemma 3.1: Lemma 3.1 is not used in the existence part of theorem 3.1
so that by a similar argument it is clear that there is a unique solution (®e, 88) to
problem Pe (0, g).

Since:
VcpeF, a (*„q>)=- i (<p,6J ,

then:

Applying (H 1) to this inequality gives:

II S e M C || *6||K. (3.12)

By summing the two équations of problem PB (0, g):

fl(fl>.f O€) + fc(O£, S J - i ( * t , 5e) + e | |6 e | | 2
K =-<^ 5e>

and by (3.12):

vol. 12, n° 3, 1978



218 M. BERCOVIER

Moreover:

So that:

Taking E0 such that:

and applying hypotheses (H 3) we get for e<£0:

where C is independent of 8 and fl>£ for £<s0 (3-5) is a conséquence of this
inequality and of (3.12). •

REMÂRK 3.3: Hypothesis (H 3) plays a central role in obtaining (3.4), if we limit
ourselves to (H 1) and (H 2) problem PE ( ƒ g) is still well posed but we have only:

We do not give hère a démonstration of (3.13) since in all the examples we
study (H 3) is satisfied. •

4. EXAMPLES

We start by the example which actually motivated this study:

Example 1; Stokes stationary équations. Let Q c RN be a bounded open set:
Let:

W=h\peL2(Q), f

and the bilinear forms:

V\|/, (peF, ^M*, <p)= Y I —- —l-dQ, (4.1)

(4.2)

R A 1 R O Analyse numénque/Numencal Analysis
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PERTURBATION OF MIXED VARIATIONAL PROBLEMS 219

Let f e [L2 (Q) N, if Q has a smooth enough boundary T, then problem P (f, 0)
is equivalent to:

find U = (M]L, . . ., uN) and X such that:

— vAu + grad p = f in Q,

div u = 0 in Q,

u = 0 on r .

The corresponding problem PE (f, 0) is equivalent to:

find \|>e and X? such that:

— vAu£ + grad p£ = f in Q,

— e pe + div ue = 0 in £1,

u£ = 0 on r .

Eliminating p£t we can restate (4.4) as:

— vAue + - grad div u£ = f in Q,
o

(4.3)

(4.4)

u£=0 on F.
(4.5)

Formulation (4.4) is the so called method of artificial compressibility introduced
for Navier Stokes équations by Chorin [11] and Teman [18].

We have the:

PROPOSITION 4.1: Problem P (f, 0) [resp. Pz (f, 0)]. has a unique solution
(u, p)e Vx W [resp. (u£, pe)eVx W] and

l (4.6)

Proof: In order to use theorem 3.1 the only point we must check here is
hypotheses (H 1).

Let XeW, then there exists \|/eK, such that:

div \|/ = X

and

where C is independent of v|/. Thus:

sup

vol. 12, n° 3, 1978



220 M. BERCOVIER

The proposition is now a simple conséquence of theorem 3.1. We have in fact
(4.6) for all e >0, because a (<p, (p) is F-elliptic, which is stronger than hypothesis
(H 2)-Proving (4.6) in this case amounts to some simplifications in the proof of
theorem 2.2 and we shall omit this proof. •

Proposition 4.1 is of course a classic resuit [19]. But we can apply the same
technique to the Stokes' problem with mixed boundary conditions, a situation
that arises in the analysis of incompressible linear isotropic materials.

Example 2 Henmamfs tanational prmciple For a given elastic matenal of
modulus of Young E and of modulus of Poisson a the Lame' constants are:

2( l+a) f

A body fills at rest an open set Q <= R3. In order to avoid rigid body motions, we
suppose that this body is fixed to a rigid support on part of its boundary Fo

[meas (Fo)^0]. On r x = F — Fo, we apply a given traction T.

For the sake of simplicity we omit body forces and initial strains, which can be
introduced without effecting the following theory.

Let:

On Fx V we define:

where:
\(dux duj

and the norm:

f
i J Ü

Let:

On F x W we introducé:

b(u, /?)= ! div u . p dÇl,

R A I R O Analyse numénque/Numencal Analysis
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PERTURBATION OF MIXED VARIATIONAL PROBLEMS 221

We define:

PROBLEMPaj(7(T\ 0):

find (u, p)e Vx W such that:

VveF, 2\ia(u, v) + 2o\ib(x, p)= \ T.\dT,

VqeW, - ( l -2a) (p, q) + b(u. q) = 0.
(4.7)

This is Herrmann's variational formulation for elasticity problems [16]. Now for
the incompressible case (a = 0.5), we have:

PROBLEM P (T, 0):

find (u, p)e Vx Wsuch that:

VveF, 2\i0a(u,v) + \xob(y,p)= \ T.vdT,

VqeW, b(u, q) = 0,

where \LO = E/3.

REMARK 4.1: Setting p = div u / ( l -2a) in (4.7) we get the penalty type
formulation:

divu.divvdQ= T.
Jn Jr,

2\ia(u, v) + X divu.divvdQ = (4.9)

which is the standard variational formulation of elasticity, where X is now the
penalty parameter.

Since we have 0 ^ a ^ 0 . 5 , we can define:

Then:

and (4.7) becomes:

2\ioa(xi, , v)

.vdF

- e (p , q) + b(u, q) = 0.

(4.10)

vol. 12, n° 3, 1978
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Now consider:

PROBLEM P£ (T, 0):

find (u, p) such that:

VveF, 2\xoa

VqeW,

We have the:

M. BERCOVIER

(u, v) + uob(v, p)= T .v^F ,
Jr,

— e(p, q) + b(u, q) = 0.
(4.11)

THEOREM 4.1: If Te[H~m(TJ\3, and if meas ( r \ )^0 and meas
problems Pca(T, 0), Pe(T\ 0) anrf P(T, 0) /iai;e eac/i one a unique solution in
VxW respectively (uo, po), (u£J p£) and (u, p). Moreover:

, (4.12)

K | | | | | | . (4.13)

Proof of theorem 4.1; Since most of the proof is rather technical, we shall only
outline it. First we check hypotheses (H 1). We have here:

Ker B* = {0}.

For any peL2(Q), consider the (unique) solution of the mixed problem:

A0 =p ,

9 - 0 on F 1 ;

— = 0 on r 0 .
on

Set \ = (ôQ/ôxi, dQ/dx2, 50/3x3), div v = p, and

So that:
\bv,

where C is a constant depending on O and F o only. Next by Korn's
inequality [13]: Vue V, a(u, u)^oc| |u| |£.

Both hypotheses (H 2) and (H 3) hold, implying existence and uniqueness of a
solution for ail three problems. Clearly

R.A.I.R.O. Analyse numérique/Numerical Analysis
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where C is a constant independent of er. Consider {%, Ç)e Fx W, solution of:

pG)

,q) = 0. (4.14)

We have:

where C does not depend on £.
Taking an appropriate linear combination of (4.10), (4.11) and (4.14) we get:

hence (4.12). Now applying theorem 2.2 to problem P8(T, 0), we have:

| |»-a. | | + | |p-p,| | iSCe;

and (4.13) resul ts from this inequality and from (4.12). •

REMARK 4.2: The hypothesis, meas (FJ^O is not necessary in theorem 2.1.
We used it because it becomes essential when we consider the case:

u = ud on Fo.

which is then a simple corollary to the theorem. It can be seen that for the non
homogeneous case, and meas (Fi) = 0 problem P€(T, 0) is still well posed while
problem P{T, 0) will have no solution, unless:

l
Example 3; Mixed formulation ofDirichlefs problem. Let O <= RN be an open

bounded set of class C2. Let:

F = H(div;Q); W=L2(Q).

For any tyeV and <p eHl (O) the following Green's formula is true [17]:

f f
I|I grad cp + div\|i. cp = q>. ty . n)^r. (4,15)

a Ja J r
We consider Dirichlet's problem:

~ A H = { " ? ' 1 (4.16)
w = 0 on r , J l ;

vol. 12, n° 3, 1978
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where ƒ eL2(Q). We introducé the bilinear forms:

V\|/, <peK, a ( f q>)

Vv|/eF, \

Note that Ker £* = { 0 }, so that W=W. The norm on F is actually:

(a(\|/, \|/) + ||B\|#||2)1/2 and Ker£ = {\|/|v(/e F, div^ = 0},

so that hypotheses (H 2) and (H 3) are satisfied. Let us prove that (H 1) holds for
b(., .). Given jixeL2 (O), we define v as the solution of:

— Av = \i in Q,
ü = O on F.

Now set:

and

'-L
so that (H 1) is satisfied.

We can now state the following result.

THEOREM 4.2: GivenfeL2(Q), problem P(0, ƒ) has a unique solution (\|/, X) in
VxW. Moreover X is the solution of (4.16) and we have:

problem P£(0,f) has a unique solution (\|/E, Xe) in VxW and

| | * -* . | |K+ | |^ -^ |

moreover Xz is the solution of:

=J m " ' (4-17)
^ = 0 on T, j v '

and
\|/e = grad Xt.

Proof: The first part of the theorem can be found in Raviart-Thomas [17]. The
second part is a conséquence of theorem 2.2. The only point that remains to be
proved is (4.17). Let Xt be the unique solution of (4.17). Since ƒ e l 2 (Q):

\i/£ = grad Xe;

R.A.l.R.O. Analyse numérique/Numerical Analysis
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in V and
— AXe = div \|/e =ƒ— e XE.

Applying GreerTs formula (4.15) to this last equality shows that (\|/e, XB) is a
solution of problem P£(0, ƒ), hence (grad X£, Xe) is the unique solution of the
perturbed problem.

Note that problem P£(0, ƒ) is equivalent to:

VcpeF, a(\|/£, ©)+ — (divi|/e— ƒ ) div (p <2Q = 0. (4.18)

We use (4.18) in the finite element method. From the duality relationship
between penalization and regularization we can build a large number of
examples. We give here only one such example for which the corresponding
penalty formulation has been studied, in relation with the finite element method
by Aubin [1] and Babuska [3].

Example 4: Approximation of a Dirichlefs problem by a penalization on the
boundary. Here (4.16) is replaced by

— Aue=f in Q,

1 du (4-19>
-u£-\ =0 on F.
8 on

Define:
V =Hl{Q),

W=L2 (F).

We still dénote by v the trace y0 v of v e Kon the boundary F, of Q, we have, for F
smooth enough, veH1!2{T). We define the bilinear forms:

V \|/, cp e V, a(\|/, cp)= I grad v|/ grad <p dQ.,
Jn

V\|/eK, VXeW, b(y\ftX) =
r

Note that if we take W'= W, By\f is nothing but yo\|/. Now:
y=Hè(«),

so that a{., .) is F-elliptic.

By the Poincare's inequality:

is a norm equivalent to the usual one on H1 (Q).

vol. 12, n° 3, 1978
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Next we show that (H 1) holds on b(., .). Given ^ieL2(r) , let w be the
solution of:

and

Taking 9 = M;, we obtain:

)r

and (H 1) is satisfied. Applying theorem 2.2, we get the foliowing result.

PROPOSITION 4.3: Problem Pe(f, 0) has a unique solution

(uz,X£)eHl(Q)xL2(ry

If u is the solution of (4.16) then:

and

-AuB=f in Q,

skt — ue and ~ ~ J ^ = ^ e on ̂ '

Next we consider the approximation of problems P and Pe.

5. APPROXIMATION

The abstract setting will be as follows:

We consider Vh and Wh, finite dimensional subspaces of V and W. We
introducé a new bilinear form on Vx Wh, bh(,, .) related to b(., .) by:

VcpeF, V\heWh. bh((p,\h) = b(<p,Xh) (5.1)

The discrete analogues of hypotheses (H 1) and (H 2) are:

VM^, sup i^l^Ufc||^||. (5.2)
<P„en-{0} | |<P»||

with k > 0 independent of Xh and a(., .) is î^-elliptic, where:

W h , b h ( < p h , i i h ) = O } . (5.3)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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We introducé the space:

We shall need the following hypothesis (satisfied in all the examples, we have in
mind):

(H4)

Then as a conséquence:

This hypothesis allows us to define the approximate problem:

PROBLEM Ph(f, g): Given (f g)e V' xZ° , find a pair (tyh, \h)e Vh x Wh such
that:

Kft, a(\|/h,

and its corresponding perturbed version:

PROBLEM PK e (f, g): Given {f g) e V' x Z°,find a pair (x^ e , Xh> e)eVhx Wh such
that:

(5.5)

or in its penalty form:

1

1

Existence and uniqueness of a solution to problem Ph(f, g) results from
theorem 2.1, giving us the following approximation theorem:

THEOREM 5 A: If hypotheses (H 1),(H 3) are satisfied for problem P {f, g) t if (S 2)
holdsfor problem Ph(f, g) and ifin addition there exist a > 0 such that:

Then problem PKe(f g) [resp. Ph(f g)] has a unique solution (v|/h,£
X*, £)eVhxWh, [resp. (v|/,, Xh)eVhx Wh}.

vol. 12, n° 3, 1978
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In addition if (v|/f X) is the solution ofproblem P(f g) we have:

-XA | |^C inf ||v|/-q>A|| + inf ||*-A*||. (5.7)

(5.8)

/ ' (5.7) is a particular case of a gênerai resuit of Brezzi ([8], th. 3.1).
Applying theorem 3.1 to problems Ph(ft g) and Phe (f gr) we obtain:

Since the constant in hypotheses (H 1),(H 2) and (H 3) are independent ofh, Cis
also independent of h. (5.8) is then a conséquence of the trianguler inequality
applied to \|/-\|/h + \ | / h - ^ e and ̂ ^ n + ̂ r V e - •

REMARK 5.1: By (5.8) we can replace problem Ph(f, g) by its perturbed version
Ph,z{f> G) without loosing any accuracy, provided 8 is small enough. Using the
penalty formula (5.6) instead of (5.5) we do not need to introducé the Lagrange
multiplier at all. •

REMARK 5.2: The critical point in theorems 5.1 and 5.2 is hypothesis (H 1). On
one hand it is a necessary condition for problem Ph ( ƒ, g) to be well posed, while
on the other hand without it we cannot apply theorem 3.2. This hypothesis is in
gênerai easily verified on VxW. There are cases (such as examples 1 and 2 for
instance) where it does not hold on VhxWh, hence the necessity to introducé an
approxirnate bilinear form hh (., . ). Even then is not easy in gênerai to prove the
existence of a k independent of h, We give now a sufficient condition for this
hypothesis to hold, [cf. Fortin [15 bis]].

LEMMA 5.1: Assume that hypothesis (H 1) holds on VxW. Assume that there
exist an operator nh:D -> Vh where Dis a dense subset of V, and a constant C >0,
such that:

Then hypothesis (H 1) holds.

REMARK 5.3:If(H 1) does not hold for ft(.f .)or(5.2)forèj., .)onVhxWh,
then we have the typical behavior of a penalty method where for example:

% inf | |* - iM|] . (5.9)
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Whereas in theorem 5.2 £ can be chosen independently of h, there is an optimal s
for every h. For a démonstration of (5.2) and corresponding numerical methods
we refer to [5].

In order to give an intuitive illustration of the "miracle" of (5.8) as compared to
(5.9) we give a simple formai example.

6. A FORMAL ILLUSTRATION

In ail that follows Q is a bounded polygonal set in R2. On Q we define a regular
admissible triangulation Jf of "size /i". We assume that all the underlying
concepts of the finite element are familiar to the reader and we refer to [10] for
these. We dénote by PS(K) the space of all polynomials of degree ^ s o n the
triangle KeJf.

Consider example 4 (§ 4). Let F be the boundary of Q. F is a polygonal line
through the boundary node set Ffc{Ffc = i | i is a node of Jf\ i e F } . Now the
corresponding problem P h j E ( / 0) is:

. I f , I f , f
min— grad (pk dQ + — (p^dT —

(6.1)

Take Q —(]0, 1[) and a uniform triangulation of step size h (fig. 1 a), and the
Standard (linear) Px éléments. Consider the node C e Th (fig. 1 b), (6.1) gives the
following finite différence "scheme":

In most standard finite element softwares in engineering one finds:

(6.2)

Formulation (6.1) leads to équations with coefficients depending on h2/e while in
(6.2) they depend on e but not on h. The latter formulation is thus stable as 8 —> 0.

( l a )

c P

( i b )

Figure 1.
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This simple example illustrâtes in some sensé the behavior of problem
Ph,s(f> 9) under hypothesis (H 1). It shows that optimal conditioning of the
system is obtained by the proper choice of a penalty formulation on the
approximate problem rather than on the original one. [This is equivalent to the
construction of a bilinear form bh(., . )].

7. APPLICATION TO THE FINITE ELEMENT METHOD

Examples (1) and (2) are closely related since in both cases we are dealing with
the continuity équation div\|/= 0. As a matter of fact we can construct the same
operator divh (. ) for both applications. The first successful construction of such
an operator is due to Fortin [15]. Extensions of this method to a large family of
conforming and non-conforming éléments can be found in the paper of Crouzeix
and Raviart [12].

These authors have solved the delicate problem of defming consistent
approximations satisfying in some approximate sense hypothesis (H 1). But the
actual construction of the operator divft(.) can be by itself quite difficult. In the
first part of this paragraph we show how the judicious use of numerical
intégration rules leads to simple procedures.

Finite éléments for Stokes équations and incompressible materials

1) Par abolie element wit h constant pressure

We consider the six node triangle, (fig. 2) whose shape fonctions are:

where Xt is the linear shape function associated to the vertex i. The pressure is
assumed to be constant on each element.
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We define the following spaces:

We introducé the bilinear form on F x Wh:

, |

On each K eJf', by définition:

.t")|jc=f divhty.\idK=\
J K J K

for all constants |x, hence:

In the finite element approximation ^h\KeP2(K) so that d i v ^ e P x ^ ) and
(7.1) can be computed exactly by a 1 point intégration formula whose node is at
the center c, of the triangle:

d iv^ j^d ivvMc) . (7.2)

We consider directly problem P/,,e(X0) (example 1, § 4), in its penalty
formulation (5.6). We have to compute the stiffness matrix on K
corresponding to:

by (7.2) we see that this amounts to computing:

div^)2dK, (7.3)

by means of the center point rule.

Hence the new divergence operator is defined by a reduced intégration since in
order to compute (7.3) accurately we would have had to use a three point rule at
least. If we have at hand a finite element software including the computation by
numerical intégration of

L
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Then we need just a minor modification in order to use ît for problem Ph e(f 0)
(examples 1 and 2)

By a resuit of Crouzeix-Raviart [12] we know that there exists an operator
nh e ££ ( V n H2 (Q), Vh) such that

Vq>eFn/f2(Q), bh{q>-nh<t>, \xh) = Q => u* = 0,
and

Accordmg to lemma 5 1 hypothesis (H 1) holds umformly in h Smce[c/ [12]] for
2(Q) and ^ieH1(Q)n W

inf | |*-<p*||^

we can state the following results
THEOREM 7 1 Letx¥h e 6e t/ie unique solution of the pfoblem

1 V f , A wr,m m — X (9rat*<Pt/i e)««
VkeVk2t=iJa

IQ- f i (7

(\|/> À,)e F x PFbe /Tie unique solution of problem P(f 0) (example 1, § 4)
suppose that \|/e[H3(Q)]2 and A.e/f^Q) rhen

1

The same resuit can be stated for example 2, § 4

2) 7 node element with linear pressure

Given a triangle Kejf, let c be lts center Consider the polynomial space
Ps (K) spanned by the following shape functions (cf fi g 3)

Note that P2{K) a PS(K) c P3(JK)
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We define:

and the spaces Vh and Wh as before.

°(n), <ph\KePs(K)},

Figure 3.

On Vh x Wh we introducé the bilinear form:

V \ih e Wh, V <p G V, bh ((p,

Then by [12], there exists an operator nheJ£(VnH3(Q); Vh) such that:

and

Moreover:

and

V\ | / e7nH 3 (Q) , inf || + -<pfc||^

), inf | |A.- | i h | |^

So that we can state the following result:

THEOREM 7.2: For the 1 node triangular element, under the assumptions of
theoremlX and provided that \|/ e [H2 (Q)]2 and XeH2(Q) we have the error
estimate:

1
(7.4)
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We are now going to show how to construct the operator div^(.). It is not
possible to use directly a reduced intégration technique hère, but we can use
numerical intégration in order to obtain a simple procedure. We recall that there
exists a 3-point rule based on the mid side nodes exact for P2 {K) and a 7 point
rule based on the seven nodes of the element exact for P3 (K). Now by définition:

r .\xdK, (7.5)

for ail \ie P1 (K). Let r|u (1 ̂ i<7) be the three linear shape functions associated
with the 3 mid side nodes. It is clear that they form a basis of P1 (K). Since

we can write that:

and by (7.5):
m e a S ( J C ) f (7.7)

the right hand side of (7.6) can be computed exactly by the 7 point rule, set
. ., ty(c))T, we have:

= S5q. (7.8)

where StJ is a (14 x 1) matrix. Now from (7.6) and the three point rule:

so that by (7.8):

K

and the stiffness matrix we wanted to obtam is:

^ V S S r

8 m e a s ( K ) ^ u v '

so that the only Computing effort is in establishing (7.8).

REMARK 7.1: Note that the perturbed approximate problem is solved on Wh

and not on Wh, Hence in Stokes' équations the approximate pressure is given up
to a constant, and without any additional constraint the actual linear Systems
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deduced from example 1, paragraph 4 will be singular. This difficulty does not
appear in the penalty approach. D

REMARK 7.2: For quadrilatéral éléments Gauss Legendre product rules enable
us to use the reduced intégration technique in order to define divh(.) directly
from div (.) as was the case for the first element {*).

This technique has been used with great success for the solution of Navier-
Stokes équations [6]. D

Of course we can extend this penalty approach to ail éléments described in
Crouzier-Raviart [12]. We refer to [4] for more examples.

We can also extend this method to mixed FEM for Dirichlet's problem
(example 3, § 3) we refer to [5 bis] for the corresponding results.

8. CONCLUSION

We have shown how the introduction of a perturbation can simplify the
handling of the linear constraint in mixed variational formulations. This method
is efficient in ail cases where this constraint reduces to a local one in the
corresponding FEM formulation; that is, the approximate operator Bft (, ) is
defined element by element.

Our results are still valid when this operator is global such as in the hybrid
methods studied by Thomas [20] for second order partial differential équations
or such as the mixed methods for 4th order équations given in [9]. But in this case
little is gained in using the penalty approach above since the introduction
of Bh (. ) is not simple. Still in these cases the perturbation theorems do show that
methods of solution of "augmented Lagrangian" type should be very powerful
indeed.

Our method has been successfully used for numerical analysis of
incompressible or nearly incompressible materials [7], as well as for the
computation of viscous incompressible flows [6].
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