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ESTIMATES FOR SPLINE PROJECTIONS ()

by J. H. BramsLE (?) and A. H. ScHATZ (%)

1. INTRODUCTION

Let Q be a domain in R¥ and let S% (Q) denote the restrictions to Q of tensor
products of splines of order r defined on a uniform mesh of size 4 in RV,
i.e. in each variable these are piecewise polynomials of order r—1 which
have r—2 continuous derivatives on R¥. It is well known that if » has r conti-

nuous derivatives on Q then there exists a spline in S* (Q) which approximates u
in maximum norm to order A". In this paper we shall investigate various types
of interior maximum-norm estimates for a variety of projection methods
which use spline subspaces. In particular we shall focus our attention on L,
projections and a class of Ritz-Galerkin methods used in approximating
solutions of elliptic boundary value problems.

This paper may be thought of as being divided into two parts.
Let Qy cc= Q; << Q = RVY. In the first part we shall first show that if
u, € S*(Q) is the best L, approximation to u on Q and if u has » continuous
derivatives on Q,, then in maximum-norm u, approximates u to order 4" on
any compact subdomain Q, of Q,. We then consider approximations
u, € St (Q,) satisfying a set of interior equations associated with Ritz-Galerkin
methods for elliptic boundary value problems. It is then shown that if » = 3,
1. e. forsplines which are at least piecewise quadratic polynomials, the error
in maximum-norm is bounded by a term of order 4" on Q, (provided u has r
continuous derivatives on Q,) plus the error in an arbitrary negative norm on
Q,. This last term (which is not present in the case of L, projections) measures
the effect on the error on Q, due to factors outside of Q, (for example the
smoothness of u outside of Q,, the smoothness of the boundary and the way
a particular method treats the boundary conditions). Assuming for the moment
that this term is of order A" (this is often the case) then our main point here is
that locally the error is of order A" (in maximum-norm) if » has r continuous
derivatives. Interior L, estimates for best L, approximation were derived

(*) This work was supported in part by a grant from the National Science Foundation.
(?) Department of Mathematics, Cornell University, Ithaca, N. Y. U.S.A.
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6 J. H. BRAMBLE, A. H. SCHATZ

in [12] and for Ritz-Galerkin methods in [13]. In [5] maximum-norm interior
estimates were derived for Ritz-Galerkin methods, however the local requi-
rements on the smoothness of u are greater.

In the second part of this paper we shall prove some <«super-convergence’’
results. Briefly, let u, be of the form

u, =y C,¥(h 'x—a), xeQ, (1.1)

where o is a multi-integer, and the { (A~ ! x—o) form a basis for S*. We shall
first show that given any non-negative integer ¢ there exist constants d,
(depending on ¢ ), such that if », is the L, projection of u onto S*, then at any
mesh point Ay (dist (hy, 0Q) 2 Ch), > C,d,_, approximates u (hy) of

order 4** provided u is sufficiently smooth. The constants d, have the following
properties:

(i) They are easily computable and depend only on ¥ and ¢.
(i) All but a finite number of the d, vanish.

Suppose now that we choose the d, corresponding to ¢t = 2r—2 and u,
satisfies the atorementioned interior Ritz-Galerkin equations corresponding to
an elliptic boundary value problem on Q,. We shall then show that if r = 3
and hyeQ, then ) C,d, _, approximates u(hy) of order A% =2 (In 1/h)
plus a term bounded by the error in any negative norm on Q,. In many appli-
cations this last term is of order #**~2. Hence in those cases, a simple linear
combination of the C,’s gives order A**~2 (In 1/h) at mesh points. It will
then be shown that if » = 3 and odd, then for Ay e Q,, u, (hy) appro-
ximates u (A y) to order A"*! (In 1/k) plus the error in an arbitrary negative
norm on Q.

In proving some of the above superconvergence results we make use of the
following which we feel is of independent interest: Let Py u and P, u denote
the L, and H' (energy norm) projection of u onto S* (RV), where ue C* 2
on RY and has compact support. Then in maximum-norm on R¥, P, u appro-
ximates P, u of order 42"~ 2 (In 1/h) for r = 3.

An outline of the paper is as follows: In Section 2 we introduce notation
and preliminaries. In Section 3 we prove a maximum-norm error estimate for
the best L, approximation on RY. This result was first proved by Fix and
Strang [10]. Our method of proof relies on Fourier multipliers and differs
from theirs. In Section 4 a sharp maximum-norm error estimate for H*
(energy norm) projections on RY is obtained. In Section 5 and 6 we use the
results of Sections 3 and 4 to obtain interior maximum-norm error estimates
for best L, approximations and for a class of Ritz-Galerkin methods men-
tioned above. In Section 7 we obtain a superconvergence result in maximum-
norm for the comparison of L, and H' (energy norm) projections on RN.
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ESTIMATES FOR SPLINE PROJECTIONS 7

In Section 8 superconvergence results at interior mesh points for L, projections
and a class of Ritz-Galerkin equations by ‘‘averaging’’ the computed coefficients
are considered. In Section 9 we investigate the question of superconvergence
at interior mesh points for L, projections and a class of Ritz-Galerkin equation
without averaging. In Sections 10, 11, 12, and 13 we exemplify the theory in
special cases. In one of our examples we consider the interior rate of conver-
gence in maximum-norm of the approximate Green’s function to the Green’s
function. We show that away from the singular point the rate of convergence
is of order A". We wish to emphasize that the technique used in the proof
is not special to the spline functions discussed in this paper nor the particular
Ritz-Galerkin method used. It relies only on the fact that good interior maxi-
mum-norm and certain negative-norm estimates are available, the former
being proved here for special spline subspaces. We then apply this result to
derive order A" estimates in regions where u is smooth but outside of which
it might be quite badly behaved. This seems to indicate that the effects on the
interior rates of convergence for Ritz-Galerkin methods due to either a non-
smooth boundary or a non-smooth right hand side are quite different.

2. PRELIMINARIES

Let Q be an open subset of R¥, N-dimensional Euclidean space. Let C* (Q)
be the set of complex valued functions on Q which have continuous partial
derivatives of order at least k, which are bounded on Q. On C* (Q2) we introduce
the norm

[v|e, = sup | D*v(x)|,
€Q

laf =k

N
where o is a multi-index and D* = g, /0x%... 9, [0x% and |a| = Y«

=1
If Q is bounded then by H* (Q) for k a non-negative integer we shall rriean the
usual Sobolev space of order k; i. e. H*(Q) is the closure of C*(Q) in the norm

1/2
nvuk,a=( » j;mwx) . e
la] sk

If Q = RV, then H* (Q) will be the complection of C% (Q) under the norm (2. 1).
Here C¥ (Q) consists of those functions in C*(Q) with support contained in Q
and compact. We shall denote the norms on C*(RM) and H*(RY) by |.i
and ||. [l Note that H° (Q) = L, (Q).

We shall also need the following norms: For ve L, (Q):

”"“—k,n: sup ——l(v,(p)d,
¢ Co(Q) “‘P”k.n

aoit 1976.



8 J. H. BRAMBLE, A. H. SCHATZ

where (v, @) is the L,-inner product. We also set

lolll-ia= sup M
eeC'(Q) ”(Pllk,ﬂ

ReMaRK: The above definitions of norms may be extended to all real
values of the indices by appealing to the theory of interpolation spaces (cf. [7]).
For the sake of simplicity we shall not discuss this generalization and thus to
be precise will consider throughout this paper only integer values for the
norm indices.

For a given positive integer » we denote by ¥ (x) the B-spline of order r
(¢f. [14]). This function is the r—1 fold convolution of the characteristic
function of the unit cube with itself. More precisely let

“ f 1, |t| <1/2,
X)) =
Lo, |t]>1/2
and ¢ = (x % ... % %), where * denotes convolution. Then

p— ————
r—1 times

N
V) = 117,

Since ¥ will be so frequently used and r will always be fixed we have suppressed
the dependence on r in the notation.

Denote by ZV the multi-integers and let 4 be a positive number less than 1.

DermiTION: For r a positive integer and /4 given with 0 < 4 < 1, a function v
of the form
v(x)= Y v V(h 'x—a) 2.2)

aeZN

is called a spline of order r. The totality of all such functions will be denoted
by Sk

Note that since the support of { is compact, for any x the sum in (2.2)
contains only a finite number of non-vanishing terms so that no restriction need
be placed on the v,. The splines of order r have the following well known
properties:

(a) They are piecewise polynomials of degree r—1.

(b) They are of class C" 2.

In addition to these, the splines possess some important approximation
theoretic properties. We summarize these as follows.

Revue Frangaise d’Automatique, Informatique et Recherche Opérationnelle



ESTIMATES FOR SPLINE PROJECTIONS 9

LemMma 2.1: Let ve H* (Q) withO < s < r. Then there exists a constant C
and v, € S such that

lo=villj.a= CH 0]l

for 0 < j <s,j< r—1. The constant C does not depend on v.
For the proof of this, ¢f. [9] or [2].

In addition to this the splines also have similar properties relative to the
norms on Ck,

LEmMMA 2.2: Let ve C* with 0 £ s < r. Then there exists a constant C,
independent of v, and Q, v in S" such that

|v—Q,v|o S CH|v|,

Further, if ve C§ then Q,ve CY.
For a proof of this, ¢f. [6].
Let fe L, with 1 < p < 2. Then the Fourier transform of fis given by

.f(§)=f f(x)e <> dx, a.e.
RN

N v
where { x, £ > = 3 x;&; (cf [15]). The inverse transform £ (€) is given by
j=1

1

and Tf??[,, , 1 £ p <2 then 'f:f.' It is also well known (cf. [16]) that
there exists a constant C such that for | <p £2, (1/p)+(1/p) =1

and feL,,
~ 1/p’ 1/
(f lfl*”dx> ’ gc(J |f|de> ’ (2.3)
RN RN

Let m be a bounded measurable function and fe L,. Then the transformation

T, f=(fm)
is called a Fourier multipier transformation (¢f. [15]). Notice that T,,fe L,

DEFINITION: A multiplier m belongs to the class .#,for 1 < p < oo if there
exists a constant M, such that for fe L, n L,:

i/p 1/p
(J |7},,f|"dx> gmpq |f|"dx> if 1<p<w
RN RN

aout 1976.



10 J. H. BRAMBLE, A. H. SCHATZ

or
] T;.f|0§§ A4w|.f|0 if p= .

It is well known that for (1/p)+(1/p") = 1, M, = M ,. We shall be mainly
concerned here with multipliers in .# . The following gives a simple condition
under which me 4 .

N
LEmMMA 2.3: Suppose that [H (I+d/om;) m]eL,, for some p with
j=1
l<p =2 Thenme M.
Proof: For fe L, n C°

T, f (x) = (f *m)(x).

Hence it is clearly sufficient to show that e L,. Now
J | m(x)|dx = J
RN ’ RN | j=

N “
( 1T (l ) m) dx.
j=1 n |
Let 1 < p < 2. Then by Holder’s inequality

J‘ ll’;l(x)idx = J‘ N .ﬂ_« ”"(J ( ﬁ (1.|_ __) I)A ”'dx)l/p"
RN RN RN j=1 nl |

[T (1+xH??
ji=1

N

[T—ix;)
ji=1

The lemma now follows from (2.3).

3. THE L,-PROJECTION ON R¥
Letu e Cj. We define P, u € S* as the L, projection of u onto S* N L,; i.e.,
(u—Pyu, 9)=0, VoeS'nL,. 3.1

Note that although P, depends on 4 and r we have suppressed this in the
notation.

Now since P, u € S, it is given by

Pou(x)= ¥, udy(h™ ' x—

aeZN
We now prove the following.

LeMMA 3.1: Let ue Cyy and set u, (x) = u (hx). Then

0 - J u ia,nd '
u, = Y m e SN dn, 3.2
O e # (M) mo () n (3.2)

Revue Frangaise d’Automatique, Informatique et Recherche Opérationnelle



ESTIMATES FOR SPLINE PROJECTIONS 11

where
mo(m) = f(lao(),  aom = 3 |¥n+2mp)f

and my € M .
Proof: It follows from (3.1) that

Youg (R x=y), W(h T x=PB)) = (u, Y (h T x—B))

vyeZN

and by changing variables

S ulQh o) (r—B) = (V) (B

YEZ

Multiplying by e~¥# "> and summing over § we obtain

( Z u?e—i<v.n))(ﬂ§N(\p*‘J/)(B)e—i(ﬁ,n>) — BZZN(uh*‘u)(B)e—i( B.n>

yeZN

Applying the Poisson summation formula we obtain

(Y we ™" Yas(my= Y. w,(n+2np)V(n+2np). (3.3)
YyeZnN peZN
Now
0 1 J 0 ,~i<vindy iCand
U, = —— u, e MYe N2 dn, 3.4
Eor e ) k

where C, = {7 apn,.] <mj=1..,N|
Hence from (3.3) and (3.4) we have

Y (n+27B) Y (n+2np)

1 . EEZN ei(u,nzdn‘
(2n) [ny] == ao(ﬂ)

Using the periodicity of a, (1) and the exponential, (3.2) follows by changing
variables.

That m, € M ,, follows from the form of m,. Now my = /a,, where

AP N sinm;/2Y
\ll(n)—jlel(_—njlz )

iy [ sinm2Y 2sinm;/2 \*
mom)_igl[( n;/2 )/‘g‘(nﬂLz”l) ]

Since Y (2 sin #/2)/(1+2 n1)*, for te R', is a smooth periodic function
leZ?!
which never vanishes, in order to satisfy the conditions of Lemma 2.3, it is

u°:=

Hence

aoat 1976.



12 J. H. BRAMBLE, A. H. SCHATZ

enough to observe that ((sin #/2)/t/2)" and its first derivative are in L, (R").
Hence mye A .

The .previous theorem provides us with the basis for a different proof of
a result first proved by Fix and Strang [10].

THEOREM 1: Letu e C{withQ < s < r. Then there is a constant C independent
of u such that for any h,0 < h < 1,

iu—-Pou!o§Chs|uts.
Proof: Let Q,ue S* be given by Lemma 2.2. Then
|u—Poulo < |E|o+| PoElos (3.5)
where £ = Q, u—u. Now
(PoEY(x)= ) EJV(h™'x—o)
aeZN
and hence
| PoE|o < sup | EJ|. (3.6)
aeZN
By Lemma 3.1:
{ » .
El=_ " | E,mge'<*"dn,
(Zﬂ)NJRN n Mo n
and since my € A,
|EZ| < ClE|,. (3.7
From (3.5), (3.6), and (3.7) it follows that
IAM—POMIO§C|E‘0.

The theorem follows now from Lemma 2.1.

4. H'-PROJECTIONS ON R¥

=
operator P, ue S* n H' forue Cy, s 2 1, where P, is defined by

N
Let D (v, w) = (dv/ox; , Ow[ox;). We want to consider the projection
=1

Du—-Pu,0)=0, VoeS'nH. 4.1)
We now prove the following.

LEMMA 4.1: Let r 2 3 and ue C§, with s 2 |. Then P, ue S" n H' exists
and is unique. It is given by

(Pywy(x)= Y u¥(h™'x—0)

aeZN

Revue Frangaise d’Automatique, Informatique et Recherche Opérationnelle



ESTIMATES FOR SPLINE PROJECTIONS 13

with

1 ~ .
ulu:(ZR)NJ\RNuhmle‘(a’n>dT]’ (4.2)

where
m=dinfia oy and o= ¥ [¥m+2m)] [n+2nal,

Finally m, e A .

Proof: By a calculation similar to that made in the proof of Lemma 3.1
the coefficients defined by (4.2) uniquely define a solution of (4.1). The only
remaining thing to prove is that m; € .# . The proof in this case is more
delicate than that of m, since m, is not a product of functions of one variable.
Hence the N-dimensional case is not just an obvious generalization of the one
dimensional case.

To prove that m, € .# , we shall apply Lemma 2.3. In order to do this we
shall show that

*m,

1
Am, = eL, for l<p<l+4 —f

o, ... 0ny N—-1
k=0,...,N with A°=1.
Because of the symmetry of m, it will then follow that

Al 0 1
jg(1+5n—j>mleL,,, 1<p<l+N—-—
and hence m, € M .
We write

my () = 4 () V2L ’“’2|2 s
as

N

where 2 (n) = Y sin® n;/2 and first calculate 4* (1 /2 12/S?) for | < k < N.
ji=1

Now

n2\ _(=DF,
(l Szl >= Sk (= D!

k2" ¢ _
x 5 H sinn;/2cos n;/2 Z /2 l_[ sinn;/2cosn,/2 |.

Hence by elementary estimates we have for a suitable constant C

| 2\ |
;A"<£‘;_f|_)igcu+sz‘*) for |n;lsm j=1.....N. (4.3

aolt 1976.



14 J. H. BRAMBLE, A. H. SCHATZ

Ifjn:>mn for some / then we have

k! In/2|2 Inlz
A\? S SZ-H(' 4.4
Now we obtain by a tedious calculation
Ay | = CS, 0<k<N if|n;{<m j=1,..., N, (4.9
and if | m;| > = for some /
R N
Wiz cs ] (4.6)
i=1 1+,n1|
and
™ N
|4y|<scs ] —L | 1<ksN. .7
j=1 1+|n;l

In order to estimate A (Y ( n/2 */S?%) we use Leibniz’ rule. Because of

symmetry we may observe that the above estimates for 4* (|n/2 ;2/82) and A%\

are valid for any purely mixed derivative of order k. Hence in the case that

im;| Enforj=1,..., N, we combine (4.3) and (4.5) to obtain
<C+8'* H (4.8)

~ 2|2
'A.k ‘I,ln/ )
G I o

But the same estimate (4.8) in the case 'n,' > n for some / follows
from (4.4), (4.6) and (4.7).

We need yet to estimate 4% (S?/a,). To do this we first estimate
A"(ﬂ _ Y 4 |\Il(n+2noc)| [n+2naf? 4.9)
S? ) sezv S?(n+2ma)

where we have used the fact that S(n) = S (+2 nt &) for a € ZV. Now s 2
is just (¥ = )" so that we may apply the estimate (4.8), interpreting ¥ as
the B-spline of order 2 r, to each term of the sum in (4.9). Hence, since r = 3

] k[ Q1 i 1—k N 1 >]
Al <ca+s
| (sz>; ( );[H 14| n+2ma; > 2

SCU+S'H. (4.10)

Now (4.10) holds for any purely mixed partial derivative of order k.
Since a;/S? is bounded away from zero, it follows by an easy induction
argument, using Leibniz’ rule again that for an appropriate constant C

(%)

Revue Francaise d’Automatique. Informatique et Recherche Opérationnelle
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Again (4.8) and (4.11) are valid for any k'™ order purely mixed partial
derivative and hence by Leibniz’ rule again it follows that
al 1

|A*m,|sCc(+5""]] -

. 4.12
T @12

Finally we see easily from this estimate that since r = 3,

: N 0 | N 1
[T{1+ -—>m1 eVl -

< CP Sp(l N) o
sef sl

— dn
(1+|ml>"
1

dn (4.13)
(1+]nj+2m0,|)”

écp Z J‘ SPU_N)I—[
Cn

xeZN

For n € C, we have, for an appropriate constant C,

1 < ¢ 4.14)
L+|n+2ma;| — 1+]|oy]

and
SPAM < Cln Pt (4.15)

Hence from (4.13), (4.14) and (4.15) we obtain

ol ()

N 1 dn
<C )
- :erZN ,11 (1+|o(j|)PJ‘Cﬂ tnIP(N—l)

The right hand side is bounded for 1 < p < 1+[1/(N—1)]. Thus we have,
from Lemma 2.3, that m, € 4 _ and the proof of Lemma 4.1 is complete.

We now prove a maximum-norm estimate for u— P, u.

THEOREM 2: Let ue Cywithl < s < rand r = 3. Then there is a constant C,
independent of u, such thatfor any h, with 0 < h < I,

|u—=Pyulo < Ch*|uls. (4.16)

aolit 1976.



16 J. H. BRAMBLE, A. H. SCHATZ

Proof: Let Q,ue S, be given by Lemma 2.2. Then
|u—Piulo £ |E|o+|PLEo 4.17)

where E = Q,u—u. As in the proof of Theorem 2, since by Lemma 4.1
m, € M, it follows that

|PLE|o < C|E]|o. (4.18)
Hence from (4.17) and (4.18)
|u—Pyuly < C|E|o.

The inequality (4.16) now follows from Lemma 2.1.

With only technical changes in the arguments we can prove the following.
The details will not be given.

THEOREM 3: Let ue Cy with 1 < s < r and v = 3. Let q be a non-negative
constant and P, ue€ S" n H* be defined by

Du—P,u, @)+qu—P,u, ) =0 for all peS"nH".
Then there is a constant C, independent of u, such that for all h, with0 < h < 1,
|u—Piulo < Ch|ul,

5. L; (2)-PROJECTIONS AND INTERIOR ESTIMATES

Let Q, be an open subset of Q whose closure is compact and contained in Q.
We write this as Q, c<= Q. Let 3% (Q) denote the splines of order r restricted

to Q. The space S* (Q) consists of those elements of Sh (Q) whose supports

are contained in Q. We shall need the following lemma which may be found

in [5]. .
LemMA 5.1: Let Qy c= Q; == Q, and suppose that u,e S"(Q) and

satisfies (u,, ®) =0 for all e 5‘,, (Q). For any positive number v, fixed but
arbitrary, there is a constant C, , independent of w, , such that for h sufficiently
small

| i ]o, 0 < C, h' || un)lo, a-

With this lemma we may prove the following:

THEOREM 4: Let ue€ L, (Q) N Cs(y),0<s<r,r 2 landlet P, que S*
be the L, (Q) orthogonal projection onto S"(Q), i.e. (u—Py qu, @) =0 for
all g € Sh(r). Let Qo c= Q, == Q. Then there is a constant C, independent
of u, such that for sufficiently small h

|u_Po,Qu|o,no§ Chs(luls,m'*‘“u”o,n)-

Revue Frangaise d’Automatigue, [nformatique et Recherche Opérationnelle



ESTIMATES FOR SPLINE PROJECTIONS 17

Proof: Let Q, c= Q, == Q, <= Q. We multiply # by a suitably chosen
function ® € CZ (Q,) which is equal to 1 on Q, and set # = o u on R¥. Evi-
dently then & e C§ if ue C*(Q,) and

|u|, < Cluls,q, (5.1

for an appropriately chosen constant C which does not depend on u. Now
also

%]l = Cl|ullo, - (5.2)
Then

|u—Py qulo,ao < | U= Pott|o+| Poli—Po, gt o, gp (5.3)

Since (Py #—Py qu, ¢) = 0 for all p e Sh (©,) we obtain from Lemma 5.1,
with y = s and (5.2), that

< G (|[u]lo+]|#]lo,o
S C || ulo, a- 5.4

lPo;‘—Po.n“lo.no = Cshs||P0§_P°-nu”°'Ql

From Theorem 1 and (5.1) we obtain
|u—Pott|o < CH|uls, (5.5)
The theorem now follows from (5.3), (5.4) and (5.5).

6. INTERIOR ESTIMATES FOR RITZ-GALERKIN METHODS

In order to study the maximum-norm of the error in various approxi-
mations to boundary value problems we want to give now a local analogue
of Theorem 2. We first need a special case of a lemma which may be found

in [3].

LEMMA 6.1: Let p and q be arbitrary positive numbers. Then there exists a
constant C, such that, for Q, cc Q, << Q, h sufficiently small and any
u, € S"(Q) satisfying

D(uy, @)+q(us, 9) =0 (6.1)
forallg € S, (Q),
luhlo,00 < Cllun]]-p. 0
We may now prove:
THEOREM 5: Let ue Cs(Qy), | S s < r, r 23 and P, o u e S"(Q) satisfy
D(u—P, qu, 9)+qu—P, qu, ) =0 for all peS"(Qy),

aoat 1976.



18 J. H. BRAMBLE, A. H. SCHATZ

with Q, cc Q, << Q and q a non-negative constant. Let p be a given positive
number. Then there is a constant C, independent of u, such that for h sufficiently
small

lu—Py qu|o, 0, < C(W°|uls 0, +]||u—Py qull-p ) (6.2)

Proof: Let Q, c = Q, =< Q, and let & be the extension of u of RN given
in the proof of Theorem 4 with # = u on Q,. Then

|u—Py qulo a0 < |#—Pyt|o+]| Py ti—Py qulo, g 6.3)

Since D (P, i—P; qu, ¢) =0 forallpe 5" (Q,) we have from Lemma 6. 1
that

|P1a—P1,nu|o,no = C“PIa_Pl.Qu”—P‘QZ
s c Pumiilot|i-Praullope. 6.9

The theorem now follows from (6.3) and (6.4) using the estimate of
Theorem 2 or Theorem 3.

7. COMPARISON OF L, AND H' PROJECTIONS

In Sections 3 and 4, it was shown that wu—Pyu,, = O(h") and
lu—P;u, = O (K"). Here it will be shown that

| Pou—Pyulo= O(hz"zln:l)

(for sufficiently smooth u). This superconvergence type result will be used
repeatedly in the following sections.

THEOREM 6: Let r = 3. Then there exists a constant C independent of h and u
such that

G) If ueC! :
| Pou—Pyu|lo <= Ch'lu|,, I=h, ..., 2r=3. 7.1
(i) If ueC* 2, N=2and r odd, or N=1:
| Pou—Pyulo < Ch* "2 |uls-,. (7.2)

(iii) If ue C* "2 and supp (u) < A a compact set
| Pou—Pyulo S C<ln;)h2’“2|ulz,_2. .3
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Remark: By an entirely different method we can obtain an estimate for
Py u— P, u of order h?"~ % without the hypothesis that # have compact support
and without the factor In 1/A, which improves the order of convergence in (7. 3)
in the cases not covered by (7.2). The alternative proof requires a somewhat
stronger norm on u on the right hand side. The proof of this will be omitted
here since one of our purposes here is to obtain the best norm we can on the
right hand side relative to the order of convergence.

Proof: By Lemmas 3.1 and 4.1 we have that

Pou—P,ul, < su
| ° ! Io_aele’ (27\:)”

j u,(mg—my)e <" dnl. (7.4
RN

Let i (y) be a function of the single variable y be such that w (y) = 1 for
vl <mn2, () =0for|y|ZnandweC> Setw; =w(Mm;,j=1,..., N
N

and w = [] w;. We shall now estimate the right hand side of (7.4).
ji=1

I ah(mo—ml)e“"-“)dn =j ﬁhw(mo—ml)e“""”dn
RN RN

j=1

+I a"(“ I “’f)(mo—ml)e‘“-“dn. (7.5)
RN

N
Since 1— ] w; vanishes near the origin, it follows that for the second

=1
term on theJ right hand side of (7.5) we have
A N Y,
f u,,(l—ij>(m0—m,)e'<“'“>dn
RN Jj

l N .
=h’J‘R < Z (D‘,iu)hHwi(l——w].)n;‘)(mo_ml)ei(u,q)dn. (7,6)
N\ j=1

i<j
It follows from Lemma 2.3 that for each j, [Jw;(1-w)nj'e 4.

j=1
Since .#_ is a Banach Algebra and mg—m; e # _ we have that

[Twi(l=w)nj'(my—m)e #,. Hence for some appropriate constant C
i<j
we have

Jﬁh(l— I1 wJ-)(mo—ml)ei(“'“)dn < Ch'|u],,

j=1

1=0,...,2r-2. 7.7
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Let us now estimate the first term on the right hand side of (7.5). To this
end we examine carefully the multiplier w (my —m,) near the origin. Now

mo"m1=m1|:al_lnlzao =m, fz’l_'nlzas ,
Inlzao IT\|2‘10

where a, and a, are defined in Lemmas 3.1 and 4.1, a = ao—| ¥ ':2 and

a, =a;—|" ,2 | \ |2. By inspection we see that there are functions f; ()
and g; (n) in C* such that

abjag = ¥ (sinny2)" f;()

and
N
In|"?ai/ao =|n|"? z (sinm;/2)* g; (m). (7.8)
Hence
N
w(me—my) = _;1 wl“ l_z(sinn,-I'Z)z’g,-(n) my
N
- _; w(sinn;/2)* f;(n) m,. (7.9)

Let 9, , be the divided difference operator

O n=h"o(xy, .., X+R2, o, x) =0 e X, o X))

S
Now for any positive integer k, i* (sin n;/2)k &, = h*(9; , u),. Hence we
obtain

j u,w(mo—my)e <" dy
RN
N Py .
=hy (—i)'J @,y w(sinn /2>~ n| 2 g;(nym, & <™ dn
j=1 RN

N N )
(=17 k¥ ZJ @ wuywfym, <" dn
Jj=1JRWN
=1,+1,. (7.10)

For each j we have that wf; m; € # , and therefore
N
|L|sch” Y |07 ulpsChul,, 1=0,...,2r (7.11)
i=1
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Let us now consider for fixed j one term of 7,. If 0 £/ < 2 r—3 then
2 r—1 = 3 and it follows that

w(sinn,/2 ' |n | g;()ymy e .
Hence for some constant C:
[I,|sChu),, j=0,...,2r=3. (7.12)
Combining the estimates (7.4) through (7.12) we obtain the estimate (7.1).

Let us now prove (7.3). To this end set / =2 r—2 in (7.10). Hence I,
becomes

=h?"? Z f (azr 2u);.w(sinn,-/2)zln |72g,()ym, &< dn.  (7.13)
Let us fix j and look at a typical term. Set (02,2 u), = v, and
p(x) = LNT(x ~ v (y)dy, (7.14)

where I' is the fundamental solution of the Laplace equation so that
—Ap=v, in R".

Clearly then |7 | p? = #,. Hence for an appropriate constant

| (62’ zu);.w(smn,/z) [n|?g;(m)ymye <= dn

<

j pw(sinn;/2)* g;(m) m, e“"’”dnl
RN

U. (5 p)wg,(n)mie'<"">dnl<claj 1P|o’ (7.15)

where we have used the fact that wg;m, e 4. Finally, we need to
estimate |92, po. Using the fact that diam (suppv,) < C/h for some
constant C (depending on the support of u) we obtain by elementary estimates
that

107 plo S Clnl/h|v|o < Clnl/h|d7 ulo £ Clnl/h|ul|,_y.  (7.16)

Combining (7.16), (7.15) and (7.13) with (7.4) through (7.11) we obtain
the desired result (7.3). Let us now briefly consider the inequality (7.2),
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where N = 2 and r an odd integer, » = 3. We proceed in the same manner
as in the proof of (7.3) except that instead of (7.8) we can write

r—1
in|"?a\jao =[ 2 (—l)k(sinnzIZ)z(’_1_")(Sinnz/2)2k] S*/|n|?

2
+[n|” 2( (Slnn,/2)2'>g,(n) (7.17)

where g; (M) e C®, limg; (M) = 0 as [n!— 0 and S? is defined Section 4.
Hence instead of (7.10) we obtain

J‘ ﬁhw(mo—ml)ei(“’“>dn
RN

r-2
=(_1)r—1 th—Z Z (_l)k
k=0

SO 1t o s? IR
xf 015 az,hu,,)(]—-liwm) > dn

+( l)r thr 2 Z

f (62’ *uy,sin® n;/2g; () [ n| "% wm, & <" dn
= J +dy+ 1, (7.18)

where I, has already been estimated in (7.11).
Since wm, (S%/|n|*) e M  we obtain

|7, < Ch¥ 2 ulys. (7.19)

It is easily seen that wm, sin n1/2 g (m|n| >e M, and hence
[T S Ch 72 |ulg-, (7.20)

Combining (7.18), (7.19), (7.20) and (7.11) we have
|
U‘ft,,w(mo—m,)e““'")dn S Ch* *ujy-s. (7.21)

In view of (7.4), (7.5), (7.7) and (7.21) we obtain the desired result (7.2),
where the case N = 1 is straightforward and therefore will not be presented.
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8. SUPERCONVERGENCE AT INTERIOR MESH POINTS USING LOCAL
AVERAGES

Suppose that in a domain Q, u, is computed as an approximation to the
solution u of a boundary value problem using a Ritz-Galerkin method. Suppose
further that on some domain Q, cc Q, u, is of the form

Uy = an\ll(h-lx—d,).

In practice, the C. s are first computed and then for fixed x, say for example
at a mesh point x = Ay e Q, cc Q,, the approximate solution is computed
by forming

uh(hY) =an\ll('Y—(l) = anay—u’

where all but a finite number of the a, vanish. In general, the best one to expect
is that the error locally in maximum-norm is of order 4". We shall show that
if we restrict our attention to mesh points 4 y € Q,, then under rather general
conditions one can find constants say d, which are easily a priori computable
(they depend only on y but are independent of 4 and u), all but a finite number
of which in general vanish and )’ C,d,_, is in general closer to u (hy) than
is u, (h y) for any 4 y € Q,. In order to construct such constants we need some
preliminaries.

LEMMA 8.1: Let t = 1 and r = 1 be arbitrary but fixed integers. There
exist uniquely determined real constants k;, j =0, ..., t—1, which satisfy
the linear algebraic system of equations

_gokjjkwl<y>(y+j)”dy={é yom= } 8.1)

if m=1,...,t—1,
where i, (y) is the one dimensional B-spline of order r defined in Section 2.

Proof: Since Y, () is an even function and f V; (¥) dy = 1, the functions
Rl

gn(2) = L Vi () (y+2)*"dy

are monic polynomials of order m in the variables z> and hence are linearly
independent. Since the matrix { g,,; } corresponding to the linear system (8.1) is
given by g, = €,(j)j=0,...,t—=1,m =0, ..., t—1, it follows that { g,; }
is nonsingular which completes the proof.

Set

ko = ko, k= k;[2 and k_;=k; forj=1,...,t—1. (8.2)
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Then the & satisfies the equations

Lif m=0
, N2m — ’
y ka,‘Jfl(y)(yﬂ) dy‘{o if m=1,.~,t—1-} ®-3

j==@-1)

For x € RN define

N t—1
kio=[1n T kneta-n) 5.9
=1 j=-(@-1)
LemMA 8.2: Let Q, be the cube with sides of length (2 t+r) h centered at x
then
|u(x)— (K2 %) (x)| S Ch¥ |t |cae o

where C is independent of h and u.
Proof: Without loss of generality we may assume x = 0. Note first that it

follows from (8.4) and (8.3) in the case m = 0 that J K2(x)dx = 1.

R
Hence

t

u (0)— (K3 «u) (0) =J KO [s () - @] dy.

Using Taylor’s theorem we obtain

|u(0)— (K5 xu) ()|

1 a
Lo [ KO+ O ey

15 jafse-1 |ol!

We shall now show that the first term on the right hand side vanishes.
Since K2'(y) is an‘even function with respect to each variable x, separately,
it is easily seen that in order to prove the lemma is sufficient to show that

t—1
h"f Y ki (hlz—j2"dz=0, m=1,..., -1 8.5)
Ry j=—-(-1)
But
B t—1 t—1
h ‘J Y K (hTlz—jz?tdz= ), k}j V(M) + )" dy
Rl j=—(t—1) ji=-@-1) R!

and (8.5) follows from (8.3) which completes the proof.
Set k%, = 0 for |j = ¢ and for any B e Z¥, let

N
k= [T K, (8.6)
i
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We may then write

KZx)=h™ Y k¥(h™* x—p).

peZN

If y € ZV and in a neighborhood of the point &y we are given v (x) of the
form

v(x) = Yo,V (h™ x—0),

then
(K7 xv)(hy) = ZZNvu[h‘”BZZNkp(\IJ(v—h“x—B),\ll(h“x—oc))]
= ZZNva[ﬁZZNkﬁ(ﬂl(v—a—B—y),\I!(y))]
= %Nvag ;N k(Y %) (y —o.—B))
= Y vdy,, (8.7)
aeZN
where
N N t—1
=ITd=11 2  K@bom-J (8.8)

and (W, = {;) (x) is the B-spline basis function of order 2 r.

The d, are the constants referred to in the beginning of this section. Let us
list some of their properties:

1) The d, are formed by products of the dy, and hence may be easily com-

puted from the one dimensional case.
2) All but a finite number of the d, vanish.
3) The d, are independent of 4. They depend only on y and r.

We are now in a position to prove a superconvergence type result at mesh
points for the L, projection.

Let Q) cc Q, < Q = RV. Let

Po,qu = Zug\ly(h_l x—ot)
be the L, projection of u onto S* (Q).

THEOREM 7: Let t = 1 be an arbitrary but fixed integer and Q, c< Q; < Q
be any domain (which may depend on h) such that

dist(Q, Q,) = é\/ﬁ(2t+r)h.
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Then for h sufficiently small

sup {u(hy) =Y ugdy—o| < Ch™ |ufy,q, 8.9

hyeQo o

Here the fixed constants d, [given by (8.8)] and C are independent of u, h, Q,
and Q.

REMARK: (8.9) says that by taking an appropriate linear combination
of the computed coefficients 0 as approximation to ¥ one can achieve arbi-
trary order of accuracy at the mesh points.

Remark: The error estimate depends only on the values of u in a

(1/2)/\/ N (2 t+r) h neighborhood of Q,. In particular if we take Q; = Q,
then (8.9) gives us an estimate valid at mesh points whose distance from 4Q

is (1/2)//N Q2 t+r)h.
Proof: Using (8.7) and (8.8) we have
sup |u(hy)— Zzwui’dn-ui < sup |u(hy)— (K3 «u)(hy)]|

hyeQo ae yeQo

+ sup [(K7' «[u—P, qul(hy)|. (8.10)

hyeQo

Now by Lemma 8.2 we have for 4 sufficiently small that

sup |u(hy)—(Ki' «u)(hy)| £ Ch* |u|y o,

hyeQo

We shall show that the second term on the right of (8.10) vanishes. In fact
for 4 sufficiently small

(K" x[u—Po ou]) (hy) = @ (»)—Po, o), BZZ)Ndp\lf(v—h" y=B)
= 3 dyy(w()=Po o Y(h y—m) =0,

nezN

which completes the proof.

We shall now prove an interior superconvergence result for Ritz-Galerkin
methods. We shall need the following well known result for the L, and H,
projections on RM. They are proved using the duality argument of Nitsche.

LemMMA 8.3: Let ue H" then

Jo—Poell SOl )

i (8.11)
|lu=Pyu|l,-, < Ch*2|jul],
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Let u and P, , satisfy (6.2) where for Q; cc Q. P, , u is of the form

P, qu(x)= Y usY(h™'x—a) for xeQ,.
aeZN
THEOREM 8: Let Qy <= Q,, ue C**"2(Q,), r = 3 and p be an arbitrary

but fixed non-negative integer. Let dy be chosen according to (8.8) with
t=r—1.Thenif N=1or N=2andris odd

sup |[u(hy)— Y, uyd,_ | S Ch* *|u
ZN

YyheQo ae

22,0+ €]|-p0) (8.12)
In all other cases

Sup|u(hY)— ZZ o y a|<c[h2r Zonl/h)luIZr 2, Q|+||e|| le:l (8 13)

YyheQo aE

where C is a constant which is independent of h and u but in general depends
on Qy, Qq and p.

REMARK: If r+ 1 </<2r—3 is a given integer, u e C'(Q,), and
the d, are chosen with ¢ = /2 if ] is even or ¢t = (/+1)/2 if /is odd, then the
same method of proof will yield

hsugolu(h'Y) Zua dv ul = C(h'|u|, Q:"'”e”—p,ﬂ:)‘ (8'14)
Y€

Proof: Let Q5 == Q) <<= Qg cc Q. Then

sup |u(hy)— ¥, ugd, .| < sup |u(hy)—(Ki"~? x Pou)(hy)|
—hyeQs— aeZN— e —_— ——
+] K2« (Pou—Pyu)|o
+| Ky 2% (Pyu—Py qu)|o,q, (8.15)
In view of (8.9):

sup |“(hY) —(Kp"~ 2*Po‘i;)(h'Y)l §Ch2'_2!u|2r—2,n.- (8.16)

hveQo

We note that
|K2r 2x(Pou— Pl”)‘o ClPou P1u|o’
where C is independent of # and u. Hence from Theorem 6

‘K;_Z *(Po{‘—Plaﬂo

‘hz"2|u|2,_2,,,l if N=1or N=2
=C and r is odd. 8.17)
lhz'"z(ln 1/h)|u|2p-2,q,  otherwise.
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Now

IK;Z,'_Z*(PN;—Pl.nu”o.noé ClPla_Pl-ﬂul"-%'

Now using Lemmas 6.1 and 8.3 we have, choosing p = 2 r,
| KZ 2 x(Pyu— Py qu)o.q
S C||Pyu—Py quf|_, a5

S C(|lu=Pyt||- 0,0y +|[u—=Py aull- 50

< Ch"||ujl,a+||u=Py,qul|-, 0).

(8.18)

The inequalities (8.15), (8.16), (8.17) and (8.18) imply the desired result.

9. SUPERCONVERGENCE AT INTERIOR MESH POINTS

In this section we shall investigate the error u(hvy)—P, o(h7y) and
u(hy)— P, o (hv) at interior mesh points. We shall show that if r is odd then
the order of convergence at interior mesh points is «essentially’’ (for a more
precise statement see Theorems 9 and 10) one order higher than predicted by

Theorems 4 and 5 respectively.

LEMMA 9.1: Let ue C° n L,. Then

Pou(hy)—u(ho) = 4y [ mo—1] € <7 "> dn

@my"
with
V= ¥ y@e
and my, is defined by (3.2).
Proof: We have that

Pou(hy)= 3, ug¥(y—B)

pez

with «} given by (3.2). Hence

1 A~ .
Pou(hy) = U\ mge < dn.
ou(hy) (271:),\,-[’{" n VMo

The lemma now follows on noting that

u(hy) =

©.1)
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THEOREM 9.1: Let r = 1 be odd andu € C*™*' n L,. There exists a constant C
independent of u and h such that

sup | Pou(hy)—u(hy)| S Ch*'|u 9.2)
yeZN

rele

Proof: Let we C be such that w(n) =1 for {n| < /2 and w(n) =0
for | n| > . Then using Lemma 9.1 we may write

Pou(hy)—u(hy)

1 - T i
r+1 ~ T — .
+ (’; % (AT V241 —w) [———\liml(f_ﬂl]e‘("”dn. 9.3)
)N ) ry 1

Now

~

1\
It is easy to see from Lemma 3.1 that
~ N
Ymo—1= ¥ gn) (9.4)
j=

where the g; are entire functions and g; (n) = 0 (n?7) as n; — 0. Using the
Poisson summation formula we have

Y= 3 b+2ap)

Then if r = 2 and |n| £ /2

ﬁ 1

v _
vt 1+(n,)'l¢zo(—1)'(n,+2nz)"'

Now the function ) (—~1)'(n;+2n/)"" is an odd function and hence

1#0
Y (=D'(m;+2nl)"" = O (n;) asn;— 0. It then follows that for | n | < m/2

1#0

where the G; (n) are analytic for || < n and G;(n) = O (n}*!) as n; - 0.
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Therefore

- N ,
w[\l/mo—1] = ';ln;+1<w1ﬁf?)>’

J

where wf;/n5*1 is in Cg (RY) and hence is in .# . Now for the first term on
the right hand side of (9.3) we obtain

U ﬁhw[\l‘;mo—l]ei“"‘)dn!
RN

/\
r+1 " u r+1 iCa,n)
h 'Zx RN\  0Ox whini"e an
j= I

J
ar+lu

r+1 | "
axi lo

N
échr+l Z

ji=1

(9.5)

For the second term on the right hand side of (9.3), we observe that since
moe M, and since §(1—w)/|n " eC=, it follows from Lemma 2.3
that  m, (1 —w)/jn " e M ,. Finally it is easy to see that

A-w)in|"es,.

Hence the second term is estimated C A" ! ul and the theorem follows
. i rel
in the case that » = 3.

The case r = 1 can be treated by elementary means. In this case the projection
is totally local and

u(ylx)—Pou(yh)=h_NJ [u(x)—u(hy)]dx.
| xI=y7 | <h/2
The assertion now follows using Taylors theorem.

We shall now prove a local version of Theorem 8 and then an analogous
result for Ritz-Galerkin methods.

Let Qy c= Q; == Qand P, q be as is Section 5.

THEOREM 9: Let r be odd and ue C*™** (Q,) n L, (Q). Then for all h suffi-
ciently small

hsug u(ha)— Py quiho)| S CH ™ (s, 0, +]| %10, 0 (9.6)
a€f2p
aeZN

where C is independent of h and u.
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Proof: Let U be as in the proof of Theorem 4. Then
sup |u(ha)— Py qu(ha)| S sup |u(ho)—Pou(ha)|

hoeQo haeQo
aeZN aeZN

+ sup | Poti(ha)— Py qu(ho)|.
haeQo
aeZN
In view of Theorem 8 we have
sup |u(ho)—Pou(he)| < CH ¥ |ty SCH ™ u|sy a0

haeQo
eeZN

Using Lemma 5.1 with y = r+1, it follows that

iu% | Poti(ho)— Py qu(ha)| £ Ch™ (|| Pott— Py qt||o, )
aheQo
aeZN

< CH*H[ulo,o
The desired result now follows.

THeorReM 10: Let r 2 3 be odd and u e C'** (Q,). Then for all h sufficiently
small

sup |u(ha)—Py qu(ha)]
hoeQo
aeZN

< {(h“(lnl/h)lu|4,Ql+”u~P1,Qu”_p’nl), r=3’ N;3} (9 7)
a hr+l|u,r+1,ﬂl+”u—P1,Qu“—,,,g,, otherwise.

Here p is an arbitrary but fixed positive integer and C is a constant which is
independent of u and h.

Proof: Let u be as in the proof of Theorem 9. Then
sup |u(ha)—PL9u(h<x)|

haeQo
weZN

< sup |u(ho)—~Pou(ha)|+| Pot~Pytt|g+|Pyu—Py qulo, o

aeZN
The first term on the right has been estimated in Theorem 9:

sup [U#(ho) = Poit(ho) | S CH™*Hit],oy S CH ™ ulowy ap

aeZN

In view of Theorem 6

h“(lnl[’h)]ul“,,21 if r=3and N2=3,
| Poti~Pu| < C{ W ulsy,q, if »=3 and N=1,2 or r=5
and odd and N arbitrary.
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Using Lemmas 6.1 and 8.3, it follows that for Q; cc Qy cc Q;:
| Pyit— Py qulo < C||Pyu—Py qul|-, q
< C(|[u=Pyu|o-, +||u=Py.all-5,0)
< CO¥?|ullra,+][u=Prall-p.0)

Taken together, these inequalities imply (9.7), which completes the proof.

10. THE NEUMANN PROBLEM

Let u satisfy

—Autu=f in Q (10.1)
M _0 on oQ, (10.2)
n

where Q is a bounded domain with smooth boundary 0Q, A is the Laplace
operator and §/0n is the outward normal derivative on dQ. The function f is
assumed to be in H*(Q) for appropriate s. It is well known that u is characte-
rized as the solution in H* (Q) of

D(u7 (P)+(ua (P) = (f’ (P)

for all ¢ € H' (Q). Here (u, ¢) is the L, (Q) inner product and

N (ou d¢
D(u, @) = —_—, — }.
. @ jgl(axj ax,.)

Now the Ritz-Galerkin approximation u, € S* (Q) to u is characterized by

D (uy, 0)+(uy, 0) = (£, 0) (10.3)

for all p € S*(Q). It was shown in [6] that the estimate

Nu—uyll2=r.a SCH || filo.a (10.4)

is valid. Hence we may apply Theorem 5 (with ¢ = 1 and P, qu = u,) to
obtain a maximum-norm estimate on an arbitrary compact subdomain €,
of Q. In Theorem 5 we take p = 2—r, r = 3 and combine (6.2) and (7.4) to
obtain

|“—“h|o‘no§ Chr(l“'r.m'i'”f”o,n)- (10.5)
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If we confine our attention to interior mesh points &y € Qg, then com-
bining (10.4) and (9.7) we obtain the following ‘‘superconvergence’’ result:

@A) Ifr=3and N= 1,2 orif r 2 5is odd and N arbitrary (but fixed)

sup I“(hY)—“h\h'Y)l = Ch'“(|u],+1'n‘+||f”0'ﬂ). (10.6)

hyeQo

@) fr=3and N = 3:

sup {u(hy)~uy(hy)| £ Ch*An k) (Jule,q,+]| Fllo).  (10.7)

hyeQo

Now suppose that for xe Q, u, is of the form u, = ) C9 v (h ! x—a).
Let the constants d, be chosen satisfying (8.8) with z = r—1. Then from
Theorem 8 we have the following:

@) IfN=1landr=30orN=2and r 2 3is odd

sup |“(h'Y)—ZCady—u| é Chzr—z(lullr—Z,ﬂl-i—“f”O)' (10'8)

hyeQo

(ii) In all other cases when r = 3:

sup |u(h) =Y Cudymy| € CH* "2 (l/h) |t |30—2,0,+| £ flo) (10-9)

hyeQo

11. THE AUBIN-BABUSKA PENALTY METHOD USING THE EXTRAPOLATION
METHOD OF KING AND THE BABUSKA LAGRANGE MULTIPLIER METHOD

~~ On a domain Q with smooth boundary dQ let u be the solution of

u=0 on Q. .1

—Autu=f in Q, }
In Aubin [1] and Babuska [4] a method was introduced for approximating
the solution of (11.1) in which the trial function need not satisfy the boundary
conditions and may be taken to be §* (Q). For this method the interior equations
are the same as (10.3) for the Neumann problem. The error estimates proved
in [1] or [4] do not show that method is optimal in H*~" (Q); i. e., (10.4) was
not proved. In King [11] an extrapolation method for the penalty method
was given for which the estimate (10.4) remains valid. What is important to
us here also is that the interior equations still remain to be (10.3) and the
subspaces S* may be used. Hence in this case the estimate (10.5), (10.6),
(10.7), (10.8) and (10.9) are valid.

In Babuska [3] another method was introduced for approximating solutions
of (11.1). Here use is made of another set of approximating functions on 6Q
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which may be thought of as approximating du/dn ou 0Q. These are inde-
pendent of the trial functions on Q which may be taken to be S". As before
the important point for our purpose is that the interior equations are exactly
the same as (10.3) and the estimate (10.4) holds. Hence the estimates (10.5),
(10.6), (10.7), (10.8) and (10.9) are valid.

12. ESTIMATES FOR THE GREEN’S FUNCTION

For simplicity let us consider the Neumann problem of Section 10 and

let G (x, y) be the corresponding Green’s function. Let Q, and Q';) be two
disjoint compact subdomains of Q. We shall consider G (x, y) for x e Q,
and ye Qy; i. e. separated points in the interior of Q. The function G, for y e Q,
fixed satisfies

D(G(., ), ©+(G(., ), ©) =0(y)

for ¢ € H' (Q) n C°(Q). Now the Ritz-Galerkin Green’s function corres-
ponding to the approximation in Section 10 satisfies

for e Sh(Q). Again we assume r=3. Now we want to estimate
G (x, y)~G, (x, y) when x e Q, and y € Q;, and # is sufficiently small. For
fixed y € Q) we have

D(G(., )= Gu(., 3, ©)+(G(., y)= Gy(., ¥), ) =0

for all ¢ € S#(Q,), where Q, is such that Q, c= Q, and Q, n Q is empty.
Hence we may apply the estimate of Theorem 5 which yields

IG(x, y)— Gu(x, )’)Io,no = C(hr|G(-a y) lr,m
+”G(> y)—Gh(: J’)”——p,m) (121)

for p fixed but arbitrary. Clearly | G (., y) |,, , is bounded.
In order to estimate the last term on right of (12.1) we observe that

NG, =Gl M l-p.as G = Giles Mill-p.0
sup |(G(’ y)_Gh(v }’), U)l

vorw ol

Now for each ve C? (Q) let w be defined by

(12.2)

—Aw+w=v in Q,

?_u_;=0 on 0Q.

on
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Then

where w, is just the Ritz-Galerkin approximation to w in S*(Q). Furthermore
the estimate

[wllps2.2 = Cllo]l,.a (12.4)

is valid. Hence we obtain from (12.2), (12.3) and (12.4) that

G, =G Ml-paSC  sup L@z 1a.5)
we HP*2(Q) ”w“,,”,n

Now since y € Qp we may apply the interior estimate (12.5) to w—w,; i. e.:
i W“whlo,nb S Ch'( | wlr‘ﬂb"'” 0”0'9)’
where Q) < < Q) and QN S—);, is empty.
Clearly then for p = r—2+[N/2]+1 we obtain by means of Sobolev’s
inequality
fw=wy o, 0, £ CH||w]|p+2, 0 (12.6)
Combining (12.5) and (12.6) we see that
1G (. =Gy D |-p.0 S CH.
This together with (12.6) yields
|G(x, y)— Gu(x, | S CH (12.7)
for x e Qy and y € Q.
13. BOUNDARY VALUE PROBLEMS WITH NON-SMOOTH DATA

As an application of the previous estimates we shall consider pro-
blems (10.1) and (10.2) in the case that the restriction of f to Q, is assumed to
belong to L; (Q,) and outside of Q,, fis smooth. Without loss of generality
in the following estimates we may assume that f(x) = 0 for x e Q\Q,. The
solution u to this problem is given by

u(x) =LG(x, »f»y)dy, a.e.
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where G is the Green’s function introduced in Section 12. Now even though f
is not necessarily in L, (Q) the equations (10.3) make sense and there exists a
unique solution u, € $" () to this problem. Furthermore it is given by

u,(x) = LG"(X' v f(y)dy.

Now let Q; be as in the previous section; i.e., Q) == Q and Q, N Q
is empty. Then we have

u(x)—uy(x) = L (G(x, y)—Gu(x, y)) f{y)dy

for x e Q. By the estimate (12.7) we obtain immediately

|”—“h‘o.n‘; = Ch'J;) ]f()’)|d}’~

This shows that away from the singularities of f the convergence rate in
the interior of Q is still as high as that of the smooth case. The analysis of
Section 12 and 13 is not restricted to the Neumann problem. Exactly the same
results hold for the two methods discussed in Section 11 applied to Dirichlet’s
problem and many other situations. The two important points in our appli-
cations are that the interior equations (6. 1) be satisfied and that good estimates
for negative norms of the error in a given approximation be available.
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