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QUASI-CONVEXITY,
STRIGTLY QUASI-CONVEXITY

AND PSEUDO-CONVEXITY
OF COMPOSITE OBJECTIVE FUNCTIONS («)

by Bernard BEREANU (2)

Résumé. — Dans un article précédent on a donné une condition nécessaire et suffisante
•qui assure qu'un certain type de composition de fonctions fait aboutir à des fonctions
convexes. Dans cet article on étend ce résultat aux f onctions convexes généralisées (quasi-
convexes, strictement quasi-convexes ou pseudo-convexes) fournissant ainsi une méthode
pratique de reconnaissance des fonctions ayant ces propriétés. On discute des applications
a Véconomie mathématique et à la programmation mathématique.

1. In practice the following situation occurs. One has some freedom to
choose a real function ƒ in m variables which will appear in the mathematical
model through its composition fou with a vector valued function
u — (uu ..., um) of n variables. The economie interprétation of the compo-
nents ofw may justify the assumption that some are concave (for instance utili-
ties), while other are convex (describing situations of increasing returns per
unit increase of input), the type being specified for each component, but the
functions themselves having the possibility to differ from one application to
another. In this case it may be important to choose ƒ so that ƒ o u be convex
(concave) for any feasible w. This happens for instance in optimization pro-
blems if the analyst has to choose an overall criterion function ƒ to incorporate
several conflicting objectives represented by «,(* — U •*•> w ) -

In Bereanu [4] it was proved that the composite function F —fou is
convex for every vector function u with the range in the domain of ƒ and
having its components, separately convex or concave if and only if fis convex
and partially monotone, increasing in the convex components and decreasing
in the concave components (3). An analogous resuit is valid when convex is
replaced by concave.

(1) This paper is a revised version of Preprint 7101, Centre of Mathematical Statistics,
Bucharest, April 1971.

(2) Centre of Mathematical Statistics of the Academy of the Romanian Socialist
Republic, Bucharest.

(3) In [4] this theorem was proved assuming only mid-point convexity (convexity
in the sensé of Jensen).
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16 B. BEREANU

Recently Mangasarian [17] proved that the sufficiency part of this theorem
remains valid when convexity 9 as an attribute of F and ƒ, is replaced by quasi-
convexity or pseudo-convexity.

The purpose of this note is to prove the mentioned theorem of [4] when
quasi-convexity or strictly quasi-convexity or pseudo-convexity of F and ƒ is
substituted to convexity. A characteristie property of quasi-convex function&
is given in Theorem 1.

Applications to mathematical économies and mathematical programming
are briefly diseussed.

2. Generalized convexity. There are varions extensions of classical con-
vexity which maintain certain basic properties of convex functions important
for mathematical programming. We shall recall some of the définitions to be
used and we shall give hère a characterization of quasi-convex functions.
Although some results remain valid under more gênerai conditions, the real
valued functions considered will be defined, if not otherwise stated, on subsets
of Euclidean spaces.

The function ƒ ; D —> R9 where D is a convex set in Rm and R dénotes the
real line, is convex on D provided that for every x and y in D and for every
X€[0,l]
(1) fÇkx + (1 - % ) < X/(*) + (1 -X)/(j).

(To simplify the notations we shall use the symbol + for addition of both
vectors and sealars.)

The function ƒ is said quasi-convex on D [?,_pp. 117418] if

(2) f(Xx + (1 — X)>0 < max (f(x)J(y)) (x, y € D\ 1 € [051],

or, equivalently, if for arbitrary real a the set { x \ f(x) < a } is either empty
or convex.

If
(3) f(y) < f(x) implies f (lx + (1 — X)̂ ) < f(x) for every X € (0,1),

je, y€D, then the function ƒ is strictly quasi-convex (*) [16].

The above définitions apply also when D is a convex subset of a linear
space.

Let now D be an open set, not necessarily convex, in Rm, and f:D-+R
be differentiable and dénote by Vf its gradient. Using the terminology of

(1) M. A. Hanson in [11] uses functionals with this property but does not employ
the term strictly quasi-convex, while Stoer and Witzgall [21, p. 169] call pseudo-convex
a function having property (3). In the present paper we shall use the terminology of Man-
gasarian [16].

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



COMPOSITE OBJECTIVE FUNCTIONS 1 7

Mangasarian [16] the function ƒ is said pseudo-convex if for every x and y
in D,

(4) (y - xY V f(x) > 0 implies f(y) > /(x).

It is easily seen that (1) implies (2) and (3). Hence a convex function is
strictly quasi-convex and quasi-convex.

However a strictly quasi-convex function need not be quasi-convex (1).
This verbal anomaly disappears when in addition, lower semicontinuity is
assumed [14]. A difierentiable convex function is obviously pseudo-convex.
For difierentiable functions the hierarchy, in order of increasing generality
is the following : convex, pseudo-convex, strictly quasi-convex and quasi-
convex [16].

A function g is respectively concave, pseudo-concave, strictly quasi-concave
or quasi-concave if — g is convex, pseudo-convex, strictly quasi-convex or
quasi-convex.

A characteristic property of quasi-convex functions is given by the follo-
wing theorem.

Theorem 1. Let X be a convex set in an arbitrary linear space and let
f ; X—> R beareal valued function, The following two statements are equivalent.

(i) The function f : X-> R is quasi-convex.
(ii) If F is an arbitrary subset of X and coY is its convex huil, then (2)

sup f(x) = sup f(x)
V?) COY Y

Proof (i) -v(ii). It is enough to prove that for an arbitrary set
we have

(6) sup f(x) < sup f(x)

If sup f(x) = + oo, is nothing to prove. So we suppose that sup f(x) — a9
Y Y

where a is a real number, and let Xa = { x \ f(x) <. a } .

Obviously Y C Xa. But Xa is a convex set because (i). Furthermore Xa 3 coY
because the minimal property of the convex huil.

(1) See [21, p. 170] for examples of functions which are strictly quasi-convex, but not
quasi-convex.

(2) After this paper was circulated as a preprint it was discoyered that property (5)
is contained in a paper by L. BRAGARD, « Programmation quasi-concave », Bull. Soc.
Royale des Sciences de Liège, 9-10, 1970, pp. 478-485, where a different proof is given.
However in that paper it is not shown that this property is characteristic for quasi-convex
functions.

n° R-l, 1972.



18 B. BEREANU

Hence

(7) supf(x) < snpf(x) < a = supf(x)
coY Xa Y

(ii) —> (i). We must show that for an arbitrary real a for which Xa is not
empty, Xa is convex.

Let je1, x2 e Xa and X € [0,1]. Because (ii) we have

(8) fÇkx1 + (1 — X)x2) < max [ƒ(*>), f(x2)] < a. Hence Xx* + (1, — X)x2 e Xa

and the proof is completed.

Corollary 1. Thefollowing two statements are equivalent :

(i) The function f : X-* R is quasi-concave.

(ii) If Y is an arbitrary subset of Xand coY is its convex huil then

(9) inf/(x) - inf/(x)
coY Y

Corollary 2. (Martos [18]). A reaUvalued function defined on a convex
set L C Rm is quasi-concave if and only if it attains its global minimum on each
polytope contained in L9 in one of the vertices.

As seen from above, quasi-convex functions share with convex functions
property (ii) and also the convexity of Ievel sets. It can be easily verified that
every local minimum of a strictly quasi-convex function is a global minimum.
The same is true for pseudo-convex functions [16, p. 284].

" Extensions of the Kühn-Tucker theorem [13] to quasi-convex and pseudo-
convex programming are given in [1] and [16].

3. Invariance of generalized convexity under composition with affine
functions

Let D and Dx be bounded convex sets in Rm, respectively Rn. We consider
the real valued function ƒ : Z) —»• R and the family C of all vector valued affine
functions / : Dx - • Rm. The set Dt = { x | x € Du l(x) € D } is convex. We fur-
ther dénote

(10) F(x) = f o l =f{h(x\ ..., /„(*)), x € Dv

We shall say that a function is G-convex (generalized convex) if it is quasi-
convex or strictly quasi-convex or pseudo-convex. An analogous définition
will be used for G-concave functions.

With these notations we have the following theorem which generalizes
lemma 2 of [4].

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



COMPOSITE OBJECTIVE FUNCTIONS 19

Theorem 2. The function F(x) = fol(x€ D,) is G-convex for every / € C
if and only if the function ƒ is G-convex in D.

Proof, When G-convex means quasi-convex, or strictly quasi-convex the
theorem follows from the fact that these types of G-convexity are equivalent
to G-convexity on every line.

Suppose now that F(x) is pseudo-convex in Dt for every / € £, while f (y)
which is differentiable in D is not pseudo-convex there. Hence there are points
y1, y2 eD which satisfy

(H) (j2-/)V/(y)>0

and

(12) f(y2)<f(yl).

There are / € £ and xl, x2 € Dl which satisfy

l(xl) = j i and /(x2) = y2.

If V l(x) is the matrix ^ (i = 1,..., m ;j = 1,..., n) and ' indicates
dxj

transposition, we have from (11) :

(13) (X2 _ xiy y F(xl) - (x2 — x1)' V/C^1) V/(x!) - ( j 2 — j 1 ) ' Y/O'1) > 0.

Because i 7^) is supposed pseudo-convex, (13) imply

(14) F(x2)
which contradicts (12).

The direct implication follows immediately. Indeed if

from (13) follows f(y2) >f(yl) where y1 = l(x% i = 1, 2, Le. F(x2) > F(x !).

The if-part of the theorem for the quasi-convex and pseudo-convex cases
is contained in Mangasarian [17],

We have the f ollowing obvious corollary.

Corollary 3. Theorem 2 remains valid if G-convex stands for lower semi-
continuous strictly quasi-convex.

Corollary 4. The function F(x) = ƒ o l (x € Dt) is G-concave for every l € C
if and only if the function f is G-concave on the convex set Z).

n° R-î, 1972.



20 B. BEREANU

4. Generalized convex, composite fonctions. A function ƒ :£>-> R(D C
is said partially monotone in D if the partial functions

f(i) '' Xi

are, separately for each i9 monotone increasing (non-decreasing) or monotone
decreasing (non-increasing). Let Ix and I2 be two sets of indices such that
Ix O I2 = 0 and Ij U J2 = { 1,..., m } . Dénote by U(D ; Iu I2) the family
of vector valued functions u — (ul9..., um) defined on some non-empty convex
set Dx in Rn, with their range in D> the components ut being convex if i € A,
and concave if * € /2 . In particular U(D ; Iu I2) contains the set C of functions,
affine component-wise on Dx.

Theorem 3. The function F=fou is G-convex for all u € U(D ; Iu I2)
if and only if the function f is G-convex in D> and partially monotone, i-increa-
sing ifi€ll9 i-decreasing ifi€l2. Here G-convex stands for quasi-convex, or
strictly quasi-convex and lower-semi-continuousror> pseudo-convex-and f and u
restricted to be differentiable.

Proof Sufficiency when G-convex means quasi-convex or pseudo-convex
follows from [17]. It remains to be proved for ƒ strictly quasi-convex.

Suppose we have for some JC1, x2 in some convex set Dx on which F ~ f o u
is defined :

. F(x2) < Fix1), Le, f(u(x2)) < /(«(x1)). Because ƒ is strictly quasi-convex
the last inequaïity implies

(15) fiM*1) + (1 - *)u(x2)) < f(u(x1)) for every X € (0, 1).

But because ut is convex when Ï € / I and concave when z € / 2 , and the
monotonicity assumptions concerning ƒ, we have

(16) /(«(Xx1 + (1 - X)x2) < f(ku(xl) + 0 - *M*2)).

Hence from (15) and (16) follows

F(lxl + (1 — X)x2) < Fty1), i.e. F(x) is strictly quasi-convex.

Necessity. From theorem 2 follows that if F(x) is G-convex for all
u € U(D ; Il912), then ƒ must be G-convex because we can take / defined
there as the function u (the affine components of / may be considered, as
required, convex or concave).

Partial monotonicity off It is enough to prove it for one of the variables^
say the first one. Let assume that 1 eIx% Without reducing the generality we
may take m = 1 and let D be an interval on the real line. We must prove that ƒ
is monotone increasing in this interval if F and ƒ are G-convex for all

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



COMPOSITE OBJECTIVE FUNCTIONS 21

u € U(D ; Il912)- Suppose that this is not true. Hence there are y* and A* > 0
with y* € A J* + A* € A such that

(17) /(y*) —f(y* + A*) = A-L > o.

We can take as function ux : Dt—> R, the convex function w*(x) defined by :

2A*
(18) «*(*) =

—a

where Z^ is an interval on the real line, a9bf€Dua < b and |. | represents
absolute value.

We have
«•(a) = u*(b) = y * + A*(19)

and

(20)

a) G-convex : quasi-convex. We should have from (2)

(21) F(l/2(a + b))) < max [F(a), F(b)] i.e.

But following relations (19) and (20), this contradicts (17).
b) G-convex : lower semicontinuous strictly quasi-convex. Since a lower

semicontinuous strictly quasi-convex function is quasi-convex [14], partial
monotonicity of ƒ follows from a). However the direct proof, using the same
function (18), throws some light on the necessity of the lower semicontinuity
not yet used in the proof.

From (17), (19) and (20) follows

(22) F(à) = F(b) < F(ll2(a + b)).

But there are points x € (a, l/2(a + b)) which satisfy F(x) > F(à), because
otherwise the function F would not be lower semicontinuous in l/2(a + b).
Let JC* be such a point. Thus F(b) < F(JC*). But this implies F(y) < F(x*)
for every y € (x*, 6). However we cannot have F(l/2(a + b)) < F(x*) because
of (22) and the strict quasi-convexity of F. Hence the contradiction is proved.

c) G-convex : pseudo-convex. The proof follows from the case a) since a
pseudo-convex function is quasi-convex and in proving à) we could have used
a differentiable function u(x), say a parabola satisfying (19) and (20).

We supposed that the component considered, u*(x), is convex. A similar
proof is valid in the concave case. We only have to use instead of the function

n° R-l, 1972.



2 2 B. BEREANU

defined in (18) a concave v-shaped function, or a corresponding parabola.
Thus the proof of theorem 3 is completed.

REMARK : The sufficiency part of the theorem is valid without assuming
that the strictly quasi-convex function be lower semicontinuous.

REMARK (*) : Theorem 3 remains valid if G-convex stands for explicit
quasi-convex in the sense of Martos [18].

Corollary 5. When ux{x) is linear, the if-part of theorem 3 is valid without
i-monotonicity.

Proof. This follows from the proof s of theorems 2 and 3.

Corollary 6. The function F — f o u is G-concave for all u € U(D ; Il912)
if and only if the function f is G-concave in D and partially monotone, i-decrea-
sing ifi e Il9 and i-increasing ifi G /2. Here G-concave stands for quasi-concave,
strictly quasi-concave and lower semicontinuous or, pseudo-concave and f and u
restricted to be differentiatie.

APPLICATIONS

5. Social welfare fonctions. The définition of optimum welfare in terms
of Pareto optimality maintains a certain indeterminacy which may be removed
by explicitly introducing a social welfare function [12, 20]. This is a function
of the utility levels of all individuals or of groups of individuals and measures
the social welfare. There are other considérations which lead to the intro-
duction of a social welfare function to be maximized subject to various res-

—trictions [12, 20]. Let—m be the number of individuals or—more realistically,
of determined groups which compose the society and n be the number of
commodities and productive services. We consider the vector function
u : Dx—> Rm

9 where D1 is a bounded subset of Rmn. The components of u
are the utility functions of the m individuals or groups (2). We suppose that u
belongs to the family of all concave functions defined on Du denoted by
UiDi). Let ƒ : Rm —>* R be a real valued function called an utility aggregation

function. For a given utility vector function u and a given aggregation function ƒ,
the social welfare function w is defined by

w =fo u

While the components of u are chosen by the individuals or groups, the aggre-
gation function ƒ is established by some planning agency and dépends on the
institutional framework in which such décision is taken. Such a function will

(1) I ara indebted to B. Martos for this remark.
(2) The case of dependent utilities, i,e. the utility of an individual (group) dépends

also on the consumption and production of others, is thus included.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



COMPOSITE OBJECTIVE FUNCTIONS 23

have to be choosen without full information about the function u which may
also change during the time period in which ƒ remains effective. It is therefore
a noteworthy problem to find conditions to impose on ƒ, guaranteeing that
the resulting social welfare function will have certain utility-like properties,
independent of the choice of u within the family UiD^.

As remarked by Arrow and Enthoven [1, p. 792] the minimal property
of all utility functions is quasi-concavity. We have the following immédiate
conséquence of Corollary 6.

Theorem 4. The social welfare function w —fou is quasi-concave for
every vector of utilities u e U{Dl) if and only if the aggregation function f is
a quasi-concave function partially increasing in each component,

Analogous results are valid if we impose on w the condition to be strictly
quasi-concave or pseudo-concave and consequently in this case each local
maximum is a global maximum.

6. Non-linear, non-convex programming

In non-linear, non-convex programming it is often important to establish
that a local minimum is also a global minimum. Mangasarian shows in [17]
that some non-convex programming problems recently considered by various
authors have pseudo-convex objective function and thus every local minimum
is a global minimum. But this argument cannot be used in the case of non-
differentiable objective function.

However from the if— parts of theorem 3 and corollary 6 and from the
strict quasi-convexity of the function f(y, z) = y/z on either of the convex
sets { (y, z) | O, z) € E2, z > 0 } or { (j , z) \ (y, z) e E2, z < 0 } and its strict
quasi-concavity on { (y, z) \ (y, z) G E2, y > 0 } or {(y, z) | ( j , z) € E\ y < 0 },
follows a resuit analogous to (A) of [17]. Let 0(JC) = p(x)/a(x), where p(x),
G(X) are functions defined on a convex set Dt €En.

Suppose that one of the following assumptions hold in Dj

P °
1) convex >_ 0 concave > 0
2) concave .< 0 convex < 0
3) convex ^ 0 convex > 0
4) concave j> 0 concave < 0
5) linear < 0 convex =£ 0
6) linear >_ 0 concave ^ 0
7) convex linear > 0
8) concave linear < 0

n°R-l, 1972.



2 4 B. BEREÀNU

Then 8(x) is strietly quasi-eonvex on Dt and every local minimum is a
global minimum. The result remains valid if we replace convex by concave and
conversely, and minimum by maximum.

If 0(x) = p(x)cr(x), then the following implications hold on Dx (analogous
to C of [17]).

p a 0
9) convex <_ 0 concave > 0 =>• strietly quasi-convex

10) convex < 0 concave ^ 0 => strietly quasi-convex
11) convex < 0 convex _< 0 => strietly quasi-concave
12) concave >, 0 concave > 0 => strietly quasi-concave.

As an example of applications of these results to non-convex non-differen-
tiable programming we can give the programming problems investigated by
Bector [5J. It follows from 12) that the problems I, III and IV considered
there, have strietly quasi-concave objective and linear restrictions and conse-
quently a local maximum is a global maximum.

7. Stochastic programming

a) Consider the non-convex programming problem investigated by various
authors [3, 6, 7, 8, 10, 15] which appears in relation to the minimum risk
solution of stochastic programming (or P-model)

max
c'x— Ax±b , x > 0

where A is an m X n matrix, Fis an n x n positive dennite matrix, c and x are
n-dimensional vectors, b is an m-dimensional vector and a is a scalar.

It follows from 5) of § 6, that if on the set X = { x\Ax < b9 x ^ 0 } we
have c'x — a < 05 then the maximand is strietly quasi-convex. It is obviously
lower semicontinuous and hence it is also quasi-convex. From theorem 1 it
follows that if the set X is bounded, then the optimum is achieved in one of
its vertices.

If on X we have c'x — a ^ 0, then by replacing in 6) concave by convex,
we obtain that the maximand is strietly quasi-concave and a local maximum is
a global maximum.

b) Suppose that in the context of a given family of programming problems
our information about the state of nature is represented by the probability
distribution function F(z) of a certain random vector b = (bl9 ..., 6m). The
family of programming problems we have in view is the following :

(23) min/(x)
X

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



COMPOSITE OBJECTIVE FUNCTIONS 2 5

subject to

(24) P J fîYY.v.Tî l >/> , 0 < p < 1

l SmO) = *m J
where f(x) is convex and g^x), i = 1,..., w are concave fonctions of n variables
and P stands for probability.

In practice F(z) is obtained by fitting some theoretical probability distri-
bution to statistical data and there is some freedom to choose the type of
distribution to be fitted.

Therefore it is interesting to obtain conditions which, if satisfied by F(z),
assure that the non-linear programming problem (23), (24) has required con-
vexity properties (i.e. it is a convex programming problem or at least (24)
defines a convex set).

We have the following

Theorem 5. A sufficient condition that the function

cp(x) = P {gl(x) > bx, ..., gjpc) > bm }

be concave (quasi-concave) is that F(z) be concave (quasi-concave). The condi-
tion is also necessary if 9 (x) is to be concave (quasi-concave) for every

g(x) = (gi(x), ..., gm(x))

with components defined and concave on a given bounded convex set in En.
Proof <p(x) = F(gx(x), ..., gm(x)). Hence the statement of the theorem fol-

lows from [4] and theorem 3.

Corollary 7. The function <p(x) is quasi-concave if F(z) is logarithmic con-
cave (i.e. log F(z) is a concave function).

Proof This follows from the fact that

+ (1 - \)z2) > [FtzJ]* [F(z2)V-* implies

FÇKz, + (1 — X)z2) > min [F(zx)9 F(z2)].

REMARK. When the random vector b has a multinormal distribution, F(z)
is logarithmic concave ([2, 19]).

Aknowledgements. I am indebted to Werner Œttli, Cristian Bergthaller and the referee
for useful remarks on an earlier draft of this paper.
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