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On the diophantine equation x2 = yp + 2k zp

par SAMIR SIKSEK

RÉSUMÉ. Nous étudions l’équation du titre en utilisant une courbe
de Frey, le théorème de descente du niveau de Ribet et une me-
thode due a Darmon et Merel. Nous pouvons determiner toutes
les solutions entibres x, y, z, premières deux à deux, si p ~ 7
est premier et k ~ 2. De cela, nous déduisons des résultats
sur quelques cas de cette équation qui ont ete étudiés dans la
litterature. En particulier, nous pouvons combiner notre résultat
avec les résultats précédents de Arif et Abu Muriefah, et avec ceux
de Cohn pour obtenir toutes les solutions de l’équation x2 + 2k =
yn pour n ~ 3.

ABSTRACT. We attack the equation of the title using a Frey curve,
Ribet’s level-lowering theorem and a method due to Darmon and
Merel. We are able to determine all the solutions in pairwise
coprime integers x, y, z if p ~ 7 is prime and 2. From this
we deduce some results about special cases of this equation that
have been studied in the literature. In particular, we are able to
combine our result with previous results of Arif and Abu Muriefah,
and those of Cohn to obtain a complete solution for the equation
x2 + 2k = yn for n ~ 3. 

1. Introduction

In [8] Darmon and Merel study the diophantine equation x2 = yp + z~
along with two other variants of Fermat’s equation. In this paper we show
that the method of Darmon and Merel can be adapted to give results about
the more general equation

(1) x2 = yP + 2kZp

where k is a positive integer, and p a prime. Studying this equation unifies
the study of two well-known exponential diophantine equations appearing
in the literature: x2+2 k =yn and x2-2 k =yn (see ~1~, [3], [5], [6], [10]).
We shall call an integral solution x, y, z of equation (1) primitive if x, y, z
are pairwise coprime, and non-trivial if 0. The reader is forewarned
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that our definitions of non-trivial and primitive are different from those of
[8]. Our main result is the following.
Theorem 1. Suppose k &#x3E; 2 and that p &#x3E; 7 is prime. Then the onl y non-
trivial primitive solutions of equation (1) are k = 3, x = ~3, y = z =1 and
p arbitrary.

In Section 3 we will give the implications of this theorem to the two
aforementioned exponential equations. In particular, we are able to com-
bine our theorem with earlier results of Arif and Abu Muriefah, and of
J.H.E. Cohn, to give a complete solution to the equation x2 + 2k = 
Our approach in proving Theorem 1 is to associate to each putative solu-

tion of equation (1) a Frey curve and apply Ribet’s level-lowering theorem
to show that the Galois representation on the p-torsion is isomorphic to a
representation of a much smaller level. This will be sufficient to eliminate all
the cases of the theorem except for k = 3 where we have to (slightly) adapt
the method of Darmon and Merel. Since we are following well-trodden
paths here, our exposition will be rather terse. Apart from [8] the reader
may wish to compare what follows with [7] and [12, pages 397-399].

It has recently come to my attention that W. Ivorra [11] proves stronger
results for equations (1) and (7) using similar methods.

2. Proof of Theorem 1

Assume the existence of a non-trivial primitive solution 2 and

p &#x3E; 7 prime. We will show that this forces k = 3 and y = z = 1. It is

helpful to give a complete list of assumptions we make about x, y, z, k, p
(1) Equation (1) is satisfied.
(2) k &#x3E; 2.

(3) p &#x3E; 7 is prime.
(4) x, y, z are pairwise coprime, odd, and non-zero.
(5) x - 3 (mod 4).

There is no loss of generality in making these assumptions; for the fourth
statement above we need to absorb any power of 2 dividing z into the 2k
in equation (1). For the fifth one we need to replace x by -x if necessary.
2.1. The Frey Curve. Denote by E the ‘Frey curve’

In standard notation we have,
/A-2 ~~.~~3

Let Amin be the minimal discriminant of E, and N be its conductor. Fi-

nally, if a is a non-zero integer then denote by rad(a) the product of distinct
primes dividing a.
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Lemma 1. The values of Amin and N are given by the following table:
&#x26; , .

Proof. It is easy to show that c4 and A are not simultaneously divisible by
any odd prime. We deduce thus that the curve is minimal and has multi-
plicative reduction at all primes dividing yz and at no other odd primes.
This shows that the table entries are correct modulo powers of 2. It re-
mains to study the reduction at 2. Recall that x2 Thus we

may rewrite the equation for E as

Suppose first that k &#x3E; 6. Replace X by 4X - x and Y by 8Y + 4X. After
simplifying we reach the model

I . 1 B

This model is integral since we assumed that x = 3 (mod 4). It is minimal
at 2 since the ’new c4’ is 4x2 - 3y~ which is odd. Hence this model is

global minimal. The formulas for Amin for the cases k = 6 and k &#x3E; 6 are
now immediate on noting that the change of variable above forces Amin =
2-12 Ll. .

If k = 6 then clearly 2 does not divide Amin and so it does not divide N.
Thus suppose k &#x3E; 7. The reduction modulo 2 of the model (4) is

In either case the singularity at (0,0) is a node. This shows that 2 divides
the conductor ~V precisely once.

For k = 2,3,4,5, it is clear that the curve is already minimal at 2 since
212 does not divide A. The rest now follows from Tate’s algorithm. For
the benefit of the reader who would like to verify the details we point out
that it is best to make the following changes of variable in the model (3)
at the outset:
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2.2. The Galois Representation. Now let

be the Galois representation on the p-torsion of E. To be able to apply
Ribet’s level-lowering theorem, and complete our proof, we will need to
show that p is irreducible. For this we need two lemmas, the first of which
is elementary.

Lemma 2. The equation a2 = :1:1 :I: 2~ has no solutions for m &#x3E; 2 except
for32=1+23. 

_

Lemma 3. The j-invariant of E is non-integral except i f k = 3 and y =
z=1.

Proof. Suppose that the j-invaxiant

is integral. It is easy to use this and the assumptions listed at the outset
of the proof about x, y, x, k, p to show that y == ±1 and z = ±1. From
equation (1) we see that x2 = +1 ± 2k, and this forces k = 3 and y = z = 1
by the previous Lemma. 0

Lemma 4. p is irreducible.

Proof. If we are in the case k = 3 and y = z = 1 then the curve E is
curve 32A4 in Cremona’s tables [4] and so we know that it does not have
isogenies of odd degree. Thus p is irreducible. Suppose we are not in this
case. We note the following,

~ E has a point of order 2. This is clear from the model (2) given for
E. 

’

~ The j-invariant of E is non-integral (by the previous lemma).
~ E has some odd prime of multiplicative reduction. Otherwise, from

the formulas for the conductor given in Lemma 1 we see that y = 
and z = ::1:1, which is impossible as above.

These three properties are enough to force the irreducibility of p for p &#x3E; 7;
for this see the proof of [8, Theorem 7]. 0

2.3. Conclusion of the Proof. It has been shown that all elliptic curves
over Q are modular [2]. However, we note in passing that our Frey curve
E has semistable reduction away from 3 and 5 (by Lemma 1), and so
its modularity follows from an earlier theorem of Diamond [9] which is a
strengthening of the work of Wiles and Taylor [18],[17].
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Let N(p) be the Serre conductor of p (see [15, page 180] for the def-
inition). It follows from the properties of the Serre conductor and our
Lemma 1 that

For this see [15, page 207] or [7, page 264]. Applying Ribet’s level-lowering
theorem [14] we see that p corresponds to a mod p eigenform of weight 2
and level 2,4,8 or 16 if k ~ 3 and of level 32 if k = 3. Since there are no
weight 2 cusp forms of levels 2, 4, 8,16 we immediately deduce that k = 3.
We will henceforth assume that k = 3, and to complete our proof we

must show that y = z = 1. The rest of our proof will mimic the approach
made by Darmon and Merel [8, pages 88-99] for the equation xP + yP = z2
(which really corresponds to the case k = 0 of our equation 1). We saw
above that p corresponds to a mod p eigenform of weight 2 and level 32, and
we know that our Frey curve E possesses a point of order 2. This is exactly
the same situation as in Darmon-Merel for their equation mentioned above.
Their arguments show that if p - 1 (mod 4) then E has potentially good
reduction at all odd primes (see the proof of [8, Proposition 4.2]). As before
this is just saying that y = tl and z = ~1. We immediately see that y = 1
and z = 1 (since k = 3). We may thus assume that p - 3 (mod 4).

Proposition 4.3 of [8] shows that the image of p is isomorphic to the
normalizer of the non-split Cartan subgroup. Then Theorem 8.1 of [8]
shows that the j-invariant of E belongs to Z[~]. Moreover, p does not
divide yz by the same argument as in the proof of [8, Corollary 4.4]. Hence
we know that j is in Z, and from Lemma 3 above we know that y = z = 1
as required.

2.4. Exceptions to Theorem 1; the cases p  7 and k = 1. The
reader will probably be wondering where our proof fails for the cases p  7
and k = 1. For p  7 we are unable to prove the irreducibility of the Galois
representation p. For k = 1 the Serre conductor of p is 128, and we know
that the dimension of SZ(ro(128)) is 9. So far as we know, there are as
of yet no methods developed to deal with cases where the dimension after
level-lowering is greater than 1.

3. Special Cases

3.1. The equation x2 +2 k = yn. In [5] J.H.E. Cohn shows, for k odd,
that the equation

has only the following solutions in positive integers x, y with n &#x3E; 3
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for a &#x3E; 0.
The case with k even has proved to be more troublesome. In [1] Arif

and Abu Muriefah made a plausible conjecture as to the solutions with
k = 2m. Cohn [6] proves the conjecture for most values of m less than
1000, including all those less than 100. Equation (5) is of course a special
case of (1) corresponding to the case z = -1 provided that n = p is an
odd prime. It turns out that our Theorem 1 is enough to complete the
resolution of (5).
Theorem 2. (Conjecture of Arif and Abu Muriefah) If n &#x3E; 3, k = 2m,
the diophdntine equations (5) has precisely two families of solutions given

for and 11-23M 3M + 1.

Proof. We shall use the results of ~1~, [6] to reduce the theorem to a special
case of Theorem 1. It is shown in [1, page 300] that n must be odd, and
that there are no further solutions with x, y even. It is enough therefore to
show that there are no solutions to the equation

for m &#x3E; 0, p &#x3E; 3 prime, and x, y odd integers. However Cohn showed that
any such solution to equation (6) must satisfy m &#x3E; 100 ([6, page 462]) and
p = 1, 4, 7 (mod 9) ([6, Lemma 3]). In particular, any such solution will be
a solution to equation (1) with p &#x3E; 7, z = -1 and k = 2m &#x3E; 200. This
contradicts Theorem 1. 0

Remark. M. Le has just published a solution to equation (6) using linear
forms in logarithms (see [13]).
3.2. The equation x2 - 2k = yn. The equation

has been considered by Bugeaud [3] and by Guo and Le [10]. In particular,
Bugeaud showed that if x, y, k, n is a solution satisfying the above conditions
then,

o n and k are odd; this was shown using elementary factorization ar-
guments.

o n  7.3 x 105; this was established using lower bounds for linear forms
in logarithms.

While we are unable to resolve equation (7) completely, our Theorem 1
implies the following.
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Theorem 3. If the equations (7) has a solution satisfying the above condi-
tions then either k = 1 or n = 3a5b for some a, b.

We note in passing that it maybe possible to eliminate the case n = 3a5b
from the theorem as follows. Clearly it is sufficient to solve the equations

Now k must be odd by the result quoted above, and this leads us to fac-
torize the left-hand side of each equation over We can reduce each

equation to a set of Thue-Mahler equations, and these can be solved using
standard methods as in [16, Chapter VIII], although we have not attempted
to do this. We do not see how the equation x2 - 2 = yn (corresponding to
k = 1) can be solved using existing methods.

Acknowledgment. I am deeply indebted to the referee and Professor Bjorn
Poonen for many useful comments and corrections, and particularly for the
suggestion that my method can deal with equation (1) and not just the
equation (5).
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