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AN ANALYSIS OF THE CONVERGENCE
OF MIXED FINITE ELEMENT METHODS (*) (")

par Michel FORTIN (?)
Communiqué par P.-A. RAVIART

Abstract. — This paper deals with convergence proofs in mixed finite element methods.
After recalling abstract conditions of Brezzi, one shows that these conditions are, in some cases,
equivalent to the possibility of building an uniformly continuous operator TI, from V into V.
Moreover some properties of discrete operators involved in the approximation are characterized.
Two examples show that building the operator I1, can be done through an interpolation operator.
A third example presents a case which is still out of reach of present techniques.

1. INTRODUCTION

The aim of this paper, is to study, in a rather general setting, the convergence
properties of approximations, by finite elements, of saddle-point problems
related to the minimization of convex functionals under a linear constraint.
Applications are, of course, mixed finite elements methods and hybrid methods,
but the results given here are mainly adapted to the case of mixed methods.

The problem we consider has already been treated in Brezzi [1] and Brezzi-
Raviart [2], among others. The case we consider is slightly more general in a
sense to be precised later. However the main result will be to give sufficient
(and in some cases necessary) conditions to verify the abstract «stability’’
condition of [1]. These new conditions can, in many cases, be quite easily
verified, thus simplifying, in a considerable way, convergence proofs. Although
it would be too long to present a full account of the previous works on the
subject, the ready may refer, apart from the above cited papers, to Oden [6-7],
and Johnson [5] for a more complete view of the problem.

The exposition will proceed as follows. In No. 2, we study the abstract
continuous problem and give an existence and uniqueness theorem. In No. 3
we recall the general abstract condition of [1] for the convergence of approxi-
mations. In No. 4, we present a few lemmas characterizing the Kernels and
Images of some operators appearing in the problem and we use these results
to give practical convergence conditions. Finally in No. 5, we give some
examples of application of these results.

(*) Manuscrit regu le 22 avril 1977.

(*) This work was supported in part by NRCC Grant A 8195 and in part by a FCAC
grant from the Department of Education of the Province of Québec.

(?) Faculté des Sciences et de Génie, Université Laval, Québec (Canada).
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342 M. FORTIN

2. THE GENERAL PROBLEM

Let ¥ and W be two real Hilbert spaces whose norms and scalar products
are respectively denoted |.|,, (., )y, |.ly and (., )y

We give on V'x V' a continuous, symmetrical, bilinear form a (4, v) and on
Vx W a continuous bilinear form b (v, ¢). Continuity of b implies that there
exist a constant, denoted || b ||, such that,

b, @ =||b][|oly|elw, VveV, VoeW. 2.1

In the same way, the norm of a as a bilinear form on ¥ x V will be denoted
fally. Let fe V' and ge W' be given. The brackets <., .» will denote duality
between both ¥V’ and ¥V and W' and W, no ambiguity being possible. We
consider the functional, on V' x W,

LG, <p>=§a(v, W) =<, 03+, 0)—<g 0, 2.2)

and we want to find a pair (v, A) € V' x W, saddle-point of L (v, ¢) and V'x W,
that is,
L(u, ) < L(u, A) < L(v, M), YveV, Voe W. (2.3)

This is, of course, equivalent to solving, the linearly constrained, quadratic
problem,

LA W=fudS a@o—Cfod  VoeZ(eh  ueZ(gh (2.4)
Z@={v|veV, b 9)=<g ¢ Voe W} (2.5)

The saddle-point (u, A) is then also solution of the system,
a(u, v)+b(v, \) ={f, v, VoveV, (2.6)
b(u, 9) =<8, 0> VoeW, 2.7
ueV, Ae W. (2.8)

We remind that under some hypotheses, this saddle-point problem has a
solution, eventually a unique solution. We first recall a few classical notations.
First let us remind that the continuous bilinear form b (v, @) defines a conti-
nuous linear operator B from ¥V into W', precisely,

(Bv,9>=b(v,¢9), VoeW (2.9)
- In the same way, the transpose B* of B, from W into V' is defined by
{v,B*@>=b(v,¢9), VveV. (2.10)

R.A.I.LR.O. Analyse numérique/Numerical Analysis



CONVERGENCE OF MIXED FINITE ELEMENT METHODS 343

Condition {2.7) is thus clearly equivalent to
Bu=g 2.1DH
and we also have, according to (2.5):
Z(g)={v|veV,Bv=g}. (2.12)

A necessary condition for the existence of a solution u to (2.11) is, of course,
g € Im B. We shall assume that this is fulfilled. Let then v, be any element of
Z (g). Our problem may then be written, writing u = u, +v, in the equivalent
form,

a(ug, vo) = {fy voy—a(v,, vo),  VvoeKerB; (2.13)
uy,eKer B. (2.14)

According to the Lax-Milgram theorem, we have for the existence of %, (and
then of u = u, +v,) the classical coerciveness condition:

a(ve, vo) 2 af|vg |7,  VvoeKerB. “ @.15
This condition implies the existence of a unique solution u to (2.4)-(2.5) i. e.

to the primal problem.

To prove the existence of a saddle-point, we must show the existence of a
Lagrange multiplier for the linear constraint (2.11).

Before doing so, we recall, some facts about the properties of B and B*.

LeMMA 2.1: The following statements are equivalent:

The range Im B is closed in W', (2.16)
sungk inf  |o+¢o|w (2.17)

veV vy gocKer B*
IB*(Plv,ék‘(lemerB*_, : (2.18)
|B“‘|W' %kl"h’/xerm (2.19)
B admits a continuous lifting from W’ into V. (2.20)

Proof: This a restatement of the closed range theorem (¢f. e. g. Yosida [9]) ]
We then have the following result:

PRrROPOSITION 2.1: Let Im B be closed in W' and let (2.15) be satisfied. Then the
saddle-point problem (2.3) has a unique solution (u, \) in V x W/Ker B*. The
Lagrange multiplier \ is thus unique up to the addition of any element of Ker B*.

Proof: See Brezzi [1]. m
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344 M. FORTIN

3. ABSTRACT CONVERGENCE RESULTS

We approximate here the saddle-point problem (2.3) by internal approxi-
mation which in practice will be realized by finite elements. We consider two
finite dimensional spaces,

V,cV, W, W (3.1)

with the topology induced by ¥ and W respectively.
We now consider a discrete saddle-point problem,

L, 04) £ L(uy, Ay) £ L(vy, M), Vo,e Vs Vo,eW,, (3.2

which is characterized by the optimality conditions,

a(uy, v,)+b (v, &) = {f, vy, VoeV,, (3.3)
b(uha (Ph)=<ga (ph>’ V(phe VVh’ (3'4)
u,e v, A, e W,. 3.5)

The continuous bilinear form 4 (., .) still defines here a continuous operator,
B, : V,~— W), and its transpose B} : W, — V. In general one cannot identify
B, as the restriction of B to ¥V, but one has

B, v, = Py: (Buy), (3.6)

where Py, is the projection operator from W' to W,. Let g, = Py (g) (that is

CEhrOn > =<8 @u)r Yo, Wy
Then (3.4) can be written as

B,u, =g, 3.7
and a necessary condition for existence is of course:
g,€lmB,. (3.8)

Under a proper coerciveness condition, for instance:

2
a(vy, v,) 2 °‘| Uy |V,./Ker Bn> 3.9

Proposition 2.1, implies the existence of a discrete saddle-point (i, A,), for
in this finite dimensional case, Im B, is always closed. We would then want to
know if (u,, A,) is an approximation to (¥, A). In order to solve this problem,
we first present abstracts results, extending to the case where B is not surjective,
the results of Brezzi [1].

It is clear Lemma 2.1 is still valid, and even trivial in finite dimensional
spaces. However, the various constants C, and k generally depend on A.
Convergence proofs will rely heavily on the following definition.

R.A.LLR.O. Analyse numérique/Numerical Analysis



CONVERGENCE OF MIXED FINITE ELEMENT METHODS 345

DzrINITION 3.1: We say that B, satisfies the uniformly continuous lifting
property (UCLP) if the following equivalent conditions hold with k, and ¢
independant of h

|b(vh> (ph)l >k

A sk LR LG G3-10)

| B @nlv;, Z | 0 lwiyyer g » (3.11)

| Buttulw 2 k| unlvy e, - (3.12)

For any g,eImB,, there exists wu,e V, such that (.13)

Byu, = g, Iuhlv..<clgh|w;,- u
We now define
Zy(g) = {vhe Vi, | b(vy, 9) = <& ¢4, Vo,€ Wh}’ (3.14)
or equivalently

o Z@=faeW | BumE) (39

We now recall the following classical results of Brezzi [1] and Brezzi-
Raviart [2].

ProposITION 3.1: Let (3.8) hold and let a (., .) be V-coercive, that is
a(v, v) 2 a|v|p. (3.16)
Then there exists a constant C independant of h such that

lu—u,|y SC( inf |u—v,|p+ inf |A—@,|w) 3.17)

vn € Zn (9) Phe Wy

Moreover, if B, satisfies the UCLP condition and if we denote N and \, the
minimal norm Lagrange multipliers (that is with zero component in Ker B* and
Ker B} respectively), then there exists a constant C independant of h such that:

lu—u,|y+| A= |w £ C{ inf |u—v,]p+ inf |A—@,|w}. = (3.18)

wheVa @n €lm By

Another special case is of special interest: Let us suppose that we have
V ¢ H, where H is a Hilbert space, and that a is H-coercive, that is

a(v, v) 2 a|v|f, (3.19)

but not V-coercive [i. e. (3.16)].
The following result can then be proved:

PROPOSITION 3.2: Let (3.8)-(3.19) and the UCLP condition hold. Then if one
has
Ker B, = Ker B, (3.20)
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346 M. FORTIN

There exists a constant C independant of 4 such that

|u—u,|g+|A=M|w S C{ inf |u—w,|y+ inf |A—@,|p}. = (3.2
wheVn @r elm By

It must be noted that we have not stated the results of [2] in their most
general form. In order to use them in practice the following questions must be
answered :
Q 3.1: When is, in general, (3.8) satisfied?
Q 3.2: When is the UCLP condition satisfied?
Q 3.3: When is (3.20) satisfied?
Q 3.4: Can we replace in (3.21), inf |A—q, [y by an infimum over
all @, e W,? on€lm By

We shall try in the following section to give equivalent or sufficient conditions
for the answers to be positive.

4. EQUIVALENT FORMS FOR CONVERGENCE CONDITIONS

When trying to apply the abstract results of No. 3 to a precise case, the main
problem lies in the verification of the continuous lifting property or the
condition on Kernels (3.16). We shall first give some algebraic lemmas that
will clarify the relations between the ranges and kernels of B and B,. As may
be expected, the continuous lifting property will then be splitted in a consis-
tency and a stability condition and we shall give sufficient conditions for the
stability to hold. We restrict ourselves, to simplify the proofs to the case where
W and W, are identified to their dual spaces. We first have.

LemMA 4.1: The following statements are equivalent:

For any ue V, there exists u, = IT,u e V,, such that, @.1)
b(u—u,, ;) =0,Vo,e W,, or equivalently u,eZ,(Bu); )

Im B, = Py, (Im B), 4.2
Py, being the projection operator of W on W,.
Ker By = Ker B* n W, = Ker B, 4.3)
Proof: The equivalence of (4.1) and (4.2) is trivial: by definition, one
always has

it is therefore sufficient to consider the reverse inclusion which is nothing that
another statement of (4.1). To show the equivalence of (4.1) or (4.2) with
(4.3), let us suppose that (4.1) is satisfied and let ¢, be given in Ker B}, i. e.,

b(vhséh)=01 Vo,e V.

R.A.LLR.O. Analyse numérique/Numerical Analysis



CONVERGENCE OF MIXED FINITE ELEMENT METHODS 347

We have to show that b (v, ;) = 0, for any v € ¥, which implies ¢, € Ker B*,
“But for v e V, there exists by (4.1), 3, € ¥}, such that

b(v, ¢p) = b(f)ha On)s Ou€ W,

In particular this is true for @, so b (v, ¢,) = b (&,, ¢,) = 0.
Conversely, let u € V and consider Py, (Bu).
We then have, by definition of the projection operator,

(¢4, Bu— Py, (B u))Wk=0: Ph€ Wy 4.4
We want to show that Py, (Bu) = Im B,, or equivalently
Py, (Bu)e(Ker Bf)*. 4.5)
Let then ¢, € Ker B} < Ker B* be given, and take ¢, = @, in (4.4), we
obtain,
(9> Py, (Bu)) = (¢, Bu)=(B*¢,, u)=0. m (4.6)
Remark 4.1: The previous proof shows, in fact, that (4.1) is equivalent to,”
Ker By = Ker B*n W,, 4.7

the reverse inclusion always being true. Moreover the identification of Wto W'is
not essential for the proof, it is sufficient to restrict the analysisto Wy, n W' = W;.

By definition of B,, one has immediately B, v, € Wh’ , U, € V,, and the previous
proof can be extended, with a few technical subtilities. =

Merely exchanging the roles of ¥ and W, and taking into acount the pre-
ceeding remark, we have thus shown:

LeMMA 4.2: The following statements are equivalent:

For any ¢e W, there exists @,€ W, such that,

~ 4.8

bt 0—G) =0,  Voe ¥, @-8)
Im B = Py;p (Im B¥). “4.9)
KerB,=KerBn V, cKerB. = (4.10)

We have thus obtained a characterization of condition (3.20) Ker B, < Ker B
and given a partial answer t0 Q 3.3. =
Finally to conclude this analysis, we prove.

LeMMA 4.3: The following statements are equivalent:
"ImB,c(ImB)nW,, : “4.11)
Py, (Ker B*) < Ker BY. 4.12)

vol. 11, n°® 4, 1977



348 M. FORTIN

Proof: Let (4.11) hold and ¢ € Ker B*; we want to show that
0= Py, (¢)eKer B .

But, by definition, we have
(@ M) =(@n, M), VRr,e W. (4.13)

We have to show that (¢,, A,) = 0, if A, € Im B,. However in this case we
have A, e Im B and (¢, A,) = 0, for ¢ € Ker B*.

Conversely, let (4.12) hold and %, € Im B,; we want to show that A, € Im B,
that is A, is orthogonal to Ker B*. But for any ¢ € Ker B*, one has

(@, M) = (@4, M) =0, for @, = PW,.(PEKCI'B:~ L]

Remark 4.1: (4.12) is of course satisfied if Ker B = Ker B*, in particular
if B and B, are surjective. Moreover if Ker B < Ker B* inclusions in (4.11)
and (4.12) may be replaced by equalitics. =

Remark 4.2: In proposition 3.1, we supposed that g, = P, (g) belonged
to Im B,. From Lemma 4.1, we deduce that this will be the case in general,
if and only if Ker B} — Ker B*. An important case is however g = g, = 0
where this last condition needs not be satisfied. This answersinpart Q.3.1. m

Remark 4.3: In the same way, let Ker B} < Ker B*. Then by (4.2), we have
ashelm B
iﬂr

H Y

h—g,| = inf [A—g,), _ (4.14)

onelm By one W),

This answers Q. 3.4. m

The main problem that Temains is to characterize the UCLP condition. This
will be done in two steps. We first prove.

PROPOSITION 4.1: Let Im B be closed, and let (4.1)-(4.3) be satisfied, the
linear operator Il : V' — V, being uniformly continuous, that is, there exists a
constant ¢, independant of h such that

luglv, = |Myuly, < cluly, (4.15)
Then there exists a constant k, independant of h, such that

I BZ‘ D ]V;, _2_ k inf

@o € Ker B*

(Po+(Ph|W- (4.16)
Proof: We clearly have

IBIT(P;,IV' = Supu)ﬁ)ﬁl(pL)I > supl_b(,w.
h —_—

4.17
vh |vh|Vh veV |H,,vlyh ( )

R.A.LLR.O. Analyse numérique/Numerical Analysis
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By (4.1) and (4.15) we have

plb( n? ,(phl _Supl |b(U (ph)l (418)
veV IH,,(v)lyh veV C |l)ty
and Im B, being closed,
supM—, 2k inf |@o+9¢,|. = (4.19)
veV Uy o € Ker B*

Remark 4.4: We have thus shown, that if Ker B < Ker B* then building
an uniformly continuous operator I, implies (4. 16) which is almost the UCLP
condition. Moreover from Remark 4.2, we see that Ker Bf — Ker B* is also,
in general, a condition for the existence of a discrete solution. We shall then,
try to see what must be added to get the uniform lifting which is necessary for
convergence proofs. =

We now prove

PROPOSITION 4.2: If (4.11)-(4.12) hold, that is Im B, = Im B, then (4.16)
implies the UCLP condition. If moreover Ker Bf < Ker B* [cf. (4.1)-(4.3)]
then (4.16) and the UCLP condition are equivalent.

Proof: Let (4.16) be satisfied, and consider ¢, € Ker B*. If Im B, « Im Bn W,,,
then by Lemma 4.3, Py, ¢, € Ker Bf. Moreover, one has

Py, (04 +90) = 04+ Py, 00,

and
|(ph+PW,.(P0|W_IPW,.((ph+(PO)|W |‘Ph+‘Po|W (4.20)
Thus
inf  |@,+@os| S inf I(Ph*'(Polél/le:(Phlv;,- (4.30)
@on € Ker B}, @oecKer B

Conversely, if Ker B < Ker B*, one has

inf |@,+@o] S inf |+, (4.31)

9o € Ker B* @on € Ker B*
so that (3.25) implies (3.14). =
Remark 4.5: Let us suppose that (4.3) and (4.11) are both satisfied. That is
Ker B} = (Ker B¥)nW,  and ImB, = (ImB)"W,.
The decomposition,
W, = (Im B,) ® (Ker B,"), 4.29)

is then merely the restriction to W, of the decomposition W=(Im B)® (Ker B*),
if ¢, € W, is written as ¢, = @l+¢k with ¢} € Im B, and ¢} € Ker B, then
¢} eIm B and ¢} € Ker B.
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350 M. FORTIN

The preceeding result shows that this (hard to realize) case has a special
importance. =

Remark 4.6: The hypotheses of Proposition 4.1 and 4.2 are readily satisfied
if one has Ker B = Ker B*, in particular if B and B, are both surjective. This
situation will hold in most practical cases, so that we have reduced the verifi-
cation of UCLP to building an uniformly continuous operator IT,. We shall
give examples in the next section showing how our results may be applied. =

5. SOME EXAMPLES OF APPLICATIONS

The main result of this paper is that the abstract convergence condition of
Brezzi [1], may be checked through the construction of an operator I,
satisfying (4.15). We want to give rapidly here two examples where this
operator may be explicitly built. Let us also refer to Brezzi-Raviart [2], where
to our suggestion, Proposition 4.1 has been used to prove the convergence of
the Hermann-Johnson’s scheme for the biharmonic problem. Our first example
treats of the approximation of Stokes’ creeping flow problem in fluid mechanics
and the second one to the approximation of Dirichlet’s problem by mixed
finite elements. Finally we give an example of a case where Ker B ¢ Ker B*.

Example 5.1: We consider in a domain Q = R?, with polygonal boundary,

the Stokes problem. Let % = (u,, u,) the velocity of the fluid, p the pressure,
we have to solve:

_Au+gradp=1 5.1
divu =0, (5.2)
ue(H)(Q)?, pe L*(Q). (5.3)

We so have,
V=(HQ), W= L*(Q), B =div.

Let us note that B is not surjective and that Ker B* is
formed by constants. Let us consider an approximation
of H} () by quadratic conforming finite elements. The
domain is triangulated and on each triangle, a function
of V, is defined by twelve degrees of freedom, which are
the values of #, and u, at the vertices and at the midpoint a1 32 )
of the sides. (Fig. 5.1).

These nodes are numbered as on the Figure.

We norm consider, as in Fortin [4], and Crouzeix-Raviart [3], an approxi-
mation W, of L?(Q) by functions which are piecewise constants on the
triangles. The operator B, then associates to vy € V,, its average divergence on
each triangle.

Figure 5.1.
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Given u € V, it would be natural to define #, = IT, u, taking,

{ikh(ai) = uk(ai)s i= 1: 21 3; k = 1, 2, (54)
aj
ug (a;;) = #‘[ u, do, i,j=1,2,3, k=1,2. (5.5)
|aia;| Ja
It is then easy to check that

b(u—uh,@h)=J div(u—u,)9,dx =0, ¢, W,. (5.6)
Q

However this definition is not possible as the functions of ¥ are not smooth
enough to define a point value u (a,).
Crouzeix and Raviart have shown that it is possible to build IT, in an indirect
way, first taking,
w, = Py, (1), (5.7)
and then
S (@) =wale),  i=1,23 k=12 (58

~ 4.
ukh(aij) = ————-—la 1a i f ukhdc, i,j = 1, 2, 3; k = 1, 2. (5.9)
i 4 ai

UCLP condition is then proved in [3], for a slightly more general case. By
Lemma 4.1, this proves that Ker By = Ker B* and is therefore formed of
constant functions. m

Example 5.2: Raviart and Thomas [8], introduce a mixed approximation
for Dirichlet’s problem in R?, using the following functions spaces

V=Hdiv; Q= {p | p=(p;, p)e(L*(Q)* divpe L>*(Q)}. (5.10)

W= {v | ve L*(Q)}. (5.11)
They then solve for fe L% (Q),
0, Dz @pt+divg, u) =0,  VgeV, (5.12)
divp,v) =(f,v), VveW. (5.13)
We thus have for ge V, ve W:
b(q, v) = (divg, v), (5.14)
that is
Bg =divg. (5.15)
Let u be the unique solution of
—Au=1, (5.16)
u |r = 0.
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352 M. FORTIN

Then (-grad u, u) is the unique solution to (5.12)-(5.13).

Following [8], we define ¥, — ¥V, using piecewise-polynomials of degree
k +1 on a triangulation 7, of Q. It is required that on any triangle boundary,
the normal trace g,.v of g, € ¥, be a polynomial of degree k and that this
normal trace be continuous from one triangle to another. We define W), using
piecewise polynomials of degree =< k on each triangle, without any continuity
condition. With respect to V,, Raviart and Thomas show that such a space
can be built and that the degrees of freedom on each triangle K can be chosen as

the moments of order < k of g,.v on 0K, 5.17)
the moments of order < k—1 of g, on K. (5.18)

The degrees of freedom (5.17) indeed insure the continuity of ¢g,.v on
interfaces. We now show that we can use the results of section 4 to prove the
convergence of this approximation. In order to do so, we have to build an
build an uniformly continuous linear operator II, from V into ¥V, such that
b(g—-1,4q,v,) =0, Yv,e W, or more precisely

J (divg—divIl, q)v,dx =0, Vuo,e W,. (5.19)
Q
Integrating by parts on each triangle K, this becomes,

—ZJ gradv,,.(q—l'[,,q)dx+J v,(g—11,9).vde = 0. (5.20)
K JK oK

Let us define tentatively I, as the interpolation operator on the degrees of
freedom of ¥V, that is on each triangle K, and for any side K’ of K.

f (g—11,9).vodo =0, VeeP,(K), (5.21)
”

fK(q—th)mdxzo, VoeP,_,(K). (5.22)

Then, as grad v, |, € P,_, (K) and v, | € P, (K"), for any v, € W, condition
(5.19) is evidently satisfied.

A problem however arises, as for g € V, the moments on the sides may not
be defined due to a lack of regularity. If however we can take ¢ € (H' (Q))?, we
can use (5.21) and (5.22) and moreover we have.

141,90 @iv.y < Ch| 4|1, a, (5.23)

which is indeed stronger than the uniform continuity requirement.
We now show that we can deduce the result for g € H (div; Q) from the
result for ¢ € (H' (Q))2. To do so, we build for any g € H (div-, Q), age (H' (Q))*

R.A.LR.O. Analyse numérique/Numerical Analysis
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such that

divg = divg, } (5.24)

19|t @y < €14 |n @ive -

This is easily done, if the boundary I" of Q is smooth enough, by solving

—A(p=d1vq} (5.25)
olr=0.
Then ¢ € H? (Q) n H} (Q) and setting
q = grad o, (5.26)
solves (5.24).
We now define:
I,q =1I,3. (5.27)

. We_then_have . - - — - —
j (div g —divII, q) v, dx =I (divg—divII,q)v,dx =0 (5.28)
Q Q

and the uniform continuity of IT, follows from (5.24) and (5.23).

This proves from Lemma 4.1 that Ker B} < Ker B* and therefore that Bf
is surjective. Proposition 4.2 then implies UCLP condition.

It is also a trivial task to prove Ker B, = Ker B.

Indeed for g, € ¥, div g, [ € P, (K). Let then v, be the L?(Q) projection
of ve W on W,. Then:

j divg,(v—v,)dx =0, q,€V,, (5.29)
Q

hence the result by Lemma 4.2. =

Example 5.3. We go back to the problem of Example 5.1 but we now
consider bilinear finite elements on a rectangular mesh, the degrees of freedom
are the values of u; and u, at the vertices.

It is then classical to get in this way an approximation
of (Hy (Q))* (¢f. [4]).

We then consider W, formed by piecewise constants
on the rectangle. The operator B, still associates to u, its
average divergence on each rectangle. It is an easy task
to verify that in this case, the Kernel of the discrete
gradient is generated by two piecewise constant functions, Figure 5.2.
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taking two different values on a chess-board like pattern c. le.lc
(Fig. 5.3). 2
We have a very simple case where Ker B ¢ Ker B*. c.lc.|c
The convergence of this approximation has been checked 2| )2
experimentally, but the proof seems to be an open ques- c.le.tc
tion. The same is true of some approximations used by 12N
engineers using conforming elements for both the velo-
city and the pressure. = Figure 5.3.

6. CONCLUSION

We have shown that in some circumstances, convergence proofs for the
approximations of saddle-point problem may be obtained through building
an operator IT, which in many practical cases turns out to be an «interpolation’’
operator, in a more or less generalized sense. This fact has been useful to get
proofs in the biharmonic problem [2] and for the second-order elliptic
problems [8]. The result developed here was in fact implicit in [37] and [4]
where convergence proof for the approximation of Stokes problem were
studied. Example 5.3 shows that very simple cases are still out of reach of the
present theory. The author is thankful to P.A. Raviart and F. Brezzi for
helpful discussions and suggestions. '
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